|
|
Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems |
Arthur Vesperini1,2,3, Ghofrane Bel-Hadj-Aissa1,2,3, Lorenzo Capra1, Roberto Franzosi1,2,3( ) |
1. DSFTA, University of Siena, Via Roma 56, 53100 Siena, Italy 2. QSTAR & CNR - Istituto Nazionale di Ottica, Largo Enrico Fermi 2, I-50125 Firenze, Italy 3. INFN Sezione di Perugia, I-06123 Perugia, Italy |
|
|
Abstract We show that the manifold of quantum states is endowed with a rich and nontrivial geometric structure. We derive the Fubini−Study metric of the projective Hilbert space of a multi-qubit quantum system, endowing it with a Riemannian metric structure, and investigate its deep link with the entanglement of the states of this space. As a measure, we adopt the entanglement distance E preliminary proposed in Phys. Rev. A 101, 042129 (2020). Our analysis shows that entanglement has a geometric interpretation: is the minimum value of the sum of the squared distances between and its conjugate states, namely the states , where are unit vectors and runs on the number of parties. Within the proposed geometric approach, we derive a general method to determine when two states are not the same state up to the action of local unitary operators. Furthermore, we prove that the entanglement distance, along with its convex roof expansion to mixed states, fulfils the three conditions required for an entanglement measure, that is: i) iff is fully separable; ii) E is invariant under local unitary transformations; iii) E does not increase under local operation and classical communications. Two different proofs are provided for this latter property. We also show that in the case of two qubits pure states, the entanglement distance for a state coincides with two times the square of the concurrence of this state. We propose a generalization of the entanglement distance to continuous variable systems. Finally, we apply the proposed geometric approach to the study of the entanglement magnitude and the equivalence classes properties, of three families of states linked to the Greenberger−Horne−Zeilinger states, the Briegel Raussendorf states and the W states. As an example of application for the case of a system with continuous variables, we have considered a system of two coupled Glauber coherent states.
|
Keywords
entanglements
quantum information
entanglement measure
|
Corresponding Author(s):
Roberto Franzosi
|
About author: Li Liu and Yanqing Liu contributed equally to this work. |
Issue Date: 15 April 2024
|
|
1 |
Cocchiarella D. , Scali S. , Ribisi S. , Nardi B. , Bel-Hadj-Aissa G. , Franzosi R. . Entanglement distance for arbitrary M-qudit hybrid systems. Phys. Rev. A, 2020, 101(4): 042129
https://doi.org/10.1103/PhysRevA.101.042129
|
2 |
Gühne O. , Toth G. . Entanglement detection. Phys. Rep., 2009, 474(1−6): 1
https://doi.org/10.1016/j.physrep.2009.02.004
|
3 |
Nourmandipour A. , Vafafard A. , Mortezapour A. , Franzosi R. . Entanglement protection of classically driven qubits in a lossy cavity. Sci. Rep., 2021, 11(1): 16259
https://doi.org/10.1038/s41598-021-95623-1
|
4 |
Vafafard A. , Nourmandipour A. , Franzosi R. . Multipartite stationary entanglement generation in the presence of dipole−dipole interaction in an optical cavity. Phys. Rev. A, 2022, 105(5): 052439
https://doi.org/10.1103/PhysRevA.105.052439
|
5 |
Sperling J. , A. Walmsley I. . Entanglement in macroscopic systems. Phys. Rev. A, 2017, 95(6): 062116
https://doi.org/10.1103/PhysRevA.95.062116
|
6 |
Giovannetti V. , Mancini S. , Vitali D. , Tombesi P. . Characterizing the entanglement of bipartite quantum systems. Phys. Rev. A, 2003, 67(2): 022320
https://doi.org/10.1103/PhysRevA.67.022320
|
7 |
Vesperini A. , Bel-Hadj-Aissa G. , Franzosi R. . Entanglement and quantum correlation measures for quantum multipartite mixed states. Sci. Rep., 2023, 13(1): 2852
https://doi.org/10.1038/s41598-023-29438-7
|
8 |
Vesperini A. , Franzosi R. . Entanglement, quantum correlators, and connectivity in graph states. Adv. Quantum Technol., 2024, 7(2): 2300264
https://doi.org/10.1002/qute.202300264
|
9 |
Horodecki R. , Horodecki P. , Horodecki M. , Horodecki K. . Quantum entanglement. Rev. Mod. Phys., 2009, 81(2): 865
https://doi.org/10.1103/RevModPhys.81.865
|
10 |
Popescu S. , Rohrlich D. . Thermodynamics and the measure of entanglement. Phys. Rev. A, 1997, 56(5): R3319
https://doi.org/10.1103/PhysRevA.56.R3319
|
11 |
K. Wootters W. . Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 1998, 80(10): 2245
https://doi.org/10.1103/PhysRevLett.80.2245
|
12 |
H. Bennett C. , P. DiVincenzo D. , A. Smolin J. , K. Wootters W. . Mixed-state entanglement and quantum error correction. Phys. Rev. A, 1996, 54(5): 3824
https://doi.org/10.1103/PhysRevA.54.3824
|
13 |
H. Bennett C. , Brassard G. , Popescu S. , Schumacher B. , A. Smolin J. , K. Wootters W. . Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 1996, 76(5): 722
https://doi.org/10.1103/PhysRevLett.76.722
|
14 |
Horodecki M. , Horodecki P. , Horodecki R. . Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?. Phys. Rev. Lett., 1998, 80(24): 5239
https://doi.org/10.1103/PhysRevLett.80.5239
|
15 |
Vedral V. , B. Plenio M. , A. Rippin M. , L. Knight P. . Quantifying entanglement. Phys. Rev. Lett., 1997, 78(12): 2275
https://doi.org/10.1103/PhysRevLett.78.2275
|
16 |
Adesso G. , R. Bromley T. , Cianciaruso M. . Measures and applications of quantum correlations. J. Phys. A Math. Theor., 2016, 49(47): 473001
https://doi.org/10.1088/1751-8113/49/47/473001
|
17 |
Dür W. , Vidal G. , I. Cirac J. . Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314
https://doi.org/10.1103/PhysRevA.62.062314
|
18 |
J. Briegel H. , Raussendorf R. . Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett., 2001, 86(5): 910
https://doi.org/10.1103/PhysRevLett.86.910
|
19 |
Eisert J. , J. Briegel H. . Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev. A, 2001, 64(2): 022306
https://doi.org/10.1103/PhysRevA.64.022306
|
20 |
Roszak K. . Measure of qubit-environment entanglement for pure dephasing evolutions. Phys. Rev. Res., 2020, 2(4): 043062
https://doi.org/10.1103/PhysRevResearch.2.043062
|
21 |
Coffman V. , Kundu J. , K. Wootters W. . Distributed entanglement. Phys. Rev. A, 2000, 61(5): 052306
https://doi.org/10.1103/PhysRevA.61.052306
|
22 |
R. R. Carvalho A. , Mintert F. , Buchleitner A. . Decoherence and multipartite entanglement. Phys. Rev. Lett., 2004, 93(23): 230501
https://doi.org/10.1103/PhysRevLett.93.230501
|
23 |
L. Braunstein S. , M. Caves C. . Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 1994, 72(22): 3439
https://doi.org/10.1103/PhysRevLett.72.3439
|
24 |
M. Frydryszak A. , I. Samar M. , M. Tkachuk V. . Quantifying geometric measure of entanglement by mean value of spin and spin correlations with application to physical systems. Eur. Phys. J. D, 2017, 71(9): 233
https://doi.org/10.1140/epjd/e2017-70752-3
|
25 |
Pezzé L. , Smerzi A. . Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett., 2009, 102(10): 100401
https://doi.org/10.1103/PhysRevLett.102.100401
|
26 |
Hyllus P. , Laskowski W. , Krischek R. , Schwemmer C. , Wieczorek W. , Weinfurter H. , Pezzé L. , Smerzi A. . Fisher information and multiparticle entanglement. Phys. Rev. A, 2012, 85(2): 022321
https://doi.org/10.1103/PhysRevA.85.022321
|
27 |
Scali S. , Franzosi R. . Entanglement estimation in non-optimal qubit states. Ann. Phys., 2019, 411: 167995
https://doi.org/10.1016/j.aop.2019.167995
|
28 |
P. Provost J. , Vallee G. . Riemannian structure on manifolds of quantum states. Commun. Math. Phys., 1980, 76(3): 289
https://doi.org/10.1007/BF02193559
|
29 |
Gibbons G. . Typical states and density matrices. J. Geom. Phys., 1992, 8(1−4): 147
https://doi.org/10.1016/0393-0440(92)90046-4
|
30 |
C. Brody D. , P. Hughston L. . Geometric quantum mechanics. J. Geom. Phys., 2001, 38(1): 19
https://doi.org/10.1016/S0393-0440(00)00052-8
|
31 |
Vidal G. . Entanglement monotones. J. Mod. Opt., 2000, 47(2−3): 355
https://doi.org/10.1080/09500340008244048
|
32 |
M. Greenberger D.A. Horne M.Zeilinger A., Going beyond Bell’s theorem, in: Bell’s Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos, Springer Netherlands, Dordrecht, 1989, pp 69–72
|
33 |
Vesperini A. . Correlations and projective measurements in maximally entangled multipartite states. Ann. Phys., 2023, 457: 169406
https://doi.org/10.1016/j.aop.2023.169406
|
34 |
Note that the other formula, proposed in Ref. [7] as a generalization of the ED to mixed state, in fact reduces to Eq. (31), and is hence also an entanglement monotone. The supplementary minimization process in the former serves only as a trick, which sometimes allow to overcome the difficulty of the usual minimization over all possible realizations {pj, ψj} of ρ as mixture of pure states.
|
35 |
K. Wootters W. . Entanglement of formation and concurrence. Quantum Inf. Comput., 2001, 1(1): 27
https://doi.org/10.26421/QIC1.1-3
|
36 |
Wu S. , Zhang Y. . Multipartite pure-state entanglement and the generalized Greenberger−Horne−Zeilinger states. Phys. Rev. A, 2000, 63(1): 012308
https://doi.org/10.1103/PhysRevA.63.012308
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|