Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (8) : 93    https://doi.org/10.1007/s11783-024-1853-y
A review of CFD simulation in pressure driven membrane with fouling model and anti-fouling strategy
Shiyong Miao1, Jiaying Ma1, Xuefei Zhou1,2, Yalei Zhang1,2, Huaqiang Chu1,2()
1. State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
2. Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
 Download: PDF(15261 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● The numerical realization method of the membrane permeation process is summarized.

● Biofouling, scaling and colloidal particle fouling models are detailed presented.

● Representative CFD-aided simulations of anti-fouling strategies are described.

Pressure-driven membrane filtration systems are widely utilized in wastewater treatment, desalination, and water reclamation and have received extensive attention from researchers. Computational fluid dynamics (CFD) offers a convenient approach for conducting mechanistic studies of flow and mass transfer characteristics in pressure-driven systems. As a signature phenomenon in membrane systems, the concentration polarization that accompanies the permeation process is a key factor in membrane performance degradation and membrane fouling intensification. Multiple fouling models (scaling, biofouling and colloidal particle fouling) based on CFD theory have been constructed, and considerable research has been conducted. Several representative antifouling strategies with special simulation methods, including patterned membranes, vibration membranes, rotation membranes, and pulsatile flows, have also been discussed. Future studies should focus on refining fouling models while considering local hydrodynamic characteristics; experimental observation tools focusing on the internal structure of inhomogeneous fouling layers; techno-economic model of antifouling strategies such as vibrational, rotational and pulsatile flows; and unfavorable hydraulic phenomena induced by rapidly changing flows in simulations.

Keywords Computational fluid dynamics      Membrane      Fouling model      Concentration polarization     
Corresponding Author(s): Huaqiang Chu   
Issue Date: 14 May 2024
 Cite this article:   
Shiyong Miao,Jiaying Ma,Xuefei Zhou, et al. A review of CFD simulation in pressure driven membrane with fouling model and anti-fouling strategy[J]. Front. Environ. Sci. Eng., 2024, 18(8): 93.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1853-y
https://academic.hep.com.cn/fese/EN/Y2024/V18/I8/93
Spacer geometry Feature size Flow state &Boundary condition Mesh & Software Validation Significant results or innovation point Ref.
3D; 3 × 5 cellsnonwoven, 2-layer, nonuniform spacer H=0.78m m;W =78m m; Lm= 2.85m m; Df= 386555μm ;α =45 ; β= 90 Re=127; Laminaru0=0.163 m/snonpermeable membrane N=430000Tetrahedron;S<200μ mCOMSOL 3.5 Not mentioned First 3D model for biofouling in the feed channel Picioreanu et al. (2009)
2D(1) Submerged spacer(2) Zigzag spacer(3) Cavity spacer Df= 500μ m;W=1 m m;L =15m m;Lm=4m m Re=160; Laminar; Steady u0=0.1m /spermeable membrane N=200000270000S={ 530μm10μm forbi ofilm mesh COMSOL 3.5 Literature Spacer geometry is based on (Schwinge et al., 2002a); Biofouling model is developed based on (Picioreanu et al., 1998a, 2001); Potential biofouling area is suggested. Radu et al. (2010; 2012)
3D; Sinusoidal spacers H=1.5m m;W=6 m mWavelength = 12, 24 mm u0= 0.148m /spermeable membrane 510?640 elements/mm3COMSOL 4.2 Original experiment Permeate is enhanced by the sinusoidal channel. Xie et al. (2014)
3D; 5 cells(1) Commercial spacers(2) 2-layer, nonwoven, nonuniform spacer Df= 221563μmH=7111168 μmL=23852788μmα=45 ;β=90Porosity: 0.880.92 Re < 200; LaminarStationary in each biomass calculation time stepu0=0.0410.178permeable membrane N=1300000 S<90μ mtetrahedral meshCOMSOL 4.3 Original experiment and literature (Araújo et al., 2012; Vrouwenvelder et al., 2009b) Biofouling model is developed based on (Picioreanu et al., 2009);The influence of the nutrient load, spacer geometry, work condition on biofouling in NF is investigated. Bucs et al. (2014a; 2014b)
3D; 1 cell2-layer, nonwoven, nonuniform spacer α =45 ,90;β=90 H=800μm ;L=4411μmW=4411 μmDf=250520 μmLm3100μm Laminar; Steady u0= 0.14m/spermeable and nonpermeable membrane for different cases S <30 μmTetrahedralCOMSOL 4.2 Original experiments Particle trajectory is used to determine the potential fouling area, and the cross-velocity has an effect on the deposition area. Radu et al. (2014b)
3D; 1 cell2-layer, nonwoven, nonuniform spacer W=4.38m m;L =4.38 mmH=787μm ;β =90 Re=70,160,300Steady; Laminaru0= 74,163,294 m m/s nonpermeable membrane S <50 μmTetrahedralCOMSOL 4.4 Original experiments Simulation with different velocities has been induced in SWM modules and exhibits in good agreement with experiments. Bucs et al. (2015)
2D; zigzag L=15m m;H =1m mLm=4 mm; Df= 0.5m m Laminar; Steady; u0= 0.070.2m /spermeable membrane S<5μmCOMSOL 3.5 Not mentioned A model integrating mineral precipitation and biofilm formation with hydrodynamics and solute transport is developed, and the interactions between biofouling and scaling is investigated. Radu et al. (2015)
3D; 1 cell(1) 2-layer, nonwoven, uniform spacer(2) 1-layer, uniform, spherical node spacer Dnode/D f=2Lm/ Df= 10,12β=105 ,120 Re<200; Flow state depended on ReSc=1100nonpermeable membrane with constant wall concentration Not mentionedFluent 6.2 Original experiment Spherical spacer node reduced contact area with membrane significantly. Koutsou & Karabelas (2015)
3D; five mesh angles(1) Nonwoven spacer; 1 cell(2) Partially woven spacer; 1 cell(3) Middle layer spacer; 1 cell(4) Fully woven spacer; 2 cells H=1m m; Lm= 4.5m mDf=0.5,1 mmα=30 ,60,90β=30 ,60,90 R ech =224Laminar; Steadyu0= 0.1m /spermeable membrane N = 1.4–2.9 million TetrahedralCOMSOL 5.0 not mentioned 3D simulations of 20 spacer geometries with considering realistic boundary condition via the solution-diffusion model. Gu et al. (2017)
3D; 9 cells(1) Zigzag spacer(2) Triple spacer(3) Wavy spacer Df= 0.5m m;H =1m mL=W=4.1m m(1.5 m mf or tr ipl es pa cer)α=90 ;β=90 Re=50?200Steady; LaminarNonpermeable membrane with a constant wall concentration of 35% w/w NaCl TetrahedralS>0.1μmFluent 15,16 Li et al., (2004); Shakaib et al., (2007); Saeed et al., 2012 Correlations of various parameters with Re is developed and compared with other studies;Comparison of spacer geometries based on pressure drop, SCE, SPC, Pn, Sh and other performance indicators. Kavianipour et al. (2017)
2D; 35 cells; Zigzag spacer Df= 0.39m m;H =0.78 mmL=200m m;Lm=2.85m m LES turbulence modelpermeable membrane N=6.8×105S>0.8μ mFluent Original experiment Time-dependent salt concentration distribution and permeate flux in a vibrating membrane system is obtained Su et al. (2018)
3D; 1 cell2-layer, nonwoven, uniform spacer H=2Df; Lm/Df= 8α=45 ;β=90 Re=60200; Flow state depended onReSc=1100DNS (direct numerical simulation)Nonpermeable membrane with constant wall concentration Not mentionedFluent 6.2 Literature (Koutsou et al., 2007) Assuming a uniform fouling layer on the membrane surface. Koutsou et al. (2018)
3D; 2 cells + 2 half cells1-layer, uniform spacer with 0-3 holes; H=1200μmLm=4000 μmDf= 1000μ mα=45 ;β=90Hole diameterDhole= 300,500μm Re=73375Q0=12 L/hnonpermeable membrane 22 million grid pointsFluent Original experiment with synthetic solution 3D model for 3 novel feed spacers with perforations. Kerdi et al. (2018)
3D; 3 cells2-layer, nonwoven, nonuniform spacer H=787μmLm=3100 μmDf= 340610μmα=45 ;β=90 steady to unsteady;DNS (direct numerical simulation)nonpermeable membrane 67 million grid pointsFluent 17 Original experiment Overlap at the intersection of filaments Qamar et al. (2019)
3D; 3 cellsNonwoven, uniform filament with 2-layer or 3-layer H=1m mDf/H=0.40.6Lm/H=4α= 060;β=90 R eh= 200; SteadySc=600Permeable membrane N = 90 millionTetrahedralCFX 16.2nonstructured cells with a maximum size of 3% 5% H in main fluid domain prismatic cells with a size of 2% 4% H and a minimum number of 20 for the inflated boundary Literature (Fimbres-Weihs & Wiley, 2007; Schwinge et al., 2002b; 2004) Multiscale techno-economic model for feed spacer channel in RO system is established Liang et al. (2019)
3D; 1 × 4 cells(1) Empty(2) Circular spacer(3) Diamond spacer(4) Elliptic spacer u0= 0.1,0.3,0.5 m /sStandard k?ε model N=3886000Hexahedral dominantFluent 6.3 Original experiment The great potential to mitigate membrane fouling and enhance permeate flux of turbulence promoter, especially the elliptic shape, is confirmed. Tsai et al. (2019)
3DNonwoven, uniform spacer with standard nodes or column nodes H=1.2m mDf={0.5 m m(c ol ums pac er)1mm(s tan da rds pac er) Lm= 4m m;Dnode= 1.5m mα=45 ;β=90 u0= 0.16,0.18m /sUnsteady;Nonpermeable membrane N = 30 millionFluent 2018 Original experiment Better performance such as pressure drop reduction, shear stress reduction and higher specific flux is found for novel column spacer compared to standard spacer. Ali et al. (2019)
3D; 1 × 3 cells(1) Standard spacer(2) Turbo spacer DNS (direct numerical Simulation)Nonpermeable membrane Hexahedron dominant Original experiment Novel turbo spacer exhibits better performance in facilitating the homogenous distribution of high velocity and shear stress compared to a standard spacer. Ali et al. (2020)
3D; 3 × 5 cells(1) 2-layer, nonwoven, nonuniform spacer(2) 1-layer, nonuniform spacer H=460μmLm={1770 μm for2l ayer 3140 μmfor1layerDf= { 220320 μm 2laye r280460 μm1layerα=45 ;β=90 u0=0.12 m/sSteady; LaminarNonpermeable membrane 2.3 million grids Original experiment Nonuniform filament with different thinning zone location ( 0,1/3, 1/2) on filaments. Lin et al. (2020)
2D(1) Cavity spacer(2) Submerged spacer(3) Zigzag spacer Lm/Df= 4,8,12H=0.21.4 Steady; LaminarPermeable membrane N=900016200COMSOL 5.1 Literature (Schock & Miquel, 1987; Koutsou et al., 2009) Correlation for CP; pressure drop is concluded. Gu et al. (2021)
3D; 2 cells1-layer, pillar nodes, uniform filament H=1200μmDf=340,500,1000 μmα= 45 ;β=90 Dno de=1000μ m u0= 92,185,389 ,469 m m/s Transient; Laminarnonpermeable membrane Fluent Original experiment Same numerical methodology with (Kerdi et al., 2018). Kerdi et al. (2021)
3D; 3 cells; Single layer(1) Commercial, nonuniform spacer(2) Pillar node, uniform spacer(3) Hole pillar, uniform spacer L=20m m;H=1.2 m mLm= 4m m;Dnode= 1m mDf=0.5 or0.50.9m mHole: 0.4 m m×0.25m mα=45 ;β=90 u0= 0.185m /sNonpermeable membrane hexahedralS>50μm~2600000 grid pointsFluent 2020 Original experiment Measuring parameters in intermediate units to avoid inlet and outlet effects. Qamar et al. (2021)
3D; 1 cell2-layer, fully woven, uniform spacer Df= H/ 1.8α=45 ;β=90Porosity: 0.6630.828 R e>400; shear stress transport (SST) turbulence modelnonpermeable membrane N=600022013714094Tetrahedral mainly, with tetrahedra and prisms in the regions surrounding the filaments.S/H=2,3, 4 Literature Flow, mass transfer and heat transfer are simulated;The dependence of f,N u andS h on the Reynolds number shows a double asymptotic trend;The attack angle and filament spacing have significant influence on flow and mass/heat transfer. Mokhtar et al. (2021)
3D(1) Standard spacer; 1 × 3 cells(2) Honeycomb-shaped spacer; 1 × 2 cells (1)α =45 ; β= 90 Lm= 2.79m m;Df=0.43m m(2)α =30 ; β= 120 Lm= 1.73m m; Df= 0.4m m Re=295.74;SteadyStandard k?ε model N=33, 20 million Original experiment Honeycomb spacer increases the permeate flux, mitigates CP, and inhibits fouling layer deposition. Park et al. (2021)
3D; 3 × 5 cells2-layer, nonwoven, uniform filament Df= 0.40.6m mH=660864μmLm=24 m mα= 1537.5;β=3090Porosity: 0.630 0.882 Re < 300; Laminaru0= 0.12m /sNonpermeable membrane N=12.922.7 million Original experiment Channel porosity is one of the determinant parameters for spacer performance and the appropriate value is approximately 0.85. Lin et al. (2022b)
3D; 2 × 6 cells(1) 2-layer, nonwoven, uniform spacer(2) 2-layer, fully woven, uniform spacer(3) 2-layer, nonwoven, uniform, spine ramp spacer H=0.77m m;W =3.465 mm;Lm=1.2,1.5 m m;Df= 385μ m;α= 45,60;β=90,60 R e300; realizable k?ε turbulence modelu0= 0.2m /spermeable membrane N=3.25.8 millionTetrahedralS=1445 μm Literature High membrane flux aggravates CP;Water flux, solute flux, CP modulus, pressure drop and wall shear rate are used in spacer performance evaluation. Bae et al. (2023)
Tab.1  Summary of CFD simulations about SWM modules
Parameter κs pac er R sp ace r ε
Permeability coefficient for the porous spacer Resistance loss/inertial coefficient for the porous spacer Porosity for the porous spacer
unit m2 m1
Lin et al. (2022a) 2×109 i 25775 i 0.8
Abdelkader & Sharqawy (2022) 0.97× 108–64.85×108 ii 33–282.9 0.74–0.89
Jeong et al. (2020) 2×1010 0.5
Tab.2  Parameters in the spacer porous domain
Solute Osmotic pressure?π (bar) Viscosityµ (Pa·s) Diffusion coefficientD (m2/s) Densityρ (kg·m3) Ref.
1 mg/LMgSO4 4.97×105 m(49.55−136.7 m+1207 m2) 0.8972×10−3(1+3.713 m+26.0614 m2) 0.849×10−9(1−0.41873 m0.0872) 997+1036 m Yang et al. (2023)
< 100 g/LNaCl 77.17 m Johnston et al. (2023)
< 0.09k g/k gN aC l 805.1 ×105m ^ 0.89 ×10 3(1+1.63m ^) Max{(1.61×109(1 14m)1.45× 109 997.1×(1.0+0.696 m) Cao et al. (2018); Guan et al. (2023); Shang et al. (2021)
0.1 < c < 1.5 mol/L NaCl 4.793×106c 10−3(1.004+0.08c) 1.45×10−9 995.7+38.54c Su et al. (2018)
c < 0.6 mol/L CaCl2 (62.35c + 13.14c2+8.993c3)×105 10−3(1.004 + 0.2981c) {(1.176+107.5c)/(1+ 95.24c+26.03 c2)for c<0.132 1.1340.3213c+0.2319c2 0.1553c3for0.132 <c<0.6 995.7+89.72c
c < 0.6 mol/LN a2S O4 (56.29c−28.37c2+23.05c3)×105 10−3(1.004+0.4094c) {(1.08+129.3c)/(1+ 124.5c+40.92 c2)for c<0.108 1.0420.3225c+0.1048c2 0.07547c3for0.108<c<0.6 995.7+11.91c
0.05 < c < 0.5 mol/LM gS O4 (33.08c–178.9c2+942.7c3)×105 10–3(1.004+0.06092c) 0.7288–0.1929c+0.1517c2–0.9297c3 995.7+11.88c
8.48 ×104m(0.917+2.13×104m+3.141× 106m 2) 6.196×1010m 2+1.968×106m+9.885× 104 2.811 ×10 20 m42.645×1017 m3+7.021× 1015m 21.458×1013m+1.477× 109 −2.179 × 10−4 m2 + 0.692 m + 997.99 Sitaraman & Battiato (2022)
Typical value for brackish desalination and softening 4.872×106c Zhou et al. (2021)
BSA solution π =RT( 22.5× 107Z 2 c2+ c s2 2 cs+103c+106A 2 c2M +109 A3c3M 2)Z=−497.512−37.913pH+2896.079pH−2+352.129ln(pH)A2=−5.625×10−4−2.41×10−4Z−3.664×10−5Z2A3=−2.95×10−5−1.051×10−6Z+1.762×10−7Z2 μwe2.44× 1011c 2 Did μwμ(c)1RT π c Constant Schausberger et al. (2009)
Tab.3  Calculation correlations of permeation parameters
Fig.1  Schematic of the calculation method of the permeation process and concentration near the membrane: (a) impermeable membrane; (b) impermeable and dissolving membrane; (c) construction of the membrane hole; (d) permeable membrane with direct calculation methods and (e) permeable membrane with the loop-fitting calculation method.
Fig.2  Schematic of the numerical implementation method of scaling model.
Meaning Attachment rate, ratt Yield coefficient, YSX Maximum specific rate, μ ma x Half-saturation coefficient, KS Maximum Biomass concentration, CX, M Biomass mechanical strength, σde t Diffusion coefficient for substrate, Dsu b
C mo l/( m2? d) m olC /m olb iom as s d–1 mol/m3 Cmol/m3 N/m−2 m2/s
Picioreanu et al. (2009) 6×104 0.52 2.8 0.063 2800 2.5×10−9
Radu et al. (2010) 5×103 0.5i 2 0.025 8000 7 10−9
Radu et al. (2012) 5×103,15× 103 0.5 2 0.025 8000 7 10−9
Bucs et al., (2014a) 0.06 ,0.13,0.26 1 1.08 0.05 1400 10−9>
Radu et al. (2015) 5×103(C m ol /( m ·d) 0.5i 2 0.025 ` 7 10−9
Tab.4  Parameters of the in biofilm model
Fig.3  Schematic of the numerical implementation method of the biofouling model (Radu et al., 2010).
Fig.4  Schematic of the artificially established biomass geometry: (a) various concentration of BSA particles in the Monte Carlo box (Petrosino et al., 2023); (b) cylinders represent the EPS layer covering the membrane surface (Luo et al., 2022); and (c) the manually established biomass domain is regularly distributed on filaments (Lin et al., 2023).
Fig.5  Simulation results of patterned membranes. (a) stream lines in the valley (Choi et al., 2015); (b) particle distribution on patterned membrane for different particle diameters and Reynolds numbers (Jung and Ahn, 2019); (c) velocity streamline profile for different patterned membranes: wave tri, rec, and trap (Zhao et al., 2021); (d) velocity streamline profile for conventional membrane and rectangular membrane (Shang et al., 2020a); (e) real-time solute concentration distribution for triangular membrane and cambered membrane (Shang et al., 2021); (f) streamlines for different patterned membranes (Shang et al., 2020b); (g) streamlines for rectangular membranes and triangle membranes (Ilyas et al., 2021); and (h) solute concentration distribution for different patterned membranes, namely, rectangles, trapezoids, prisms, pyramids, cylinders, circles, and polyhedrons (Zhou et al., 2021).
Fig.6  Simulation results of the vibration and rotation membranes. (a) the deposited particle on no-vibration and 60 Hz vibration membranes (Su et al., 2019); (b) the wall shear stress distribution on the membrane surface with a rotating impeller (Xie et al., 2018); (c) wall shear stress distribution on the perforated and nonperforated disk (Kim et al., 2015); (d) the vortex structures visualized by the λ2-criterion for etching disks with the number of etching patterns ranging from 0 to 16 (Park et al., 2023); (e) the shear stress distribution on the surfaces of staggered rotating membranes (Zhang et al., 2022); and (f) the shear stress distribution on basket surfaces (Naskar et al., 2019).
1 B A Abdelkader, M Sharqawy. (2022). Pressure drop across membrane spacer-filled channels using porous media characteristics and computational fluid dynamics simulation. Desalination and Water Treatment, 247: 28–39
https://doi.org/10.5004/dwt.2022.28044
2 T Akagi, T Horie, H Masuda, K Matsuda, H Matsumoto, N Ohmura, Y Hirata. (2018). Improvement of separation performance by fluid motion in the membrane module with a helical baffle. Separation and Purification Technology, 198: 52–59
https://doi.org/10.1016/j.seppur.2017.07.012
3 O Al-Abbasi, M Bin Shams. (2021). Dynamic CFD modelling of an industrial-scale dead-end ultrafiltration system: full cycle and complete blockage. Journal of Water Process Engineering, 40: 101887
https://doi.org/10.1016/j.jwpe.2020.101887
4 S M Ali, A Qamar, S Kerdi, S Phuntsho, J S Vrouwenvelder, N Ghaffour, H K Shon. (2019). Energy efficient 3D printed column type feed spacer for membrane filtration. Water Research, 164: 114961
https://doi.org/10.1016/j.watres.2019.114961
5 S M Ali, A Qamar, S Phuntsho, N Ghaffour, J S Vrouwenvelder, H K Shon. (2020). Conceptual design of a dynamic turbospacer for efficient low pressure membrane filtration. Desalination, 496: 114712
https://doi.org/10.1016/j.desal.2020.114712
6 A E Anqi, N Alkhamis, A Oztekin. (2015). Numerical simulation of brackish water desalination by a reverse osmosis membrane. Desalination, 369: 156–164
https://doi.org/10.1016/j.desal.2015.05.007
7 P A Araújo, J C Kruithof, M C M Van Loosdrecht, J S Vrouwenvelder (2012). The potential of standard and modified feed spacers for biofouling control. Journal of Membrane Science, 403–404: 58–70 10.1016/j.memsci.2012.02.015
8 M Asadollahi, D Bastani, S A Musavi. (2017). Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: a review. Desalination, 420: 330–383
https://doi.org/10.1016/j.desal.2017.05.027
9 S Bae, B Gu, J H Lee. (2023). A 3D CFD study on the effects of feed spacer designs on membrane performance for high-permeance RO membranes. Journal of Water Process Engineering, 53: 103887
https://doi.org/10.1016/j.jwpe.2023.103887
10 M Bahoosh, E Kashi, S Shokrollahzadeh. (2022). The side stream and different spacers effects on the permeate water flux in forward osmosis process using computational fluid dynamics. Chemical Engineering and Processing, 181: 109113
https://doi.org/10.1016/j.cep.2022.109113
11 Z M Binger, A Achilli. (2023). Surrogate modeling of pressure loss & mass transfer in membrane channels via coupling of computational fluid dynamics and machine learning. Desalination, 548: 116241
https://doi.org/10.1016/j.desal.2022.116241
12 M B Boudinar, W T Hanbury, S Avlonitis. (1992). Numerical simulation and optimisation of spiral-wound modules. Desalination, 86(3): 273–290
https://doi.org/10.1016/0011-9164(92)80038-B
13 B P Boudreau. (1996). The diffusive tortuosity of fine-grained unlithified sediments. Geochimica et Cosmochimica Acta, 60(16): 3139–3142
https://doi.org/10.1016/0016-7037(96)00158-5
14 B Bräsel, S W Yoo, S Huber, M Wessling, J Linkhorst. (2023). Evolution of particle deposits at communicating membrane pores during crossflow filtration. Journal of Membrane Science, 686: 121977
https://doi.org/10.1016/j.memsci.2023.121977
15 H C Brinkman. (1949). A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow, Turbulence and Combustion, 1(1): 27–34
https://doi.org/10.1007/BF02120313
16 S S Bucs, N Farhat, J C Kruithof, C Picioreanu, M C M van Loosdrecht, J S Vrouwenvelder. (2018). Review on strategies for biofouling mitigation in spiral wound membrane systems. Desalination, 434: 189–197
https://doi.org/10.1016/j.desal.2018.01.023
17 S S Bucs, R Valladares Linares, J O Marston, A I Radu, J S Vrouwenvelder, C Picioreanu. (2015). Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes. Water Research, 87: 299–310
https://doi.org/10.1016/j.watres.2015.09.036
18 S S Bucs, R Valladares Linares, J S Vrouwenvelder, C Picioreanu. (2016). Biofouling in forward osmosis systems: an experimental and numerical study. Water Research, 106: 86–97
https://doi.org/10.1016/j.watres.2016.09.031
19 S Bucs Sz, A I Radu, V Lavric, J S Vrouwenvelder, C Picioreanu. (2014a). Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: a numerical study. Desalination, 343: 26–37
https://doi.org/10.1016/j.desal.2013.11.007
20 S Bucs Sz, R Valladares Linares, M C M van Loosdrecht, J C Kruithof, J S Vrouwenvelder. (2014b). Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems. Water Research, 67: 227–242
https://doi.org/10.1016/j.watres.2014.09.005
21 H Cao, M O’Rourke, O Habimana, E Casey. (2018). Analysis of surrogate bacterial cell transport to nanofiltration membranes: effect of salt concentration and hydrodynamics. Separation and Purification Technology, 207: 498–505
https://doi.org/10.1016/j.seppur.2018.06.072
22 Z Cao. (2001). CFD simulations of net-type turbulence promoters in a narrow channel. Journal of Membrane Science, 185(2): 157–176
https://doi.org/10.1016/S0376-7388(00)00643-8
23 P C Carman. (1997). Fluid flow through granular beds. Chemical Engineering Research & Design, 75: S32–S48
https://doi.org/10.1016/S0263-8762(97)80003-2
24 A Chaudhuri, A Jogdand. (2017). Permeate flux decrease due to concentration polarization in a closed roto-dynamic reverse osmosis filtration system. Desalination, 402: 152–161
https://doi.org/10.1016/j.desal.2016.10.005
25 D C Choi, S Y Jung, Y J Won, J H Jang, J Lee, H R Chae, K H Ahn, S Lee, P K Park, C H Lee. (2015). Three-dimensional hydraulic modeling of particle deposition on the patterned isopore membrane in crossflow microfiltration. Journal of Membrane Science, 492: 156–163
https://doi.org/10.1016/j.memsci.2015.05.054
26 T H Chong, F S Wong, A G Fane. (2008). The effect of imposed flux on biofouling in reverse osmosis: role of concentration polarisation and biofilm enhanced osmotic pressure phenomena. Journal of Membrane Science, 325(2): 840–850
https://doi.org/10.1016/j.memsci.2008.09.011
27 Y K Chong, Y Y Liang, W J Lau, G A Fimbres Weihs. (2022). 3D CFD study of hydrodynamics and mass transfer phenomena for spiral wound membrane submerged-type feed spacer with different node geometries and sizes. International Journal of Heat and Mass Transfer, 191: 122819
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122819
28 Y K Chong, Y Y Liang, G A F Weihs. (2023). Validation and characterisation of mass transfer of 3D-CFD model for twisted feed spacer. Desalination, 554: 116516
https://doi.org/10.1016/j.desal.2023.116516
29 Y Chun, K Jeong, K H Cho. (2020). Influences of combined organic fouling and inorganic scaling on flux and fouling behaviors in forward osmosis. Membranes, 10(6): 115
https://doi.org/10.3390/membranes10060115
30 C Completo, V Semiao, V Geraldes. (2016). Efficient CFD-based method for designing cross-flow nanofiltration small devices. Journal of Membrane Science, 500: 190–202
https://doi.org/10.1016/j.memsci.2015.11.012
31 P Desmond, K T Huisman, H Sanawar, N M Farhat, J Traber, E O Fridjonsson, M L Johns, H C Flemming, C Picioreanu, J S Vrouwenvelder. (2022). Controlling the hydraulic resistance of membrane biofilms by engineering biofilm physical structure. Water Research, 210: 118031
https://doi.org/10.1016/j.watres.2021.118031
32 P Dydo, M Turek, J Ciba, K Wandachowicz, J Misztal. (2004). The nucleation kinetic aspects of gypsum nanofiltration membrane scaling. Desalination, 164(1): 41–52
https://doi.org/10.1016/S0011-9164(04)00154-7
33 F Evangelista. (1988). An improved analytical method for the design of spiral-wound modules. Chemical Engineering Journal, 38(1): 33–40
https://doi.org/10.1016/0300-9467(88)80051-0
34 H H Fang, R M Wu. (2008). Determination of hydrodynamic shear force exerted on membrane surface in cross-flow filtration by multiphase flow simulation. Journal of Chemical Engineering of Japan, 41(10): 961–966
https://doi.org/10.1252/jcej.08we084
35 G A Fimbres-Weihs, D E Wiley. (2007). Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow. Journal of Membrane Science, 306(1–2): 228–243
https://doi.org/10.1016/j.memsci.2007.08.043
36 G A Fimbres Weihs, D E Wiley. (2014). CFD analysis of tracer response technique under cake-enhanced osmotic pressure. Journal of Membrane Science, 449: 38–49
https://doi.org/10.1016/j.memsci.2013.08.015
37 J D Fowler, C R Robertson. (1991). Hydraulic permeability of immobilized bacterial cell aggregates. Applied and Environmental Microbiology, 57(1): 102–113
https://doi.org/10.1128/aem.57.1.102-113.1991
38 Y Gao, S Haavisto, C Y Tang, J Salmela, W Li. (2013). Characterization of fluid dynamics in spacer-filled channels for membrane filtration using Doppler optical coherence tomography. Journal of Membrane Science, 448: 198–208
https://doi.org/10.1016/j.memsci.2013.08.011
39 F J García-Picazo, D F Fletcher, G A Fimbres-Weihs. (2023). Mass transfer enhancement in spacer-filled membrane channels by flow oscillation induced vortex shedding: Numerical study of the effect of amplitude. International Journal of Heat and Mass Transfer, 209: 124054
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124054
40 P S Goh, W J Lau, M H D Othman, A F Ismail. (2018). Membrane fouling in desalination and its mitigation strategies. Desalination, 425: 130–155
https://doi.org/10.1016/j.desal.2017.10.018
41 P S Goh, A K Zulhairun, A F Ismail, N Hilal. (2019). Contemporary antibiofouling modifications of reverse osmosis desalination membrane: a review. Desalination, 468: 114072
https://doi.org/10.1016/j.desal.2019.114072
42 A S Gorzalski, O Coronell. (2014). Fouling of nanofiltration membranes in full- and bench-scale systems treating groundwater containing silica. Journal of Membrane Science, 468: 349–359
https://doi.org/10.1016/j.memsci.2014.06.013
43 B Gu, C S Adjiman, X Y Xu. (2017). The effect of feed spacer geometry on membrane performance and concentration polarisation based on 3D CFD simulations. Journal of Membrane Science, 527: 78–91
https://doi.org/10.1016/j.memsci.2016.12.058
44 B Gu, C S Adjiman, X Y Xu. (2021). Correlations for concentration polarization and pressure drop in spacer-filled RO membrane modules based on CFD simulations. Membranes, 11(5): 338
https://doi.org/10.3390/membranes11050338
45 H Guan, P Lin, S Yu, X Hu, X Li, Z Zhu. (2023). Hydrodynamic effects of non-uniform feed spacer structures on energy loss and mass transfer in spiral wound module. Journal of Membrane Science, 673: 121479
https://doi.org/10.1016/j.memsci.2023.121479
46 G Guillen, E M V Hoek. (2009). Modeling the impacts of feed spacer geometry on reverse osmosis and nanofiltration processes. Chemical Engineering Journal, 149(1–3): 221–231
https://doi.org/10.1016/j.cej.2008.10.030
47 A H Haidari, S G J Heijman, W G J van der Meer. (2018). Optimal design of spacers in reverse osmosis. Separation and Purification Technology, 192: 441–456
https://doi.org/10.1016/j.seppur.2017.10.042
48 Z Han, M Terashima, B Liu, H Yasui. (2018). CFD investigation of the effect of the feed spacer on hydrodynamics in spiral wound membrane modules. Mathematical and Computational Applications, 23(4): 80
https://doi.org/10.3390/mca23040080
49 K J Hwang, S J Lin. (2014). Filtration flux-shear stress-cake mass relationships in microalgae rotating-disk dynamic microfiltration. Chemical Engineering Journal, 244: 429–437
https://doi.org/10.1016/j.cej.2014.01.076
50 A Ilyas, M Mertens, S Oyaert, I F J Vankelecom. (2021). Anti-fouling behavior of micro-patterned PVDF membranes prepared via spray-assisted phase inversion: influence of pattern shapes and flow configuration. Separation and Purification Technology, 259: 118041
https://doi.org/10.1016/j.seppur.2020.118041
51 A Ilyas, L Timmermans, M Vanierschot, I Smets, I F J Vankelecom. (2022). Micro-patterned PVDF membranes and magnetically induced membrane vibration system for efficient membrane bioreactor operation. Journal of Membrane Science, 662: 120978
https://doi.org/10.1016/j.memsci.2022.120978
52 M Jafari, P Desmond, M C M van Loosdrecht, N Derlon, E Morgenroth, C Picioreanu. (2018). Effect of biofilm structural deformation on hydraulic resistance during ultrafiltration: a numerical and experimental study. Water Research, 145: 375–387
https://doi.org/10.1016/j.watres.2018.08.036
53 Z Jalilvand, F Zokaee Ashtiani, A Fouladitajar, H Rezaei. (2014). Computational fluid dynamics modeling and experimental study of continuous and pulsatile flow in flat sheet microfiltration membranes. Journal of Membrane Science, 450: 207–214
https://doi.org/10.1016/j.memsci.2013.09.008
54 T Jamieson, S C Leterme. (2021). Influences and impacts of biofouling in SWRO desalination plants. Critical Reviews in Environmental Science and Technology, 51(12): 1281–1301
https://doi.org/10.1080/10643389.2020.1757937
55 T Janus (2014). Integrated Mathematical Model of a MBR Reactor Including Biopolymer Kinetics and Membrane Fouling. Procedia Engineering, 12th International Conference on Computing and Control for the Water Industry, CCWI2013 70: 882–891 10.1016/j.proeng.2014.02.098
56 T, Janus B. Ulanicki (2015). ASM1-Based Activated Sludge Model with Biopolymer Kinetics for Integrated Simulation of Membrane Bioreactors for Wastewater Treatment. Procedia Engineering, Computing and Control for the Water Industry (CCWI2015) Sharing the Best Practice in Water Management 119: 1318–1327 10.1016/j.proeng.2015.08.958
57 K Jeong, M Park, S Oh, J H Kim. (2020). Impacts of flow channel geometry, hydrodynamic and membrane properties on osmotic backwash of RO membranes—CFD modeling and simulation. Desalination, 476: 114229
https://doi.org/10.1016/j.desal.2019.114229
58 P Ji, A Motin, W Shan, A Bénard, M L Bruening, V V Tarabara. (2016). Dynamic crossflow filtration with a rotating tubular membrane: using centripetal force to decrease fouling by buoyant particles. Chemical Engineering Research & Design, 106: 101–114
https://doi.org/10.1016/j.cherd.2015.11.007
59 A Jogdand, A Chaudhuri. (2015). Modeling of concentration polarization and permeate flux variation in a roto-dynamic reverse osmosis filtration system. Desalination, 375: 54–70
https://doi.org/10.1016/j.desal.2015.07.011
60 J Johnston, S M Dischinger, M Nassr, J Y Lee, P Bigdelou, B D Freeman, K L Gleason, D Martinand, D J Miller, S Molins. et al.. (2023). A reduced-order model of concentration polarization in reverse osmosis systems with feed spacers. Journal of Membrane Science, 675: 121508
https://doi.org/10.1016/j.memsci.2023.121508
61 J Johnston, J Lou, N Tilton. (2022). Application of projection methods to simulating mass transport in reverse osmosis systems. Computers & Fluids, 232: 105189
https://doi.org/10.1016/j.compfluid.2021.105189
62 S Y Jung, K H Ahn. (2019). Transport and deposition of colloidal particles on a patterned membrane surface: effect of cross-flow velocity and the size ratio of particle to surface pattern. Journal of Membrane Science, 572: 309–319
https://doi.org/10.1016/j.memsci.2018.11.011
63 A J Karabelas, M Kostoglou, C P Koutsou. (2015). Modeling of spiral wound membrane desalination modules and plants: review and research priorities. Desalination, 356: 165–186
https://doi.org/10.1016/j.desal.2014.10.002
64 O Kavianipour, G D Ingram, H B Vuthaluru. (2017). Investigation into the effectiveness of feed spacer configurations for reverse osmosis membrane modules using computational fluid dynamics. Journal of Membrane Science, 526: 156–171
https://doi.org/10.1016/j.memsci.2016.12.034
65 O Kavianipour, G D Ingram, H B Vuthaluru. (2019). Studies into the mass transfer and energy consumption of commercial feed spacers for RO membrane modules using CFD: effectiveness of performance measures. Chemical Engineering Research & Design, 141: 328–338
https://doi.org/10.1016/j.cherd.2018.10.041
66 S Kerdi, A Qamar, A Alpatova, J S Vrouwenvelder, N Ghaffour. (2020). Membrane filtration performance enhancement and biofouling mitigation using symmetric spacers with helical filaments. Desalination, 484: 114454
https://doi.org/10.1016/j.desal.2020.114454
67 S Kerdi, A Qamar, J S Vrouwenvelder, N Ghaffour. (2018). Fouling resilient perforated feed spacers for membrane filtration. Water Research, 140: 211–219
https://doi.org/10.1016/j.watres.2018.04.049
68 S Kerdi, A Qamar, J S Vrouwenvelder, N Ghaffour. (2021). Effect of localized hydrodynamics on biofilm attachment and growth in a cross-flow filtration channel. Water Research, 188: 116502
https://doi.org/10.1016/j.watres.2020.116502
69 A Keucken, X Liu, B Lian, Y Wang, K M Persson, G Leslie. (2018). Simulation of NOM removal by capillary NF: a numerical method for full-scale plant design. Journal of Membrane Science, 555: 229–236
https://doi.org/10.1016/j.memsci.2018.03.016
70 K Kim, J Y Jung, J H Kwon, J W Yang. (2015). Dynamic microfiltration with a perforated disk for effective harvesting of microalgae. Journal of Membrane Science, 475: 252–258
https://doi.org/10.1016/j.memsci.2014.10.027
71 J S Knutsen, R H Davis. (2006). Deposition of foulant particles during tangential flow filtration. Journal of Membrane Science, 271(1–2): 101–113
https://doi.org/10.1016/j.memsci.2005.06.060
72 M Kostoglou, A J Karabelas. (2013). Comprehensive simulation of flat-sheet membrane element performance in steady state desalination. Desalination, 316: 91–102
https://doi.org/10.1016/j.desal.2013.01.033
73 C P Koutsou, A J Karabelas. (2015). A novel retentate spacer geometry for improved spiral wound membrane (SWM) module performance. Journal of Membrane Science, 488: 129–142
https://doi.org/10.1016/j.memsci.2015.03.064
74 C P Koutsou, A J Karabelas, M Kostoglou. (2018). Fluid dynamics and mass transfer in spacer-filled membrane channels: effect of uniform channel-gap reduction due to fouling. Fluids, 3(1): 12
https://doi.org/10.3390/fluids3010012
75 C P Koutsou, S G Yiantsios, A J Karabelas. (2007). Direct numerical simulation of flow in spacer-filled channels: effect of spacer geometrical characteristics. Journal of Membrane Science, 291(1–2): 53–69
https://doi.org/10.1016/j.memsci.2006.12.032
76 C P Koutsou, S G Yiantsios, A J Karabelas. (2009). A numerical and experimental study of mass transfer in spacer-filled channels: effects of spacer geometrical characteristics and Schmidt number. Journal of Membrane Science, 326(1): 234–251
https://doi.org/10.1016/j.memsci.2008.10.007
77 S Lecuyer, R Rusconi, Y Shen, A Forsyth, H Vlamakis, R Kolter, H A Stone. (2011). Shear stress increases the residence time of adhesion of pseudomonas aeruginosa. Biophysical Journal, 100(2): 341–350
https://doi.org/10.1016/j.bpj.2010.11.078
78 Y K Lee, Y J Won, J H Yoo, K H Ahn, C H Lee. (2013). Flow analysis and fouling on the patterned membrane surface. Journal of Membrane Science, 427: 320–325
https://doi.org/10.1016/j.memsci.2012.10.010
79 B Li, K M Dobosz, H Zhang, J D Schiffman, K Saranteas, M A Henson. (2019). Predicting the performance of pressure filtration processes by coupling computational fluid dynamics and discrete element methods. Chemical Engineering Science, 208: 115162
https://doi.org/10.1016/j.ces.2019.115162
80 C Li, D Zhang, J Liu, H Xiong, T Sun, X Wu, Z Shi, Q Lin. (2022). Study on the control of membrane fouling by pulse function feed and CFD simulation verification. Membranes, 12(4): 362
https://doi.org/10.3390/membranes12040362
81 F Li, W Meindersma, A B de Haan, T Reith. (2004). Experimental validation of CFD mass transfer simulations in flat channels with non-woven net spacers. Journal of Membrane Science, 232(1–2): 19–30
https://doi.org/10.1016/j.memsci.2003.11.015
82 J Li, C Xu, J Ye, E Li, S Xu, M Huang. (2023). Enhanced anti-fouling of forward osmosis membrane by pulsatile flow operation in textile wastewater treatment. Desalination, 565: 116878
https://doi.org/10.1016/j.desal.2023.116878
83 M Li, T Bui, S Chao. (2016). Three-dimensional CFD analysis of hydrodynamics and concentration polarization in an industrial RO feed channel. Desalination, 397: 194–204
https://doi.org/10.1016/j.desal.2016.07.005
84 X Li, X Wang. (2006). Modelling of membrane fouling in a submerged membrane bioreactor. Journal of Membrane Science, 278(1–2): 151–161
https://doi.org/10.1016/j.memsci.2005.10.051
85 Y L Li, K L Tung. (2008). CFD simulation of fluid. flow through spacer-filled membrane module: selecting suitable cell types for periodic boundary conditions. Desalination, 233(1–3): 351–358
https://doi.org/10.1016/j.desal.2007.09.061
86 Y Y Liang, G A Fimbres Weihs, D E Wiley. (2020). Comparison of oscillating flow and slip velocity mass transfer enhancement in spacer-filled membrane channels: CFD analysis and validation. Journal of Membrane Science, 593: 117433
https://doi.org/10.1016/j.memsci.2019.117433
87 Y Y Liang, D F Fletcher. (2023). Computational fluid dynamics simulation of forward osmosis (FO) membrane systems: methodology, state of art, challenges and opportunities. Desalination, 549: 116359
https://doi.org/10.1016/j.desal.2022.116359
88 Y Y Liang, K Y Toh, G A Fimbres Weihs. (2019). 3D CFD study of the effect of multi-layer spacers on membrane performance under steady flow. Journal of Membrane Science, 580: 256–267
https://doi.org/10.1016/j.memsci.2019.02.015
89 W Lin, J Lei, Q Wang, X M Wang, X Huang. (2022a). Performance enhancement of spiral-wound reverse osmosis membrane elements with novel diagonal-flow feed channels. Desalination, 523: 115447
https://doi.org/10.1016/j.desal.2021.115447
90 W Lin, D Li, Q Wang, X Wang, X Huang. (2023). Dynamic evolution of membrane biofouling in feed channels affected by spacer–membrane clearance and the induced hydrodynamic conditions. Journal of Membrane Science, 668: 121209
https://doi.org/10.1016/j.memsci.2022.121209
91 W Lin, R Shao, X Wang, X Huang. (2020). Impacts of non-uniform filament feed spacers characteristics on the hydraulic and anti-fouling performances in the spacer-filled membrane channels: experiment and numerical simulation. Water Research, 185: 116251
https://doi.org/10.1016/j.watres.2020.116251
92 W Lin, Q Wang, L Sun, D Wang, J Cabrera, D Li, L Hu, G Jiang, X Wang, X Huang. (2022b). The critical role of feed spacer channel porosity in membrane biofouling: insights and implications. Journal of Membrane Science, 649: 120395
https://doi.org/10.1016/j.memsci.2022.120395
93 W Lin, Y Zhang, D Li, X Wang, X Huang. (2021). Roles and performance enhancement of feed spacer in spiral wound membrane modules for water treatment: a 20-year review on research evolvement. Water Research, 198: 117146
https://doi.org/10.1016/j.watres.2021.117146
94 J Lohaus, Y M Perez, M Wessling (2018). What are the microscopic events of colloidal membrane fouling? Journal of Membrane Science, 553: 90–98 10.1016/j.memsci.2018.02.023
95 E Lorente, M Haponska, E Clavero, C Torras, J Salvado. (2018). Steam explosion and vibrating membrane filtration to improve the processing cost of microalgae cell disruption and fractionation. Processes, 6(4): 28
https://doi.org/10.3390/pr6040028
96 J Luo, M Li, Y Heng. (2020). A hybrid modeling approach for optimal design of non-woven membrane channels in brackish water reverse osmosis process with high-throughput computation. Desalination, 489: 114463
https://doi.org/10.1016/j.desal.2020.114463
97 L W Luo, Y H Wu, G Q Chen, H B Wang, Y H Wang, X Tong, Y Bai, Y Q Xu, Z W Zhang, N Ikuno. et al.. (2022). Chlorine-resistant bacteria (CRB) in the reverse osmosis system for wastewater reclamation: isolation, identification and membrane fouling mechanisms. Water Research, 209: 117966
https://doi.org/10.1016/j.watres.2021.117966
98 C Ma, Y Liu, F Li, C Shen, M Huang, Z Wang, C Cao, Q Zhou, Y Sheng, W Sand. (2019). CFD simulations of fiber-fiber interaction in a hollow fiber membrane bundle: fiber distance and position matters. Separation and Purification Technology, 209: 707–713
https://doi.org/10.1016/j.seppur.2018.09.029
99 W Mao, X Zou, Z Guo, S Sun, S Ma, S Lyv, Y Xiao, X Ji, Y Wang. (2021). Numerical simulations of calcium sulphate scaling in full-scale brackish water reverse osmosis pressure vessels using computational fluid dynamics. Membranes, 11(7): 521
https://doi.org/10.3390/membranes11070521
100 N I Mat Nawi, A Mohd Lazis, A Rahma, M Elma, M R Bilad, N A H Md Nordin, M D H Wirzal, N Shamsuddin, H Suhaimi, N Yusof. (2022). A rotary spacer system for energy-efficient membrane fouling control in oil/water emulsion filtration. Membranes, 12(6): 554
https://doi.org/10.3390/membranes12060554
101 R McDonogh, G Schaule, H C Flemming. (1994). The permeability of biofouling layers on membranes. Journal of Membrane Science, 87(1–2): 199–217
https://doi.org/10.1016/0376-7388(93)E0149-E
102 T R Mohan, M S Mohan Kumar, L Rao. (2022). Biofouling of hollow fiber ultrafiltration membranes: a novel multiphase CFD–Porous-CES model and experimental study. Journal of Membrane Science, 663: 121034
https://doi.org/10.1016/j.memsci.2022.121034
103 I E Mokhtar, L Gurreri, A Tamburini, A Cipollina, M Ciofalo, S Bouguecha, G Micale. (2021). CFD prediction of flow, heat and mass transfer in woven spacer-filled channels for membrane processes. International Journal of Heat and Mass Transfer, 173: 121246
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121246
104 J Monod. (1941). Growth of bacterial populations in function of concentration of a hydrocarbon diet. Comptes Rendus Hebdomadaires Sciences, 212: 771–773
105 H Movahedi, S Jamshidi. (2022). New insight into hydrodynamic and cake erosion mechanism during rotating-disk dynamic microfiltration of concentrated bentonite suspensions at different salinity conditions. Separation and Purification Technology, 300: 121844
https://doi.org/10.1016/j.seppur.2022.121844
106 N Najid, J N Hakizimana, S Kouzbour, B Gourich, A Ruiz-García, C Vial, Y Stiriba, R Semiat. (2022). Fouling control and modeling in reverse osmosis for seawater desalination: a review. Computers & Chemical Engineering, 162: 107794
https://doi.org/10.1016/j.compchemeng.2022.107794
107 M Naskar, K Rana, D Chatterjee, T Dhara, R Sultana, D Sarkar. (2019). Design, performance characterization and hydrodynamic modeling of intermeshed spinning basket membrane (ISBM) module. Chemical Engineering Science, 206: 446–462
https://doi.org/10.1016/j.ces.2019.05.049
108 N V Ndinisa, D E Wiley, D F Fletcher. (2005). Computational fluid dynamics simulations of taylor bubbles in tubular membranes: model validation and application to laminar flow systems. Chemical Engineering Research & Design, 83(1): 40–49
https://doi.org/10.1205/cherd.03394
109 A Olivera-Nappa, C Picioreanu, J A Asenjo. (2010). Non-homogeneous biofilm modeling applied to bioleaching processes. Biotechnology and Bioengineering, 106(4): 660–676
https://doi.org/10.1002/bit.22731
110 H G Park, S G Cho, K J Kim, Y N Kwon. (2016). Effect of feed spacer thickness on the fouling behavior in reverse osmosis process: a pilot scale study. Desalination, 379: 155–163
https://doi.org/10.1016/j.desal.2015.11.011
111 J E Park, T G Kang, H Moon. (2023). The effect of the rotating disk geometry on the flow and flux enhancement in a dynamic filtration system. Membranes, 13(3): 291
https://doi.org/10.3390/membranes13030291
112 S Park, Y D Jeong, J H Lee, J Kim, K Jeong, K H Cho. (2021). 3D printed honeycomb-shaped feed channel spacer for membrane fouling mitigation in nanofiltration. Journal of Membrane Science, 620: 118665
https://doi.org/10.1016/j.memsci.2020.118665
113 F Petrosino, G De Luca, S Curcio, S R Wickramasinghe, S Chakraborty. (2023). Micro-CFD modelling of ultrafiltration bio-fouling. Separation Science and Technology, 58(1): 131–140
https://doi.org/10.1080/01496395.2022.2075759
114 C Picioreanu, F Blauert, H Horn, M Wagner. (2018). Determination of mechanical properties of biofilms by modelling the deformation measured using optical coherence tomography. Water Research, 145: 588–598
https://doi.org/10.1016/j.watres.2018.08.070
115 C Picioreanu, J U Kreft, M C M Van Loosdrecht. (2004). Particle-based multidimensional multispecies biofilm model. Applied and Environmental Microbiology, 70(5): 3024–3040
https://doi.org/10.1128/AEM.70.5.3024-3040.2004
116 C Picioreanu, M C van Loosdrecht, J J Heijnen. (1998a). Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnology and Bioengineering, 58(1): 101–116
https://doi.org/10.1002/(sici)1097-0290(19980405)58:1<101::aid-bit11>3.0.co;2-m
117 C Picioreanu, M C van Loosdrecht, J J Heijnen. (1998b). A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnology and Bioengineering, 57(6): 718–731
https://doi.org/10.1002/(SICI)1097-0290(19980320)57:6<718::AID-BIT9>3.0.CO;2-O
118 C Picioreanu, M C van Loosdrecht, J J Heijnen. (2001). Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnology and Bioengineering, 72(2): 205–218
https://doi.org/10.1002/1097-0290(20000120)72:2<205::AID-BIT9>3.0.CO;2-L
119 C Picioreanu, J S Vrouwenvelder, M C M van Loosdrecht. (2009). Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices. Journal of Membrane Science, 345(1–2): 340–354
https://doi.org/10.1016/j.memsci.2009.09.024
120 A Pinilla, J C Berrio, E Guerrero, J P Valdés, D Becerra, P Pico, L Vargas, S Madsen, T R Bentzen, N Ratkovich. (2020). CFD modelling of the hydrodynamics in a filtration unit with rotating membranes. Journal of Water Process Engineering, 36: 101368
https://doi.org/10.1016/j.jwpe.2020.101368
121 C Piyadasa, H F Ridgway, T R Yeager, M B Stewart, C Pelekani, S R Gray, J D Orbell. (2017). The application of electromagnetic fields to the control of the scaling and biofouling of reverse osmosis membranes: a review. Desalination, 418: 19–34
https://doi.org/10.1016/j.desal.2017.05.017
122 N Prakash, A Chaudhuri, S P Das. (2023). Numerical modelling and analysis of concentration polarization and scaling of gypsum over RO membrane during seawater desalination. Chemical Engineering Research & Design, 190: 497–507
https://doi.org/10.1016/j.cherd.2022.12.050
123 V Puderbach, K Schmidt, S Antonyuk. (2021). A coupled CFD-DEM model for resolved simulation of filter cake formation during solid-liquid separation. Processes, 9(5): 826
https://doi.org/10.3390/pr9050826
124 A Qamar, S Bucs, C Picioreanu, J Vrouwenvelder, N Ghaffour. (2019). Hydrodynamic flow transition dynamics in a spacer filled filtration channel using direct numerical simulation. Journal of Membrane Science, 590: 117264
https://doi.org/10.1016/j.memsci.2019.117264
125 A Qamar, S Kerdi, S M Ali, H K Shon, J S Vrouwenvelder, N Ghaffour. (2021). Novel hole-pillar spacer design for improved hydrodynamics and biofouling mitigation in membrane filtration. Scientific Reports, 11(1): 6979
https://doi.org/10.1038/s41598-021-86459-w
126 F Radoniqi, H Zhang, C L Bardliving, P Shamlou, J Coffman. (2018). Computational fluid dynamic modeling of alternating tangential flow filtration for perfusion cell culture. Biotechnology and Bioengineering, 115(11): 2751–2759
https://doi.org/10.1002/bit.26813
127 A I Radu, L Bergwerff, M C M van Loosdrecht, C Picioreanu. (2014a). A two-dimensional mechanistic model for scaling in spiral wound membrane systems. Chemical Engineering Journal, 241: 77–91
https://doi.org/10.1016/j.cej.2013.12.021
128 A I Radu, L Bergwerff, M C M van Loosdrecht, C Picioreanu. (2015). Combined biofouling and scaling in membrane feed channels: a new modeling approach. Biofouling, 31(1): 83–100
https://doi.org/10.1080/08927014.2014.996750
129 A I Radu, M S H van Steen, J S Vrouwenvelder, M C M van Loosdrecht, C Picioreanu. (2014b). Spacer geometry and particle deposition in spiral wound membrane feed channels. Water Research, 64: 160–176
https://doi.org/10.1016/j.watres.2014.06.040
130 A I Radu, J S Vrouwenvelder, M C M van Loosdrecht, C Picioreanu. (2010). Modeling the effect of biofilm formation on reverse osmosis performance: flux, feed channel pressure drop and solute passage. Journal of Membrane Science, 365(1–2): 1–15
https://doi.org/10.1016/j.memsci.2010.07.036
131 A I Radu, J S Vrouwenvelder, M C M van Loosdrecht, C Picioreanu. (2012). Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels. Chemical Engineering Journal, 188: 30–39
https://doi.org/10.1016/j.cej.2012.01.133
132 M Rahimi, S S Madaeni, M Abolhasani, A A Alsairafi. (2009). CFD and experimental studies of fouling of a microfiltration membrane. Chemical Engineering and Processing, 48(9): 1405–1413
https://doi.org/10.1016/j.cep.2009.07.008
133 R Rahmawati, M R Bilad, N I M Nawi, Y Wibisono, H Suhaimi, N Shamsuddin, N Arahman. (2021). Engineered spacers for fouling mitigation in pressure driven membrane processes: progress and projection. Journal of Environmental Chemical Engineering, 9(5): 106285
https://doi.org/10.1016/j.jece.2021.106285
134 A R Rajabzadeh, C Moresoli, B Marcos. (2010). Fouling behavior of electroacidified soy protein extracts during cross-flow ultrafiltration using dynamic reversible-irreversible fouling resistances and CFD modeling. Journal of Membrane Science, 361(1–2): 191–205
https://doi.org/10.1016/j.memsci.2010.05.057
135 A Ruiz-García, la Nuez Pestana I de. (2019). Feed spacer geometries and permeability coefficients: effect on the performance in BWRO spriral-wound membrane modules. Water, 11(1): 152
https://doi.org/10.3390/w11010152
136 S Sablani, M Goosen, R Al-Belushi, M Wilf. (2001). Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination, 141(3): 269–289
https://doi.org/10.1016/S0011-9164(01)85005-0
137 A Saeed, R Vuthaluru, Y Yang, H B Vuthaluru. (2012). Effect of feed spacer arrangement on flow dynamics through spacer filled membranes. Desalination, 285: 163–169
https://doi.org/10.1016/j.desal.2011.09.050
138 A Salama, M Zoubeik, A Henni, K T W Ng, H Ibrahim. (2020). On the design of sustainable antifouling system for the crossflow filtration of oily water systems: a multicontinuum and CFD investigation of the periodic feed pressure technique. Science of the Total Environment, 698: 134288
https://doi.org/10.1016/j.scitotenv.2019.134288
139 T Saur, E Morin, F Habouzit, N Bernet, R Escudié. (2017). Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor. PLoS One, 12(2): e0172113
https://doi.org/10.1371/journal.pone.0172113
140 P Schausberger, N Norazman, H Li, V Chen, A Friedl. (2009). Simulation of protein ultrafiltration using CFD: comparison of concentration polarisation and fouling effects with filtration and protein adsorption experiments. Journal of Membrane Science, 337(1–2): 1–8
https://doi.org/10.1016/j.memsci.2009.03.022
141 G Schock, A Miquel. (1987). Mass transfer and pressure loss in spiral wound modules. Desalination, 64: 339–352
https://doi.org/10.1016/0011-9164(87)90107-X
142 J Schwinge, D E Wiley, A G Fane. (2004). Novel spacer design improves observed flux. Journal of Membrane Science, 229(1–2): 53–61
https://doi.org/10.1016/j.memsci.2003.09.015
143 J Schwinge, D E Wiley, D F Fletcher. (2002a). Simulation of the flow around spacer filaments between channel walls. 2. Mass-transfer enhancement. Industrial & Engineering Chemistry Research, 41(19): 4879–4888
https://doi.org/10.1021/ie011015o
144 J Schwinge, D E Wiley, D F Fletcher. (2002b). Simulation of the flow around spacer filaments between narrow channel walls. 1. Hydrodynamics. Industrial & Engineering Chemistry Research, 41(12): 2977–2987
https://doi.org/10.1021/ie010588y
145 S Senthilmurugan, A Ahluwalia, S K Gupta. (2005). Modeling of a spiral-wound module and estimation of model parameters using numerical techniques. Desalination, 173(3): 269–286
https://doi.org/10.1016/j.desal.2004.08.034
146 M Shakaib, S M F Hasani, M Mahmood. (2007). Study on the effects of spacer geometry in membrane feed channels using three-dimensional computational flow modeling. Journal of Membrane Science, 297(1–2): 74–89
https://doi.org/10.1016/j.memsci.2007.03.010
147 C Shang, D Pranantyo, S Zhang. (2020a). Understanding the roughness–fouling relationship in reverse osmosis: mechanism and implications. Environmental Science & Technology, 54(8): 5288–5296
https://doi.org/10.1021/acs.est.0c00535
148 C Shang, L Wang, J Xia, S Zhang. (2020b). Macropatterning of microcrumpled nanofiltration membranes by spacer imprinting for low-scaling desalination. Environmental Science & Technology, 54(23): 15527–15533
https://doi.org/10.1021/acs.est.0c05779
149 C Shang, J Xia, L Sun, G G Lipscomb, S Zhang. (2022a). Concentration polarization on surface patterned membranes. AIChE Journal. American Institute of Chemical Engineers, 68(12): e17832
https://doi.org/10.1002/aic.17832
150 W Shang, X Li, W Liu, S Yue, M Li, D von Eiff, F Sun, A K An. (2021). Effective suppression of concentration polarization by nanofiltration membrane surface pattern manipulation: numerical modeling based on LIF visualization. Journal of Membrane Science, 622: 119021
https://doi.org/10.1016/j.memsci.2020.119021
151 W Shang, S Yang, W Liu, P W Wong, R Wang, X Li, G Sheng, W Lau, A K An, F Sun. (2022b). Understanding the influence of hydraulic conditions on colloidal fouling development by using the micro-patterned nanofiltration membrane: experiments and numerical simulation. Journal of Membrane Science, 654: 120559
https://doi.org/10.1016/j.memsci.2022.120559
152 R Sheikholeslami, H W K Ong. (2003). Kinetics and thermodynamics of calcium carbonate and calcium sulfate at salinities up to 1.5 M. Desalination, Desalination and the Environment, 157(1): 217–234
https://doi.org/10.1016/S0011-9164(03)00401-6
153 C P Singh, A Yadav, A Kumar. (2022). Numerical simulations of the effect of spacer filament geometry and orientation on the performance of the reverse osmosis process. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 650: 129664
https://doi.org/10.1016/j.colsurfa.2022.129664
154 D C Sioutopoulos, A J Karabelas (2012). Correlation of organic fouling resistances in RO and UF membrane filtration under constant flux and constant pressure. Journal of Membrane Science, 407–408: 34–46 10.1016/j.memsci.2012.03.036
155 H Sitaraman, I Battiato. (2022). Impact of large-scale effects on mass transfer and concentration polarization in reverse osmosis membrane systems. Separation and Purification Technology, 303: 122121
https://doi.org/10.1016/j.seppur.2022.122121
156 X Su, W Li, A Palazzolo, S Ahmed. (2018). Concentration polarization and permeate flux variation in a vibration enhanced reverse osmosis membrane module. Desalination, 433: 75–88
https://doi.org/10.1016/j.desal.2018.01.001
157 X Su, W Li, A Palazzolo, S Ahmed. (2019). Permeate flux increase by colloidal fouling control in a vibration enhanced reverse osmosis membrane desalination system. Desalination, 453: 22–36
https://doi.org/10.1016/j.desal.2018.12.003
158 B Sutariya, A Sargaonkar, B K Markam, H Raval. (2022). 3D CFD study and optimisation of static mixer type feed spacer for reverse osmosis. Chemical Engineering Journal Advances, 11: 100335
https://doi.org/10.1016/j.ceja.2022.100335
159 A Sweity, Y Oren, Z Ronen, M Herzberg. (2013). The influence of antiscalants on biofouling of RO membranes in seawater desalination. Water Research, 47(10): 3389–3398
https://doi.org/10.1016/j.watres.2013.03.042
160 Y Z Tan, Z Mao, Y Zhang, W S Tan, T H Chong, B Wu, J W Chew. (2019). Enhancing fouling mitigation of submerged flat-sheet membranes by vibrating 3D-spacers. Separation and Purification Technology, 215: 70–80
https://doi.org/10.1016/j.seppur.2018.12.085
161 J Thompson, N Lin, E Lyster, R Arbel, T Knoell, J Gilron, Y Cohen (2012). RO membrane mineral scaling in the presence of a biofilm. Journal of Membrane Science, 415–416: 181–191 10.1016/j.memsci.2012.04.051
162 K Y Toh, Y Y Liang, W J Lau, G A Fimbres Weihs. (2020). 3D CFD study on hydrodynamics and mass transfer phenomena for SWM feed spacer with different floating characteristics. Chemical Engineering Research & Design, 159: 36–46
https://doi.org/10.1016/j.cherd.2020.04.010
163 H Y Tsai, A Huang, Soesanto J F, Luo Y L, Hsu T Y, Chen C H, Hwang K J, Ho CD, Tung K L (2019). 3D printing design of turbulence promoters in a cross-flow microfiltration system for fine particles removal. Journal of Membrane Science 573: 647–656. 10.1016/j.memsci.2018.11.081.
164 A Uppu, A Chaudhuri, S P Das, N Prakash. (2020). CFD modeling of gypsum scaling in cross-flow RO filters using moments of particle population balance. Journal of Environmental Chemical Engineering, 8(5): 104151
https://doi.org/10.1016/j.jece.2020.104151
165 A Uppu, A Chaudhuri, S Prasad Das. (2019). Numerical modeling of particulate fouling and cake-enhanced concentration polarization in roto-dynamic reverse osmosis filtration systems. Desalination, 468: 114053
https://doi.org/10.1016/j.desal.2019.06.019
166 J S Vrouwenvelder, D A Graf von der Schulenburg, J C Kruithof, M L Johns, M C M van Loosdrecht. (2009a). Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem. Water Research, 43(3): 583–594
https://doi.org/10.1016/j.watres.2008.11.019
167 J S Vrouwenvelder, C Hinrichs, W G J van der Meer, M C M van Loosdrecht, J C Kruithof. (2009b). Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: role of substrate concentration, flow velocity, substrate load and flow direction. Biofouling, 25(6): 543–555
https://doi.org/10.1080/08927010902972225
168 J S Vrouwenvelder, J A M van Paassen, J M C van Agtmaal, M C M van Loosdrecht, J C Kruithof (2009c). A critical flux to avoid biofouling of spiral wound nanofiltration and reverse osmosis membranes: fact or fiction? Journal of Membrane Science, 326(1): 36–44 10.1016/j.memsci.2008.09.029
169 H Wang, M Sodagari, L K Ju, B Zhang Newby. (2013). Effects of shear on initial bacterial attachment in slow flowing systems. Colloids and Surfaces. B, Biointerfaces, 109: 32–39
https://doi.org/10.1016/j.colsurfb.2013.03.016
170 Q Wang, W Lin, S Chou, P Dai, X Huang. (2023). Patterned membranes for improving hydrodynamic properties and mitigating membrane fouling in water treatment: a review. Water Research, 236: 119943
https://doi.org/10.1016/j.watres.2023.119943
171 W Wei, X Zou, X Ji, R Zhou, K Zhao, Y Wang. (2021). Analysis of concentration polarisation in full-size spiral wound reverse osmosis membranes using computational fluid dynamics. Membranes, 11(5): 353
https://doi.org/10.3390/membranes11050353
172 Y J Won, S Y Jung, J H Jang, J W Lee, H R Chae, D C Choi, K Hyun Ahn, C H Lee, P K Park. (2016). Correlation of membrane fouling with topography of patterned membranes for water treatment. Journal of Membrane Science, 498: 14–19
https://doi.org/10.1016/j.memsci.2015.09.058
173 R M Wu, Y J Lin. (2012). Tubular membrane filtration with a side stream and its intermittent backwash operation. Separation Science and Technology, 47(12): 1689–1697
https://doi.org/10.1080/01496395.2012.659534
174 P Xie, L C Murdoch, D A Ladner. (2014). Hydrodynamics of sinusoidal spacers for improved reverse osmosis performance. Journal of Membrane Science, 453: 92–99
https://doi.org/10.1016/j.memsci.2013.10.068
175 P Xie, L C Murdoch, D A Ladner. (2019). Mitigating membrane fouling with sinusoidal spacers. Desalination and Water Treatment, 168: 56–64
https://doi.org/10.5004/dwt.2019.24406
176 X Xie, C Le Men, N Dietrich, P Schmitz, L Fillaudeau. (2018). Local hydrodynamic investigation by PIV and CFD within a Dynamic filtration unit under laminar flow. Separation and Purification Technology, 198: 38–51
https://doi.org/10.1016/j.seppur.2017.04.009
177 S Yang, W Shang, H Shi, F Sun, H Zeng. (2023). Development of an automatic and object-oriented method for spacer design in the spiral wound nanofiltration modules to comprehensively enhance filtration performance. Desalination, 566: 116945
https://doi.org/10.1016/j.desal.2023.116945
178 F Zamani, A W K Law, A G Fane. (2013). Hydrodynamic analysis of vibrating hollow fibre membranes. Journal of Membrane Science, 429: 304–312
https://doi.org/10.1016/j.memsci.2012.11.024
179 T Zhang, I Klapper. (2010). Mathematical model of biofilm induced calcite precipitation. Water Science and Technology, 61(11): 2957–2964
https://doi.org/10.2166/wst.2010.064
180 W Zhang, W Liang, X Xie. (2022). Computational fluid dynamic simulation for hydrodynamic shear enhanced filtration in multiple shaft disk filtration system. Journal of Water Process Engineering, 49: 103165
https://doi.org/10.1016/j.jwpe.2022.103165
181 Z Zhao, A Ilyas, K Muylaert, I F J Vankelecom. (2020). Optimization of patterned polysulfone membranes for microalgae harvesting. Bioresource Technology, 309: 123367
https://doi.org/10.1016/j.biortech.2020.123367
182 Z Zhao, K Muylaert, A Szymczyk, I F J Vankelecom. (2021). Harvesting microalgal biomass using negatively charged polysulfone patterned membranes: influence of pattern shapes and mechanism of fouling mitigation. Water Research, 188: 116530
https://doi.org/10.1016/j.watres.2020.116530
183 Z Zhou, B Ling, I Battiato, S M Husson, D A Ladner. (2021). Concentration polarization over reverse osmosis membranes with engineered surface features. Journal of Membrane Science, 617: 118199
https://doi.org/10.1016/j.memsci.2020.118199
184 L Zhuang, G Dai, Z L Xu. (2018). Three-dimensional simulation of the time-dependent fluid flow and fouling behavior in an industrial hollow fiber membrane module. AIChE Journal. American Institute of Chemical Engineers, 64(7): 2655–2669
https://doi.org/10.1002/aic.16090
185 M Zoubeik, A Salama, A Henni. (2018). A novel antifouling technique for the crossflow filtration using porous membranes: experimental and CFD investigations of the periodic feed pressure technique. Water Research, 146: 159–176
https://doi.org/10.1016/j.watres.2018.09.027
[1] FSE-24026-OF-MSY_suppl_1 Download
[1] Qian He, Junkai Gao, Zhongzhi Chen, Yuanjing Ding, Mengsheng Xia, Pengtao Xu, Yan Chen. Preparation of wood-based hydrogel membranes for efficient purification of complex wastewater using a reconstitution strategy[J]. Front. Environ. Sci. Eng., 2024, 18(7): 84-.
[2] Zheng-Yang Huo, Xiaoxiong Wang, Xia Huang, Menachem Elimelech. Intensifying electrified flow-through water treatment technologies via local environment modification[J]. Front. Environ. Sci. Eng., 2024, 18(6): 69-.
[3] Hankun Yang, Yujuan Li, Hongyu Liu, Nigel J. D. Graham, Xue Wu, Jiawei Hou, Mengjie Liu, Wenyu Wang, Wenzheng Yu. The variation of DOM during long distance water transport by the China South to North Water Diversion Scheme and impact on drinking water treatment[J]. Front. Environ. Sci. Eng., 2024, 18(5): 59-.
[4] Shuting Zhuang, Jianlong Wang. Cesium removal from radioactive wastewater by adsorption and membrane technology[J]. Front. Environ. Sci. Eng., 2024, 18(3): 38-.
[5] Yang Yu, Changchun Xin, Yuxiang Liu, Fei Gao, Lei Zhang, Hui Jia, Jie Wang. Portable fluorescence instrument for detecting membrane integrity in membrane bioreactor (MBR)[J]. Front. Environ. Sci. Eng., 2024, 18(2): 23-.
[6] Yuchao Chen, Kun Dong, Yiming Zhang, Junjian Zheng, Minmin Jiang, Dunqiu Wang, Xuehong Zhang, Xiaowu Huang, Lijie Zhou, Haixiang Li. Enhancing biofilm formation in the hydrogen-based membrane biofilm reactor through bacterial Acyl-homoserine lactones[J]. Front. Environ. Sci. Eng., 2024, 18(11): 142-.
[7] Taisheng Zhao, Xiaoman Liu, Lankun Huai, Rui Feng, Tao Yan, Weiying Xu, Yanxia Zhao. Fabrication of the TiO2/Ti3C2 loaded ceramic membrane targeting for photocatalytic degradation of PPCPs: ciprofloxacin, tetracycline, and ibuprofen[J]. Front. Environ. Sci. Eng., 2024, 18(10): 123-.
[8] Huijuan Xie, Haiguang Zhang, Xu Wang, Gaoliang Wei, Shuo Chen, Xie Quan. Conductive and stable polyphenylene/CNT composite membrane for electrically enhanced membrane fouling mitigation[J]. Front. Environ. Sci. Eng., 2024, 18(1): 3-.
[9] Zirui Zhang, Chenhang Zhang, Huan Liu, Feng Bin, Xiaolin Wei, Running Kang, Shaohua Wu, Wenming Yang, Hongpeng Xu. Self-sustained catalytic combustion of CO enhanced by micro fluidized bed: stability operation, fluidization state and CFD simulation[J]. Front. Environ. Sci. Eng., 2023, 17(9): 109-.
[10] Qian Li, Zhaoyang Hou, Xingyuan Huang, Shuming Yang, Jinfan Zhang, Jingwei Fu, Yu-You Li, Rong Chen. Methanation and chemolitrophic nitrogen removal by an anaerobic membrane bioreactor coupled partial nitrification and Anammox[J]. Front. Environ. Sci. Eng., 2023, 17(6): 68-.
[11] Huan Xi, Fanlu Min, Zhanhu Yao, Jianfeng Zhang. Facile fabrication of dolomite-doped biochar/bentonite for effective removal of phosphate from complex wastewaters[J]. Front. Environ. Sci. Eng., 2023, 17(6): 71-.
[12] Haiguang Zhang, Lei Du, Jiajian Xing, Gaoliang Wei, Xie Quan. Electro-conductive crosslinked polyaniline/carbon nanotube nanofiltration membrane for electro-enhanced removal of bisphenol A[J]. Front. Environ. Sci. Eng., 2023, 17(5): 59-.
[13] Jie Liu, Junjun Ma, Weizhang Zhong, Jianrui Niu, Zaixing Li, Xiaoju Wang, Ge Shen, Chun Liu. Penicillin fermentation residue biochar as a high-performance electrode for membrane capacitive deionization[J]. Front. Environ. Sci. Eng., 2023, 17(4): 51-.
[14] Zhijun Liu, Xi Luo, Senlin Shao, Xue Xia. Electrocatalytic reduction of nitrate using Pd-Cu modified carbon nanotube membranes[J]. Front. Environ. Sci. Eng., 2023, 17(4): 40-.
[15] Shuang Zhang, Shuai Liang, Yifan Gao, Yang Wu, Xia Huang. Nonpolar cross-stacked super-aligned carbon nanotube membrane for efficient wastewater treatment[J]. Front. Environ. Sci. Eng., 2023, 17(3): 30-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed