Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2025, Vol. 20 Issue (2) : 23303    https://doi.org/10.15302/frontphys.2025.023303
Entanglement signature of the superradiant quantum phase transition
Arthur Vesperini1,2, Matteo Cini3, Roberto Franzosi1,2()
. DSFTA, University of Siena, Via Roma 56, 53100 Siena, Italy
. INFN Sezione di Perugia, I-06123 Perugia, Italy
. Dipartimento di Fisica Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
 Download: PDF(5863 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Entanglement and quantum correlations between atoms are not usually considered key ingredients of the superradiant phase transition. Here we consider the Tavis−Cummings model, a solvable system of two-levels atoms, coupled with a single-mode quantized electromagnetic field. This system undergoes a superradiant phase transition, even in a finite-size framework, accompanied by a spontaneous symmetry breaking, and an infinite sequence of energy level crossings. We find approximated expressions for the ground state, its energy, and the position of the level crossings, valid in the limit of a very large number of photons with respect to that of the atoms. In that same limit, we find that the number of photons scales quadratically with the coupling strength, and linearly with the system size, providing a new insight into the superradiance phenomenon. Resorting to novel multipartite measures, we then demonstrate that this quantum phase transition is accompanied by a crossover in the quantum correlations and entanglement between the atoms (qubits). The latters therefore represent suited order parameters for this transition. Finally, we show that these properties of the quantum phase transition persist in the thermodynamic limit.

Keywords entanglement      superradiant quantum phase transition     
Corresponding Author(s): Roberto Franzosi   
Issue Date: 28 November 2024
 Cite this article:   
Arthur Vesperini,Matteo Cini,Roberto Franzosi. Entanglement signature of the superradiant quantum phase transition[J]. Front. Phys. , 2025, 20(2): 23303.
 URL:  
https://academic.hep.com.cn/fop/EN/10.15302/frontphys.2025.023303
https://academic.hep.com.cn/fop/EN/Y2025/V20/I2/23303
Fig.1  Minima energy eigenvalues versus g, for the first fifty multiplets. The figure refers to a system of M=8 qubits and with η=10.
Fig.2  The figure shows a zoom the energy levels E0 (continuous line), E1 (dashed line), E2 (dotted line), E3 (dot-dash line), E4 (gray dot-dash line) versus g. The parameters are the same as for Fig.1.
Fig.3  The figure compares the plots of the energy level E150 versus g, corresponding to the minimum energy eigenvalue of the eigenspace HkI, k=150. Here we have considered a system with M=8 qubits and with η=10. In continuous black line, we report E150(g) derived by numeric diagonalization of the full Hamiltonian (7) and in dashed red line the approximated level given in Eq. (13). The agreement between the two curves is very good.
Fig.4  The figure reports the excitation number k of the ground state, as a function of the coupling g, derived by numerical calculations, in the cases M=2, 4,8,16 ,32,64,128,256. Line M=256 shows the asymptotic prediction (18), valid in the limit kM.
Fig.5  The figure reports the excitation number per qubit k/M of the ground state, as a function of the coupling g, derived by numerical calculations. All the curves, corresponding to the cases M=2,4, 8,16,32,64,128,256, are completely overlapping, and represented by the single red curve. The dotted line shows the asymptotic prediction drawn from Eq. (18), valid in the limit kM.
Fig.6  The figure plots the QCD per qubits C(ρs) versus g, derived by numerical calculations. The lines refer to the cases of a system with M=2, 4,8,16 ,32,64, 128, 256 qubits. Line M=256 shows the asymptotic prediction (31), valid in the limit kM.
Fig.7  The figure reports the purity tr(ρs2) as a function of the coupling g, derived by numerical calculations, in the cases M=2,4, 8,16,32,64,128,256.
Fig.8  The figure reports the rescaled QCD per qubit C~(ρs) as a function of the coupling g, derived by numerical calculations, in the cases M=2,4, 8,16,32,64,128,256. Line M=256 shows the asymptotic prediction (31), valid in the limit kM.
Fig.9  The figure plots the total two-tangle per qubit versus g, derived by numerical calculations, in the cases M=2, 4,8,16 ,32,64, 128, 256. The asymptotic prediction (31), valid in the limit kM, yields uniformly null total two tangle, for all values of g.
1 Arute F., Arya K., Babbush R., Bacon D., C. Bardin J., et al.. Quantum supremacy using a programmable superconducting processor, Nature 574(7779), 505 (2019)
https://doi.org/10.1038/s41586-019-1666-5
2 P. Dowling J. and J. Milburn G., Quantum technology: The second quantum revolution, Philos. T. R. Soc. A 361(1809), 1655 (2003)
https://doi.org/10.1098/rsta.2003.1227
3 Gühne O. and Toth G., Entanglement detection, Phys. Rep. 474(1−6), 1 (2009)
https://doi.org/10.1016/j.physrep.2009.02.004
4 Y. Gyhm J., Šafránek D., and Rosa D., Quantum charging advantage cannot be extensive without global operations, Phys. Rev. Lett. 128(14), 140501 (2022)
https://doi.org/10.1103/PhysRevLett.128.140501
5 Alicki R. and Fannes M., Entanglement boost for extractable work from ensembles of quantum batteries, Phys. Rev. E 87(4), 042123 (2013)
https://doi.org/10.1103/PhysRevE.87.042123
6 C. Binder F., Vinjanampathy S., Modi K., and Goold J., Quantacell: Powerful charging of quantum batteries, New J. Phys. 17(7), 075015 (2015)
https://doi.org/10.1088/1367-2630/17/7/075015
7 Campaioli F., A. Pollock F., C. Binder F., Céleri L., Goold J., Vinjanampathy S., and Modi K., Enhancing the charging power of quantum batteries, Phys. Rev. Lett. 118(15), 150601 (2017)
https://doi.org/10.1103/PhysRevLett.118.150601
8 Y. Gyhm J., Šafránek D., and Rosa D., Quantum charging advantage cannot be extensive without global operations, Phys. Rev. Lett. 128(14), 140501 (2022)
https://doi.org/10.1103/PhysRevLett.128.140501
9 J. Hwang M., Puebla R., and B. Plenio M., Quantum phase transition and universal dynamics in the Rabi model, Phys. Rev. Lett. 115(18), 180404 (2015)
https://doi.org/10.1103/PhysRevLett.115.180404
10 I. Rabi I., On the process of space quantization, Phys. Rev. 49(4), 324 (1936)
https://doi.org/10.1103/PhysRev.49.324
11 Braak D., Integrability of the Rabi model, Phys. Rev. Lett. 107(10), 100401 (2011)
https://doi.org/10.1103/PhysRevLett.107.100401
12 T. Jaynes E. and W. Cummings F., Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51(1), 89 (1963)
https://doi.org/10.1109/PROC.1963.1664
13 Retzker A., Solano E., and Reznik B., Tavis−Cummings model and collective multiqubit entanglement in trapped ions, Phys. Rev. A 75(2), 022312 (2007)
https://doi.org/10.1103/PhysRevA.75.022312
14 Feng M., P. Zhong Y., Liu T., L. Yan L., L. Yang W., Twamley J., and Wang H., Exploring the quantum critical behaviour in a driven Tavis–Cummings circuit, Nat. Commun. 6(1), 7111 (2015)
https://doi.org/10.1038/ncomms8111
15 Larson J., Dynamics of the Jaynes–Cummings and Rabi models: Old wine in new bottles, Phys. Scr. 76(2), 146 (2007)
https://doi.org/10.1088/0031-8949/76/2/007
16 Ghoshal A., Das S., Sen(De) A., and Sen U., Population inversion and entanglement in single and double glassy Jaynes−Cummings models, Phys. Rev. A 101(5), 053805 (2020)
https://doi.org/10.1103/PhysRevA.101.053805
17 F. Huang J., Q. Liao J., and M. Kuang L., Ultrastrong Jaynes−Cummings model, Phys. Rev. A 101(4), 043835 (2020)
https://doi.org/10.1103/PhysRevA.101.043835
18 Fischer K., Sun S., Lukin D., Kelaita Y., Trivedi R., and Vuckovic J., Pulsed coherent drive in the Jaynes−Cummings model, Phys. Rev. A 98(2), 021802 (2018)
https://doi.org/10.1103/PhysRevA.98.021802
19 J. Hwang M. and B. Plenio M., Quantum phase transition in the finite Jaynes−Cummings lattice systems, Phys. Rev. Lett. 117(12), 123602 (2016)
https://doi.org/10.1103/PhysRevLett.117.123602
20 Bužek V., Orszag M., and Roško M., Instability and entanglement of the ground state of the Dicke model, Phys. Rev. Lett. 94(16), 163601 (2005)
https://doi.org/10.1103/PhysRevLett.94.163601
21 Castaños O., López-Peña R., Nahmad-Achar E., G. Hirsch J., López-Moreno E., and E. Vitela J., Coherent state description of the ground state in the Tavis–Cummings model and its quantum phase transitions, Phys. Scr. 79(6), 065405 (2009)
https://doi.org/10.1088/0031-8949/79/06/065405
22 Dong C.Zhang Y., Entanglement of atoms in Tavis−Cummings model, J. Shanghai University 10(3), 215 (2006) (English Edition)
23 E. Tessier T., H. Deutsch I., Delgado A., and Fuentes-Guridi I., Entanglement sharing in the two-atom Tavis−Cummings model, Phys. Rev. A 68(6), 062316 (2003)
https://doi.org/10.1103/PhysRevA.68.062316
24 Youssef M., Metwally N., and S. F. Obada A., Some entanglement features of a three-atom Tavis–Cummings model: A cooperative case, J. Phys. At. Mol. Opt. Phys. 43(9), 095501 (2010)
https://doi.org/10.1088/0953-4075/43/9/095501
25 Vesperini A., Bel-Hadj-Aissa G., and Franzosi R., Entanglement and quantum correlation measures for quantum multipartite mixed states, Sci. Rep. 13(1), 2852 (2023)
https://doi.org/10.1038/s41598-023-29438-7
26 Roopini V. and Radhakrishnan R., Implementation of Tavis−Cummings model in solid-state defect qubits: Diamond nitrogenvacancy center, Mater. Today Proc. 27, 446 (2020)
https://doi.org/10.1016/j.matpr.2019.11.266
27 Scali S. and Franzosi R., Entanglement estimation in non-optimal qubit states, Ann. Phys. 411, 167995 (2019)
https://doi.org/10.1016/j.aop.2019.167995
28 Cocchiarella D., Scali S., Ribisi S., Nardi B., Bel-Hadj-Aissa G., and Franzosi R., Entanglement distance for arbitrary m-qudit hybrid systems, Phys. Rev. A 101(4), 042129 (2020)
https://doi.org/10.1103/PhysRevA.101.042129
29 Nourmandipour A., Vafafard A., Mortezapour A., and Franzosi R., Entanglement protection of classically driven qubits in a lossy cavity, Sci. Rep. 11(1), 16259 (2021)
https://doi.org/10.1038/s41598-021-95623-1
30 Vafafard A., Nourmandipour A., and Franzosi R., Multipartite stationary entanglement generation in the presence of dipole−dipole interaction in an optical cavity, Phys. Rev. A 105(5), 052439 (2022)
https://doi.org/10.1103/PhysRevA.105.052439
31 Arthur V., Geometry, Topology, and Dynamics of Many-Body Systems: Quantum and Classical Perspectives, PhD thesis, U. Siena, Aix-Marseille University, 2023
32 J. Osborne T. and Verstraete F., General monogamy inequality for bipartite qubit entanglement, Phys. Rev. Lett. 96(22), 220503 (2006)
https://doi.org/10.1103/PhysRevLett.96.220503
33 Bel-Hadj-Aissa G., Geometric study of classical phase transitions and quantum entanglement, PhD thesis, U. Siena, 2023
34 Vesperini A., Bel-Hadj-Aissa G., Capra L., and Franzosi R., Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems, Front. Phys. 19(5), 51204 (2024)
https://doi.org/10.1007/s11467-024-1403-x
35 Ozawa M., Entanglement measures and the Hilbert−Schmidt distance, Phys. Lett. A 268(3), 158 (2000)
https://doi.org/10.1016/S0375-9601(00)00171-7
36 Piani M., Problem with geometric discord, Phys. Rev. A 86(3), 034101 (2012)
https://doi.org/10.1103/PhysRevA.86.034101
37 Chang L. and Luo S., Remedying the local Ancilla problem with geometric discord, Phys. Rev. A 87(6), 062303 (2013)
https://doi.org/10.1103/PhysRevA.87.062303
38 Vidal G., Entanglement monotones, J. Mod. Opt. 47(2−3), 355 (2000)
https://doi.org/10.1080/09500340008244048
39 Tavis M. and W. Cummings F., Exact solution for an n-molecule — radiation-field hamiltonian, Phys. Rev. 170(2), 379 (1968)
https://doi.org/10.1103/PhysRev.170.379
40 D. Leroux I., H. Schleier-Smith M., and Vuletic V., Implementation of cavity squeezing of a collective atomic spin, Phys. Rev. Lett. 104(7), 073602 (2010)
https://doi.org/10.1103/PhysRevLett.104.073602
41 Yu N., Separability of a mixture of Dicke states, Phys. Rev. A 94(6), 060101 (2016)
https://doi.org/10.1103/PhysRevA.94.060101
42 Bužek V., Orszag M., and Roško M., Instability and entanglement of the ground state of the Dicke model, Phys. Rev. Lett. 94(16), 163601 (2005)
https://doi.org/10.1103/PhysRevLett.94.163601
43 Coffman V., Kundu J., and K. Wootters W., Distributed entanglement, Phys. Rev. A 61(5), 052306 (2000)
https://doi.org/10.1103/PhysRevA.61.052306
44 Koashi M., Bužek V., and Imoto N., Entangled webs: Tight bound for symmetric sharing of entanglement, Phys. Rev. A 62(5), 050302 (2000)
https://doi.org/10.1103/PhysRevA.62.050302
[1] Zhi Zeng. Complete hyperentangled state analysis using high-dimensional entanglement[J]. Front. Phys. , 2025, 20(2): 23302-.
[2] Arthur Vesperini, Ghofrane Bel-Hadj-Aissa, Lorenzo Capra, Roberto Franzosi. Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems[J]. Front. Phys. , 2024, 19(5): 51204-.
[3] Amir R. Arab. Lecture notes on quantum entanglement: From stabilizer states to stabilizer channels[J]. Front. Phys. , 2024, 19(5): 51203-.
[4] Peng Zhao, Wei Zhong, Ming-Ming Du, Xi-Yun Li, Lan Zhou, Yu-Bo Sheng. Quantum secure direct communication with hybrid entanglement[J]. Front. Phys. , 2024, 19(5): 51201-.
[5] Jie Chen, Chun Chen, Xiaoqun Wang. Eigenstate properties of the disordered Bose−Hubbard chain[J]. Front. Phys. , 2024, 19(4): 43207-.
[6] Xiao-Feng Shi. Fast nuclear-spin gates and electrons−nuclei entanglement of neutral atoms in weak magnetic fields[J]. Front. Phys. , 2024, 19(2): 22203-.
[7] Jiu-Ming Li, Shao-Ming Fei. Quantum entanglement generation on magnons assisted with microwave cavities coupled to a superconducting qubit[J]. Front. Phys. , 2023, 18(4): 41301-.
[8] Xiao-Gang Fan, Fa Zhao, Huan Yang, Fei Ming, Dong Wang, Liu Ye. Inequality relations for the hierarchy of quantum correlations in two-qubit systems[J]. Front. Phys. , 2023, 18(1): 11301-.
[9] Yi-Xuan Wu, Zi-Yan Guan, Sai Li, Zheng-Yuan Xue. Fast quantum state transfer and entanglement for cavity-coupled many qubits via dark pathways[J]. Front. Phys. , 2022, 17(4): 42507-.
[10] Tian-Tian Huan, Rigui Zhou, Hou Ian. Distributed entanglement generation from asynchronously excited qubits[J]. Front. Phys. , 2022, 17(4): 42504-.
[11] Pengfei Zhang. Quantum entanglement in the Sachdev–Ye–Kitaev model and its generalizations[J]. Front. Phys. , 2022, 17(4): 43201-.
[12] Pei-Shun Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Measurement-based entanglement purification for entangled coherent states[J]. Front. Phys. , 2022, 17(2): 21501-.
[13] Yexiong Zeng, Biao Xiong, Chong Li. Suppressing laser phase noise in an optomechanical system[J]. Front. Phys. , 2022, 17(1): 12503-.
[14] Mei-Yu Wang, Fengli Yan, Ting Gao. Remote preparation for single-photon state in two degrees of freedom with hyper-entangled states[J]. Front. Phys. , 2021, 16(4): 41501-.
[15] Long Tian, Shao-Ping Shi, Yu-Hang Tian, Ya-Jun Wang, Yao-Hui Zheng, Kun-Chi Peng. Resource reduction for simultaneous generation of two types of continuous variable nonclassical states[J]. Front. Phys. , 2021, 16(2): 21502-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed