Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (4) : 43208    https://doi.org/10.1007/s11467-023-1385-0
Modulation of charge in C9N4 monolayer for a high-capacity hydrogen storage as a switchable strategy
Lin Ju1(), Junxian Liu2, Minghui Wang1, Shenbo Yang3, Shuli Liu1
1. School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China
2. School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane QLD 4001, Australia
3. Hongzhiwei Technology (Shanghai) Co. Ltd., 1599 Xinjinqiao Road, Pudong, Shanghai 201206, China
 Download: PDF(4491 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Developing advanced hydrogen storage materials with high capacity and efficient reversibility is a crucial aspect for utilizing hydrogen source as a promising alternate to fossil fuels. In this paper, we have systematically investigated the hydrogen storage properties of neutral and negatively charged C9N4 monolayer based on density functional theory (DFT). Our foundings indicate that injecting additional electrons into the adsorbent significantly boosts the adsorption capacity of C9N4 monolayer to H2 molecules. The gravimetric density of negatively charged C9N4 monolayer can reach up to 10.80 wt% when fully covered with hydrogen. Unlike other hydrogen storage methods, the storage and release processes happen automatically upon introducing or removing extra electrons. Moreover, these operations can be easily adjusted through activating or deactivating the charging voltage. As a result, the method is easily reversible and has tunable kinetics without requiring particular activators. Significantly, C9N4 is proved to be a suitable candidate for efficient electron injection/release due to its well electrical conductivity. Our work can serve as a valuable guide in the quest for a novel category of materials for hydrogen storage with high capacity.

Keywords hydrogen storage      C9N4 monolayer      charge modulation      density functional theory     
Corresponding Author(s): Lin Ju   
Issue Date: 08 March 2024
 Cite this article:   
Lin Ju,Junxian Liu,Minghui Wang, et al. Modulation of charge in C9N4 monolayer for a high-capacity hydrogen storage as a switchable strategy[J]. Front. Phys. , 2024, 19(4): 43208.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1385-0
https://academic.hep.com.cn/fop/EN/Y2024/V19/I4/43208
Fig.1  (a) Top and side views of a reconstructed C9N4 monolayer. The N and C atoms are symbolized by the blue and grey balls correspondingly. (b) Electron localization functions. (c) The electronic band structure and (d) the projected density of states, relative to the Fermi level, which is represented by the blue dashed line.
Fig.2  (a) AIMD simulations on total energy for C9N4 monolayer for 5 ps with a time step of 1 fs at 500 K. (b) The corresponding temperature for each step.
Fig.3  Top and side views of the lowest-energy configurations of (a) neutral and (b) 3e? charged C9N4 monolayers with a H2 molecule absorbed on them, respectively. The blue, grey and white balls represent N, C, and H atoms, respectively. The adsorption distance, which is apart from the barycenter of the adsorbed H2 molecule to the surface of the C9N4 monolayer, is marked out in the figure.
Fig.4  (a) The charge density difference for the adsorption system, constructed by a H2 molecule adsorbing on 3e? negatively charged C9N4. Yellow and cyan regions refer to the electron-rich and -deficient areas, respectively. The isosurface value is 7 × 10?4 e/au. (b) The H s-orbital from the adsorbed H2, before and after the introduction of three electrons, with the dashed line being the Fermi energy level.
Fig.5  (a) The H?H bond length, (b) vertical distance from H2 to C9N4, (c) induced dipole moment of H2 molecule and (d) adsorption energy as well as their corresponding fittings, with respect to the amount of charge introduced (Q). Q could represent the valence of C9N4 monolayer. R2 is the correlation coefficient.
Fig.6  Reversible energy cycle diagram of C9N4 monolayer adsorbing and releasing an H2 molecule through introducing and removing electrons.
Fig.7  Average adsorption energy of H2 on the (a) 3e?, (c) 4e?, and (e) 5e? negatively charged C9N4 monolayer with different coverage. Top and side views of the lowest-energy configuration of (b) 3e?, (d) 4e?, and (f) 5e? negatively charged C9N4 at full hydrogen coverage.
1 Tollefson J. . Hydrogen vehicles: Fuel of the future. Nature, 2010, 464(7293): 1262
https://doi.org/10.1038/4641262a
2 Schlapbach L. , Züttel A. . Hydrogen-storage materials for mobile applications. Nature, 2001, 414(6861): 353
https://doi.org/10.1038/35104634
3 Schüth F. , Bogdanović B. , Felderhoff M. . Light metal hydrides and complex hydrides for hydrogen storage. Chem. Commun. (Camb.), 2004, 2249(20): 2249
https://doi.org/10.1039/B406522K
4 Ding F. , I. Yakobson B. . Challenges in hydrogen adsorptions: From physisorption to chemisorption. Front. Phys., 2011, 6(2): 142
https://doi.org/10.1007/s11467-011-0171-6
5 Zhou X. , Zhou J. , Sun Q. . Tripyrrylmethane based 2D porous structure for hydrogen storage. Front. Phys., 2011, 6(2): 220
https://doi.org/10.1007/s11467-011-0176-1
6 Li J. , Furuta T. , Goto H. , Ohashi T. , Fujiwara Y. , Yip S. . Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures. J. Chem. Phys., 2003, 119(4): 2376
https://doi.org/10.1063/1.1582831
7 Jena P. . Materials for hydrogen storage: Past, present, and future. J. Phys. Chem. Lett., 2011, 2(3): 206
https://doi.org/10.1021/jz1015372
8 Wang L. , T. Yang R. . New sorbents for hydrogen storage by hydrogen spillover – a review. Energy Environ. Sci., 2008, 1(2): 268
https://doi.org/10.1039/b807957a
9 Song L. , Jiang C. , Liu S. , Jiao C. , Si X. , Wang S. , Li F. , Zhang J. , Sun L. , Xu F. , Huang F. . Progress in improving thermodynamics and kinetics of new hydrogen storage materials. Front. Phys., 2011, 6(2): 151
https://doi.org/10.1007/s11467-011-0175-2
10 Zhang H.Li X.Tang Y., DFT study of dihydrogen interactions with lithium containing organic complexes C4H4−mLim and C5H5−mLim (m = 1, 2), Front. Phys. 6(2), 231 (2011)
11 Yoon M. , Yang S. , Hicke C. , Wang E. , Geohegan D. , Zhang Z. . Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Phys. Rev. Lett., 2008, 100(20): 206806
https://doi.org/10.1103/PhysRevLett.100.206806
12 Sun Q. , Jena P. , Wang Q. , Marquez M. . First-principles study of hydrogen storage on Li12C60. J. Am. Chem. Soc., 2006, 128(30): 9741
https://doi.org/10.1021/ja058330c
13 H. Cheng Y. , Y. Zhang C. , Ren J. , Y. Tong K. . Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers. Front. Phys., 2016, 11(5): 113101
https://doi.org/10.1007/s11467-016-0559-4
14 Zhang Z. , Li J. , Jiang Q. . Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review. Front. Phys., 2011, 6(2): 162
https://doi.org/10.1007/s11467-011-0174-3
15 Zhao Y. , H. Kim Y. , Dillon A. , Heben M. , Zhang S. . Hydrogen storage in novel organometallic buckyballs. Phys. Rev. Lett., 2005, 94(15): 155504
https://doi.org/10.1103/PhysRevLett.94.155504
16 K. Kong X. , W. Chen Q. , Y. Lun Z. . The influence of N‐doped carbon materials on supported Pd: Enhanced hydrogen storage and oxygen reduction performance. ChemPhysChem, 2014, 15(2): 344
https://doi.org/10.1002/cphc.201300907
17 Li S. , Zhao H. , Jena P. . Ti-doped nano-porous graphene: A material for hydrogen storage and sensor. Front. Phys., 2011, 6(2): 204
https://doi.org/10.1007/s11467-011-0178-z
18 Sun Q. , Wang Q. , Jena P. , Kawazoe Y. . Clustering of Ti on a C60 surface and its effect on hydrogen storage. J. Am. Chem. Soc., 2005, 127(42): 14582
https://doi.org/10.1021/ja0550125
19 Zhang Y. , Dai H. . Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl. Phys. Lett., 2000, 77(19): 3015
https://doi.org/10.1063/1.1324731
20 Fu Q. , Yuan L. , Luo Y. , Yang J. . Exploring at nanoscale from first principles. Front. Phys. China, 2009, 4(3): 256
https://doi.org/10.1007/s11467-009-0057-z
21 Yoon M. , Yang S. , Wang E. , Zhang Z. . Charged fullerenes as high-capacity hydrogen storage media. Proc. Natl. Acad. Sci. USA, 2007, 7(9): 2578
22 Niu J. , Rao B. , Jena P. . Binding of hydrogen molecules by a transition-metal ion. Phys. Rev. Lett., 1992, 68(15): 2277
https://doi.org/10.1103/PhysRevLett.68.2277
23 Zhou J. , Wang Q. , Sun Q. , Jena P. , Chen X. . Electric field enhanced hydrogen storage on polarizable materials substrates. Proc. Natl. Acad. Sci. USA, 2010, 107(7): 2801
https://doi.org/10.1073/pnas.0905571107
24 Cheng H.C. Zheng J., Ab initio study of anisotropic mechanical and electronic properties of strained carbon−nitride nanosheet with interlayer bonding, Front. Phys. 16(4), 43505 (2021)
25 Ma Z. , Zhuang J. , Zhang X. , Zhou Z. . SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts. Front. Phys., 2018, 13(3): 138104
https://doi.org/10.1007/s11467-018-0760-8
26 Gao Q. , L. Wang H. , F. Zhang L. , L. Hu S. , P. Hu Z. . Computational study on the half-metallicity in transition metal–oxide-incorporated 2D g-C3N4 nanosheets. Front. Phys., 2018, 13(3): 138108
https://doi.org/10.1007/s11467-018-0754-6
27 Ju L. , Liu C. , Shi L. , Sun L. . The high-speed channel made of metal for interfacial charge transfer in Z-scheme g-C3N4/MoS2 water-splitting photocatalyst. Mater. Res. Express, 2019, 6(11): 115545
https://doi.org/10.1088/2053-1591/ab509c
28 He C. , H. Zhang J. , X. Zhang W. , T. Li T. . Type-II InSe/g-C3N4 heterostructure as a high-efficiency oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Phys. Chem. Lett., 2019, 10(11): 3122
https://doi.org/10.1021/acs.jpclett.9b00909
29 Liu J.Cheng B.Yu J., A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure, Phys. Chem. Chem. Phys. 18(45), 31175 (2016)
30 Zhang G. , Zhang M. , Ye X. , Qiu X. , Lin S. , Wang X. . Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater., 2014, 26(5): 805
https://doi.org/10.1002/adma.201303611
31 Sun J. , Zhang J. , Zhang M. , Antonietti M. , Fu X. , Wang X. . Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun., 2012, 3(1): 1139
https://doi.org/10.1038/ncomms2152
32 Ye X. , Cui Y. , Wang X. . Ferrocene‐modified carbon nitride for direct oxidation of benzene to phenol with visible light. ChemSusChem, 2014, 7(3): 738
https://doi.org/10.1002/cssc.201301128
33 Zhang J. , Chen Y. , Wang X. . Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci., 2015, 8(11): 3092
https://doi.org/10.1039/C5EE01895A
34 P. Kaur S. , Hussain T. , Kaewmaraya T. , J. D. Kumar T. . Reversible hydrogen storage tendency of light-metal (Li/Na/K) decorated carbon nitride (C9N4) monolayer. Int. J. Hydrogen Energy, 2023, 48(67): 26301
https://doi.org/10.1016/j.ijhydene.2023.03.141
35 Huang J. , Zhou C. , Duan X. . Li decorated C9N4 monolayer as a potential material for hydrogen storage. Int. J. Hydrogen Energy, 2021, 46(65): 32929
https://doi.org/10.1016/j.ijhydene.2021.07.126
36 Tan X. , Kou L. , A. Tahini H. , C. Smith S. . Charge modulation in graphitic carbon nitride as a switchable approach to high‐capacity hydrogen storage. ChemSusChem, 2015, 8(21): 3626
https://doi.org/10.1002/cssc.201501082
37 E. Blöchl P. . Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
https://doi.org/10.1103/PhysRevB.50.17953
38 P. Perdew J. , Wang Y. . Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992, 45(23): 13244
https://doi.org/10.1103/PhysRevB.45.13244
39 Heyd J. , E. Scuseria G. , Ernzerhof M. . Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118(18): 8207
https://doi.org/10.1063/1.1564060
40 Grimme S. . Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787
https://doi.org/10.1002/jcc.20495
41 Liu S. , Yin H. , F. Liu P. . Strain-dependent electronic and mechanical properties in one-dimensional topological insulator Nb4SiTe4. Phys. Rev. B, 2023, 108(4): 045411
https://doi.org/10.1103/PhysRevB.108.045411
42 Ju L. , Ma Y. , Tan X. , Kou L. . Controllable electrocatalytic to photocatalytic conversion in ferroelectric heterostructures. J. Am. Chem. Soc., 2023, 145(48): 26393
https://doi.org/10.1021/jacs.3c10271
43 Mortazavi B. , Shahrokhi M. , V. Shapeev A. , Rabczuk T. , Zhuang X. . Prediction of C7N6 and C9N4: Stable and strong porous carbon-nitride nanosheets with attractive electronic and optical properties. J. Mater. Chem. C, 2019, 7(35): 10908
https://doi.org/10.1039/C9TC03513C
44 Yoon M. , Yang S. , Wang E. , Zhang Z. . Charged fullerenes as high-capacity hydrogen storage media. Nano Lett., 2007, 7(9): 2578
https://doi.org/10.1021/nl070809a
45 Liu Y. , Ren L. , He Y. , P. Cheng H. . Titanium-decorated graphene for high-capacity hydrogen storage studied by density functional simulations. J. Phys.: Condens. Matter, 2010, 22(44): 445301
https://doi.org/10.1088/0953-8984/22/44/445301
46 Bi L. , Miao Z. , Ge Y. , Liu Z. , Xu Y. , Yin J. , Huang X. , Wang Y. , Yang Z. . Density functional theory study on hydrogen storage capacity of metal-embedded penta-octa-graphene. Int. J. Hydrogen Energy, 2022, 47(76): 32552
https://doi.org/10.1016/j.ijhydene.2022.07.134
47 Khossossi N. , Benhouria Y. , R. Naqvi S. , K. Panda P. , Essaoudi I. , Ainane A. , Ahuja R. . Hydrogen storage characteristics of Li and Na decorated 2D boron phosphide. Sustain. Energy Fuels, 2020, 4(9): 4538
https://doi.org/10.1039/D0SE00709A
48 Haldar S. , Mukherjee S. , V. Singh C. , storage in Li Hydrogen . Na and Ca decorated and defective borophene: A first principles study. RSC Adv., 2018, 8(37): 20748
https://doi.org/10.1039/C7RA12512G
[1] fop-21385-OF-julin_suppl_1 Download
[1] B. Li, D. Vretenar, T. Nikšić, J. Zhao, P. W. Zhao, J. Meng. Generalized time-dependent generator coordinate method for induced fission dynamics[J]. Front. Phys. , 2024, 19(4): 44201-.
[2] Qingyun Zhou, Yusheng Hou, Tianshu Lai. Electronic properties and tunability in graphene/3D-InP mixed-dimensional van der Waals heterostructure[J]. Front. Phys. , 2023, 18(2): 23301-.
[3] Qingquan Kong, Xuguang An, Lin Huang, Xiaolian Wang, Wei Feng, Siyao Qiu, Qingyuan Wang, Chenghua Sun. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance[J]. Front. Phys. , 2021, 16(5): 53506-.
[4] Zhaobo Zhou, Shijun Yuan, Jinlan Wang. Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures[J]. Front. Phys. , 2021, 16(4): 43203-.
[5] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[6] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[7] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[8] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[9] Jing-Hua Feng (冯景华), Geng Li (李庚), Xiang-Fei Meng (孟祥飞), Xiao-Dong Jian (菅晓东), Zhen-Hong Dai (戴振宏), Yin-Chang Zhao (赵银昌), Zhen Zhou (周震). Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers[J]. Front. Phys. , 2019, 14(4): 43604-.
[10] Thomas Pope, Werner Hofer. A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules[J]. Front. Phys. , 2019, 14(2): 23604-.
[11] Jian Li (李剑), J. Meng (孟杰). Nuclear magnetic moments in covariant density functional theory[J]. Front. Phys. , 2018, 13(6): 132109-.
[12] Ya-Hui Mao, Li-Fu Zhang, Hui-Li Wang, Huan Shan, Xiao-Fang Zhai, Zhen-Peng Hu, Ai-Di Zhao, Bing Wang. Epitaxial growth of highly strained antimonene on Ag(111)[J]. Front. Phys. , 2018, 13(3): 138106-.
[13] Longjuan Kong, Kehui Wu, Lan Chen. Recent progress on borophene: Growth and structures[J]. Front. Phys. , 2018, 13(3): 138105-.
[14] Huaze Shen, Mohan Chen, Zhaoru Sun, Limei Xu, Enge Wang, Xifan Wu. Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations[J]. Front. Phys. , 2018, 13(1): 138204-.
[15] Yi-Han Cheng,Chuan-Yu Zhang,Juan Ren,Kai-Yu Tong. Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers[J]. Front. Phys. , 2016, 11(5): 113101-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed