Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 51204    https://doi.org/10.1007/s11467-024-1403-x
Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems
Arthur Vesperini1,2,3, Ghofrane Bel-Hadj-Aissa1,2,3, Lorenzo Capra1, Roberto Franzosi1,2,3()
1. DSFTA, University of Siena, Via Roma 56, 53100 Siena, Italy
2. QSTAR & CNR - Istituto Nazionale di Ottica, Largo Enrico Fermi 2, I-50125 Firenze, Italy
3. INFN Sezione di Perugia, I-06123 Perugia, Italy
 Download: PDF(5083 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We show that the manifold of quantum states is endowed with a rich and nontrivial geometric structure. We derive the Fubini−Study metric of the projective Hilbert space of a multi-qubit quantum system, endowing it with a Riemannian metric structure, and investigate its deep link with the entanglement of the states of this space. As a measure, we adopt the entanglement distance E preliminary proposed in Phys. Rev. A 101, 042129 (2020). Our analysis shows that entanglement has a geometric interpretation: E(|ψ) is the minimum value of the sum of the squared distances between |ψ and its conjugate states, namely the states vμσμ|ψ, where vμ are unit vectors and μ runs on the number of parties. Within the proposed geometric approach, we derive a general method to determine when two states are not the same state up to the action of local unitary operators. Furthermore, we prove that the entanglement distance, along with its convex roof expansion to mixed states, fulfils the three conditions required for an entanglement measure, that is: i) E(|ψ)=0 iff |ψ is fully separable; ii) E is invariant under local unitary transformations; iii) E does not increase under local operation and classical communications. Two different proofs are provided for this latter property. We also show that in the case of two qubits pure states, the entanglement distance for a state |ψ coincides with two times the square of the concurrence of this state. We propose a generalization of the entanglement distance to continuous variable systems. Finally, we apply the proposed geometric approach to the study of the entanglement magnitude and the equivalence classes properties, of three families of states linked to the Greenberger−Horne−Zeilinger states, the Briegel Raussendorf states and the W states. As an example of application for the case of a system with continuous variables, we have considered a system of two coupled Glauber coherent states.

Keywords entanglements      quantum information      entanglement measure     
Corresponding Author(s): Roberto Franzosi   
About author: Li Liu and Yanqing Liu contributed equally to this work.
Issue Date: 15 April 2024
 Cite this article:   
Arthur Vesperini,Ghofrane Bel-Hadj-Aissa,Lorenzo Capra, et al. Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems[J]. Front. Phys. , 2024, 19(5): 51204.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1403-x
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/51204
Fig.1  This figure reports the three-dimensional plot of the ED E(|W,α?3)/3 as a function of 2θ1/π and 2θ2/π for the states (66), in the case M=3.
Fig.2  The scheme in the figure represents the topological structure of the equivalence classes for some of the states for each of the three families. A point along one of the black lines represents a state of each family, from left to right these are the α-W states, the ?-BRS and the θ-GHZLS. The magenta cloudlet represents the equivalence class to which belong the (fully separable) states. The latter are, in the case of the α-W states, the states |W,α?2 with α=(1,0),(0,1), in the case of ?-BRS, the states |r,??2 with ?=0,2π and, in the case of the θ-GBZLS the states |GHZ,θ?2, where θ=0,π/2. In the case of M=2 qubits, the states of the three families with the higher degree of entanglement, that is |W,(1/2,1/2)?2, |r,π?2 and |GHZ,π/4?2, belong to the same equivalence class, figured with a red cloudlet.
Fig.3  As in Fig.2, we report here a scheme that represents the topological structure of the equivalence classes for some of the states of the three families: the α-W states, the ?-BRS and the θ-GHZLS. In this case, we consider three qubits states. The magenta cloudlet represents the equivalence class to which belong the (fully separable) states for the three families: |W,α?3 with α=(1,0,0),(0,1,0),(0,0,1), |r,??3 with ?=0,2π and, |GHZ,θ?3, with θ=0,π/2. In the case of M=3 qubits, the equivalence classes of the states of the three families with the higher degree of entanglement do not coincide. In fact, the class [|W,(1/3,1/3,1/3)?3] is dijointed from the class [|r,π?3]=[|GHZ,π/4?3], as figured with the two red cloudlets.
Fig.4  We report here a scheme analogous to those of Fig.2 and Fig.3. In this case, we consider M=4 qubits states. The magenta cloudlet represents the equivalence class to which belong the (fully separable) states of the three families: |W,α?4 with α=(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1), |r,??4 with ?=0,2π and, |GHZ,θ?4, with θ=0,π/2. In this case, the equivalence classes of the states of the three families with the higher degree of entanglement are all disjointed. In fact, the class [|W,(1/4,1/4,1/4,1/4)?4][|r,π?4][|GHZ,π/4?4], as figured with the three dijointed red cloudlets.
1 Cocchiarella D. , Scali S. , Ribisi S. , Nardi B. , Bel-Hadj-Aissa G. , Franzosi R. . Entanglement distance for arbitrary M-qudit hybrid systems. Phys. Rev. A, 2020, 101(4): 042129
https://doi.org/10.1103/PhysRevA.101.042129
2 Gühne O. , Toth G. . Entanglement detection. Phys. Rep., 2009, 474(1−6): 1
https://doi.org/10.1016/j.physrep.2009.02.004
3 Nourmandipour A. , Vafafard A. , Mortezapour A. , Franzosi R. . Entanglement protection of classically driven qubits in a lossy cavity. Sci. Rep., 2021, 11(1): 16259
https://doi.org/10.1038/s41598-021-95623-1
4 Vafafard A. , Nourmandipour A. , Franzosi R. . Multipartite stationary entanglement generation in the presence of dipole−dipole interaction in an optical cavity. Phys. Rev. A, 2022, 105(5): 052439
https://doi.org/10.1103/PhysRevA.105.052439
5 Sperling J. , A. Walmsley I. . Entanglement in macroscopic systems. Phys. Rev. A, 2017, 95(6): 062116
https://doi.org/10.1103/PhysRevA.95.062116
6 Giovannetti V. , Mancini S. , Vitali D. , Tombesi P. . Characterizing the entanglement of bipartite quantum systems. Phys. Rev. A, 2003, 67(2): 022320
https://doi.org/10.1103/PhysRevA.67.022320
7 Vesperini A. , Bel-Hadj-Aissa G. , Franzosi R. . Entanglement and quantum correlation measures for quantum multipartite mixed states. Sci. Rep., 2023, 13(1): 2852
https://doi.org/10.1038/s41598-023-29438-7
8 Vesperini A. , Franzosi R. . Entanglement, quantum correlators, and connectivity in graph states. Adv. Quantum Technol., 2024, 7(2): 2300264
https://doi.org/10.1002/qute.202300264
9 Horodecki R. , Horodecki P. , Horodecki M. , Horodecki K. . Quantum entanglement. Rev. Mod. Phys., 2009, 81(2): 865
https://doi.org/10.1103/RevModPhys.81.865
10 Popescu S. , Rohrlich D. . Thermodynamics and the measure of entanglement. Phys. Rev. A, 1997, 56(5): R3319
https://doi.org/10.1103/PhysRevA.56.R3319
11 K. Wootters W. . Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 1998, 80(10): 2245
https://doi.org/10.1103/PhysRevLett.80.2245
12 H. Bennett C. , P. DiVincenzo D. , A. Smolin J. , K. Wootters W. . Mixed-state entanglement and quantum error correction. Phys. Rev. A, 1996, 54(5): 3824
https://doi.org/10.1103/PhysRevA.54.3824
13 H. Bennett C. , Brassard G. , Popescu S. , Schumacher B. , A. Smolin J. , K. Wootters W. . Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 1996, 76(5): 722
https://doi.org/10.1103/PhysRevLett.76.722
14 Horodecki M. , Horodecki P. , Horodecki R. . Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?. Phys. Rev. Lett., 1998, 80(24): 5239
https://doi.org/10.1103/PhysRevLett.80.5239
15 Vedral V. , B. Plenio M. , A. Rippin M. , L. Knight P. . Quantifying entanglement. Phys. Rev. Lett., 1997, 78(12): 2275
https://doi.org/10.1103/PhysRevLett.78.2275
16 Adesso G. , R. Bromley T. , Cianciaruso M. . Measures and applications of quantum correlations. J. Phys. A Math. Theor., 2016, 49(47): 473001
https://doi.org/10.1088/1751-8113/49/47/473001
17 Dür W. , Vidal G. , I. Cirac J. . Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314
https://doi.org/10.1103/PhysRevA.62.062314
18 J. Briegel H. , Raussendorf R. . Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett., 2001, 86(5): 910
https://doi.org/10.1103/PhysRevLett.86.910
19 Eisert J. , J. Briegel H. . Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev. A, 2001, 64(2): 022306
https://doi.org/10.1103/PhysRevA.64.022306
20 Roszak K. . Measure of qubit-environment entanglement for pure dephasing evolutions. Phys. Rev. Res., 2020, 2(4): 043062
https://doi.org/10.1103/PhysRevResearch.2.043062
21 Coffman V. , Kundu J. , K. Wootters W. . Distributed entanglement. Phys. Rev. A, 2000, 61(5): 052306
https://doi.org/10.1103/PhysRevA.61.052306
22 R. R. Carvalho A. , Mintert F. , Buchleitner A. . Decoherence and multipartite entanglement. Phys. Rev. Lett., 2004, 93(23): 230501
https://doi.org/10.1103/PhysRevLett.93.230501
23 L. Braunstein S. , M. Caves C. . Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 1994, 72(22): 3439
https://doi.org/10.1103/PhysRevLett.72.3439
24 M. Frydryszak A. , I. Samar M. , M. Tkachuk V. . Quantifying geometric measure of entanglement by mean value of spin and spin correlations with application to physical systems. Eur. Phys. J. D, 2017, 71(9): 233
https://doi.org/10.1140/epjd/e2017-70752-3
25 Pezzé L. , Smerzi A. . Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett., 2009, 102(10): 100401
https://doi.org/10.1103/PhysRevLett.102.100401
26 Hyllus P. , Laskowski W. , Krischek R. , Schwemmer C. , Wieczorek W. , Weinfurter H. , Pezzé L. , Smerzi A. . Fisher information and multiparticle entanglement. Phys. Rev. A, 2012, 85(2): 022321
https://doi.org/10.1103/PhysRevA.85.022321
27 Scali S. , Franzosi R. . Entanglement estimation in non-optimal qubit states. Ann. Phys., 2019, 411: 167995
https://doi.org/10.1016/j.aop.2019.167995
28 P. Provost J. , Vallee G. . Riemannian structure on manifolds of quantum states. Commun. Math. Phys., 1980, 76(3): 289
https://doi.org/10.1007/BF02193559
29 Gibbons G. . Typical states and density matrices. J. Geom. Phys., 1992, 8(1−4): 147
https://doi.org/10.1016/0393-0440(92)90046-4
30 C. Brody D. , P. Hughston L. . Geometric quantum mechanics. J. Geom. Phys., 2001, 38(1): 19
https://doi.org/10.1016/S0393-0440(00)00052-8
31 Vidal G. . Entanglement monotones. J. Mod. Opt., 2000, 47(2−3): 355
https://doi.org/10.1080/09500340008244048
32 M. Greenberger D.A. Horne M.Zeilinger A., Going beyond Bell’s theorem, in: Bell’s Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos, Springer Netherlands, Dordrecht, 1989, pp 69–72
33 Vesperini A. . Correlations and projective measurements in maximally entangled multipartite states. Ann. Phys., 2023, 457: 169406
https://doi.org/10.1016/j.aop.2023.169406
34 Note that the other formula, proposed in Ref. [7] as a generalization of the ED to mixed state, in fact reduces to Eq. (31), and is hence also an entanglement monotone. The supplementary minimization process in the former serves only as a trick, which sometimes allow to overcome the difficulty of the usual minimization over all possible realizations {pj, ψj} of ρ as mixture of pure states.
35 K. Wootters W. . Entanglement of formation and concurrence. Quantum Inf. Comput., 2001, 1(1): 27
https://doi.org/10.26421/QIC1.1-3
36 Wu S. , Zhang Y. . Multipartite pure-state entanglement and the generalized Greenberger−Horne−Zeilinger states. Phys. Rev. A, 2000, 63(1): 012308
https://doi.org/10.1103/PhysRevA.63.012308
[1] Tingting Fan, Cuihong Wen, Jiliang Jing, Jieci Wang. Genuine tripartite entanglement and geometric quantum discord in entangled three-body Unruh−DeWitt detector system[J]. Front. Phys. , 2024, 19(5): 54201-.
[2] Hai He, Peng-Fei Yang, Peng-Fei Zhang, Gang Li, Tian-Cai Zhang. Single-photon source with sub-MHz linewidth for cesium-based quantum information processing[J]. Front. Phys. , 2023, 18(6): 61303-.
[3] Muhammad Waseem Hafiz, Seong Oun Hwang. A probabilistic model of quantum states for classical data security[J]. Front. Phys. , 2023, 18(5): 51304-.
[4] Yi-Ming Wu, Gang Fan, Fang-Fang Du. Error-detected three-photon hyperparallel Toffoli gate with state-selective reflection[J]. Front. Phys. , 2022, 17(5): 51502-.
[5] Yi-Xuan Wu, Zi-Yan Guan, Sai Li, Zheng-Yuan Xue. Fast quantum state transfer and entanglement for cavity-coupled many qubits via dark pathways[J]. Front. Phys. , 2022, 17(4): 42507-.
[6] Peng Wang, Chang-Qi Yu, Zi-Xu Wang, Rui-Yang Yuan, Fang-Fang Du, Bao-Cang Ren. Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system[J]. Front. Phys. , 2022, 17(3): 31501-.
[7] Pingyu Zhu, Qilin Zheng, Shichuan Xue, Chao Wu, Xinyao Yu, Yang Wang, Yingwen Liu, Xiaogang Qiang, Junjie Wu, Ping Xu. On-chip multiphoton Greenberger–Horne–Zeilinger state based on integrated frequency combs[J]. Front. Phys. , 2020, 15(6): 61501-.
[8] Luis Roa, Andrea Espinoza, Ariana Muñoz, María L. Ladrón de Guevara. Recovering information in probabilistic quantum teleportation[J]. Front. Phys. , 2019, 14(6): 61602-.
[9] Xiao-Tao Mo, Zheng-Yuan Xue. Single-step multipartite entangled states generation from coupled circuit cavities[J]. Front. Phys. , 2019, 14(3): 31602-.
[10] Gaurav Bhole, Jonathan A. Jones. Practical pulse engineering: Gradient ascent without matrix exponentiation[J]. Front. Phys. , 2018, 13(3): 130312-.
[11] Qiao Bi. Quantum computation in triangular decoherence-free subdynamic space[J]. Front. Phys. , 2015, 10(2): 100304-.
[12] Marek Zukowski. Temporal inequalities for sequential multi-time actions in quantum information processing[J]. Front. Phys. , 2014, 9(5): 629-633.
[13] Jing-Wei Zhou, Peng-Fei Wang, Fa-Zhan Shi, Pu Huang, Xi Kong, Xiang-Kun Xu, Qi Zhang, Zi-Xiang Wang, Xing Rong, Jiang-Feng Du. Quantum information processing and metrology with color centers in diamonds[J]. Front. Phys. , 2014, 9(5): 587-597.
[14] Xin-hua PENG (彭新华), Dieter SUTER, . Spin qubits for quantum simulations [J]. Front. Phys. , 2010, 5(1): 1-25.
[15] Hua WEI(魏华), Zhi-jiao DENG(邓志娇), Wan-li YANG(杨万里), Fei ZHOU(周飞). Cavity quantum networks for quantum information processing in decoherence-free subspace[J]. Front. Phys. , 2009, 4(1): 21-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed