Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (10) : 123    https://doi.org/10.1007/s11783-024-1883-5
Fabrication of the TiO2/Ti3C2 loaded ceramic membrane targeting for photocatalytic degradation of PPCPs: ciprofloxacin, tetracycline, and ibuprofen
Taisheng Zhao, Xiaoman Liu, Lankun Huai, Rui Feng, Tao Yan, Weiying Xu, Yanxia Zhao()
School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
 Download: PDF(3358 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● TiO2 nanoparticles are generated in situ on layered Ti3C2 MXene.

● TiO2/Ti3C2 photocatalytic ceramic membrane enables one-step solid-liquid separation.

● The membrane enhances photocatalytic degradation of PPCPs like CIP, TCN, and IBP.

● Calcination increased membrane flux from 80 to 320 L/(m2·h).

● The ceramic membranes exhibit good stability and have broad market prospects.

Photocatalytic membranes offer an effective strategy to overcome the difficulties of solid-liquid separation and secondary contamination of powdered photocatalysts. MXene is a 2D material of layered Ti3C2, which is considered to limit electron-hole separation and contribute to photocatalysis. In this work, the etched Ti3C2 MXene was loaded on the surface of ceramic membranes using polydopamine (PDA) as a binder, followed by one-step calcination to produce TiO2 nanoparticles (NPs) in situ. The characterizations supported that the TiO2/Ti3C2 ceramic membranes had high mechanical strength while retaining the layered structure of Ti3C2, which was conducive to the inhibition of electron and hole complexation, improving the photocatalytic performance. Degradation experiments revealed that the material showed enhanced degradation of pharmaceuticals and personal care products (PPCPs) such as ciprofloxacin (CIP), tetracycline (TCN) and ibuprofen (IBP). The LC-MS and toxicity prediction models indicated that the developmental toxicity of CIP degradation products decreased with prolonged photocatalytic reaction, exhibiting no acute toxicity to fish. The MT650 exhibited significantly enhanced water flux properties (320 L/(m2·h)). The TiO2/Ti3C2 ceramic membranes explored in this work are expected to target the treatment of PPCPs with excellent engineering promise.

Keywords MXene      TiO2      Photocatalytic degradation      Ceramic membrane      Pharmaceutical and personal care products (PPCPs)     
Corresponding Author(s): Yanxia Zhao   
Issue Date: 18 July 2024
 Cite this article:   
Taisheng Zhao,Xiaoman Liu,Lankun Huai, et al. Fabrication of the TiO2/Ti3C2 loaded ceramic membrane targeting for photocatalytic degradation of PPCPs: ciprofloxacin, tetracycline, and ibuprofen[J]. Front. Environ. Sci. Eng., 2024, 18(10): 123.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1883-5
https://academic.hep.com.cn/fese/EN/Y2024/V18/I10/123
Fig.1  Keywords for the application of MXene materials screened in 790 papers using VOSviewer 1.6.19 software.
Fig.2  Preparation of (a) Ti3C2 nanosheets and (b)TiO2/Ti3C2 modified ceramic membranes; SEM/EDS images with C and O elements of (c) MT25 and (d) MT650; Physical images of (e) MT25 and (f) MT650.
Fig.3  (a) XRD and (b) magnified XRD patterns of MXene-ceramic membranes at different calcination temperatures; XPS (c) total energy spectrum (d) C 1s, (e) O 1s, and (f) Ti 2p of MT25, MT450, and MT650.
Fig.4  (a) PL spectroscopy, (b) UV-vis spectroscopy, and (c) band gap energy diagram of the membrane with different calcination temperatures; (d) scratch observed in the optical microscope; (e) Load force, friction, acoustic signal, and scratch depth data for nano-scratch testing; (f) thermogravimetric test.
Fig.5  (a) Degradation of different pollutants, degradation of (b) ciprofloxacin (c) methylene blue by MXene-ceramic membranes with different calcination temperatures, (d) circulation tests, and (e) comparison of degradation rates with other studies.
  Scheme1 Photocatalytic degradation mechanism of CIP by TiO2/Ti3C2 ceramic membranes.
Fig.6  (a) Degradation pathways and intermediate molecules of CIP; (b) developmental toxicity of intermediate products based on T.E.S.T software. Acute toxicity prediction for (c) fish, (d) daphnid, and (e) green algae based on ECOSAR software.
Fig.7  Water contact angle of (a) virgin ceramic membranes VCM, (b) MT25 and (c) MT650 (Ti3C2 loading of 0.2 mg/cm3); (d) pure water fluxes of different ceramic membranes; (e) permeate fluxes, and (f) normalized fluxes under simulated water conditions.
1 M I R Advisory (2024). Ceramic Membranes Market Size & Share Analysis: Growth Trends & Forecasts (2024–2029). Hyderabad: Mordor Intelligence
2 M B Asif, Z Zhang. (2021). Ceramic membrane technology for water and wastewater treatment: a critical review of performance, full-scale applications, membrane fouling and prospects. Chemical Engineering Journal, 418: 129481
https://doi.org/10.1016/j.cej.2021.129481
3 L Chen, X Ye, S Chen, L Ma, Z Wang, Q Wang, N Hua, X Xiao, S Cai, X Liu. (2020). Ti3C2 MXene nanosheet/TiO2 composites for efficient visible light photocatalytic activity. Ceramics International, 46(16): 25895–25904
https://doi.org/10.1016/j.ceramint.2020.07.074
4 M Chen, T Yang, L Zhao, X Shi, R Li, L Ma, Y Huang, Y Wang, S C Lee. (2024). Manganese oxide on activated carbon with peroxymonosulfate activation for enhanced ciprofloxacin degradation: activation mechanism and degradation pathway. Applied Surface Science, 645: 158835
https://doi.org/10.1016/j.apsusc.2023.158835
5 X Chen, H Qi, C Zhang, L Ma, Z Li, P Chen, Q Xing, Q Sun, Z Yan. (2022). Synthesis and characterization of recyclable PVA/SrTiO3/Ag2O composite with photocatalytic degradation performance of methylene blue. Applied Physics. A, Materials Science & Processing, 128(5): 374
https://doi.org/10.1007/s00339-022-05510-3
6 Z Chen, D Yao, C Chu, S Mao. (2023). Photocatalytic H2O2 production systems: design strategies and environmental applications. Chemical Engineering Journal, 451: 138489
https://doi.org/10.1016/j.cej.2022.138489
7 J Cheng, Z Deng, X Zheng, C Chu, Y Guo. (2024). Construction and actual application of In2O3/BiOBr heterojunction for effective removal of ciprofloxacin under visible light: photocatalytic mechanism, DFT calculation,degradation pathway and toxicity evaluation. Journal of Alloys and Compounds, 971: 172779
https://doi.org/10.1016/j.jallcom.2023.172779
8 T J Deming. (1999). Mussel byssus and biomolecular materials. Current Opinion in Chemical Biology, 3(1): 100–105
https://doi.org/10.1016/S1367-5931(99)80018-0
9 C Ding, J Guo, W Gan, P Chen, Z Li, Z Yin, S Qi, S Deng, M Zhang, Z Sun. (2022). Ag nanoparticles decorated Z-scheme CoAl-LDH/TiO2 heterojunction photocatalyst for expeditious levofloxacin degradation and Cr(VI) reduction. Separation and Purification Technology, 297: 121480
https://doi.org/10.1016/j.seppur.2022.121480
10 S Dolai, A Vanluchene, P Stavárek, P Dzik, R Fajgar, K Soukup, P Klusoň. (2022). Graphitic carbon nitride thin films for light-induced photocatalysis in a slit geometry microreactor. Journal of Environmental Chemical Engineering, 10(6): 108790
https://doi.org/10.1016/j.jece.2022.108790
11 Y Dong, H Wu, F Yang, S Gray. (2022). Cost and efficiency perspectives of ceramic membranes for water treatment. Water Research, 220: 118629
https://doi.org/10.1016/j.watres.2022.118629
12 K Fischer, M Grimm, J Meyers, C Dietrich, R Gläser, A Schulze. (2015). Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water. Journal of Membrane Science, 478: 49–57
https://doi.org/10.1016/j.memsci.2015.01.009
13 X Gan, D Lei, K Y Wong. (2018). Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Materials Today. Energy, 10: 352–367
https://doi.org/10.1016/j.mtener.2018.10.015
14 P GaoZ Liu M TaiD D Sun W Ng (2013). Multifunctional graphene oxide–TiO2 microsphere hierarchical membrane for clean water production. Applied Catalysis B: Environmental, 138–139: 17–25
15 J Halim, K M Cook, M Naguib, P Eklund, Y Gogotsi, J Rosen, M W Barsoum. (2016). X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Applied Surface Science, 362: 406–417
https://doi.org/10.1016/j.apsusc.2015.11.089
16 T Ke, S Shen, K Rajavel, K Yang, D Lin. (2021). In situ growth of TiO2 nanoparticles on nitrogen-doped Ti3C2 with isopropyl amine toward enhanced photocatalytic activity. Journal of Hazardous Materials, 402: 124066
https://doi.org/10.1016/j.jhazmat.2020.124066
17 S J Kerber, T L Barr, G P Mann, W A Brantley, E Papazoglou, J C Mitchell. (1998). The complementary nature of X-ray photoelectron spectroscopy and angle-resolved X-ray diffraction. Part II: Analysis of oxides on dental alloys. Journal of Materials Engineering and Performance, 7(3): 334–342
https://doi.org/10.1361/105994998770347774
18 Z Kuspanov, B Bakbolat, A Baimenov, A Issadykov, M Yeleuov, C Daulbayev. (2023). Photocatalysts for a sustainable future: innovations in large-scale environmental and energy applications. Science of the Total Environment, 885: 163914
https://doi.org/10.1016/j.scitotenv.2023.163914
19 H Lee, S M Dellatore, W M Miller, P B Messersmith. (2007). Mussel-inspired surface chemistry for multifunctional coatings. Science, 318(5849): 426–430
https://doi.org/10.1126/science.1147241
20 C Li, W Sun, Z Lu, X Ao, S Li. (2020). Ceramic nanocomposite membranes and membrane fouling: a review. Water Research, 175: 115674
https://doi.org/10.1016/j.watres.2020.115674
21 L Li, C Luo, X Chen, N Chu, L Li, M Chao, L Yan. (2023a). A novel multifunctional photocatalytic separation membrane based on single-component seaweed-like g-C3N4. Advanced Functional Materials, 33(23): 2213974
https://doi.org/10.1002/adfm.202213974
22 Q Li, N Wen, W Zhang, L Yu, J Shen, S Li, Y Lv. (2023b). Preparation of g-C3N4/TCNQ composite and photocatalytic degradation of pefloxacin. Micromachines, 14(5): 941
https://doi.org/10.3390/mi14050941
23 X Li, Z Huang, C E Shuck, G Liang, Y Gogotsi, C Zhi. (2022). MXene chemistry, electrochemistry and energy storage applications. Nature Reviews. Chemistry, 6(6): 389–404
https://doi.org/10.1038/s41570-022-00384-8
24 Y Li, C Zhou, X Zhang, B Hui. (2024). Charcoal-based block catalyst boosts peroxymonosulfate activation for ciprofloxacin degradation. Separation and Purification Technology, 329: 125194
https://doi.org/10.1016/j.seppur.2023.125194
25 R Liu, M Zhao, X Zheng, Q Wang, X Huang, Y Shen, B Chen. (2021). Reduced graphene oxide/TiO2(B) immobilized on nylon membrane with enhanced photocatalytic performance. Science of the Total Environment, 799: 149370
https://doi.org/10.1016/j.scitotenv.2021.149370
26 J Low, L Zhang, T Tong, B Shen, J Yu. (2018). TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. Journal of Catalysis, 361: 255–266
https://doi.org/10.1016/j.jcat.2018.03.009
27 Q Luo, B Chai, M Xu, Q Cai. (2018). Preparation and photocatalytic activity of TiO2-loaded Ti3C2 with small interlayer spacing. Applied Physics. A, Materials Science & Processing, 124(7): 495
https://doi.org/10.1007/s00339-018-1909-6
28 P M Martins, J M Ribeiro, S Teixeira, D Y Petrovykh, G Cuniberti, L Pereira, S Lanceros-Méndez. (2019). Photocatalytic microporous membrane against the increasing problem of water emerging pollutants. Materials, 12(10): 1649
https://doi.org/10.3390/ma12101649
29 M Mehrjouei, S Müller, D Möller. (2015). A review on photocatalytic ozonation used for the treatment of water and wastewater. Chemical Engineering Journal, 263: 209–219
https://doi.org/10.1016/j.cej.2014.10.112
30 G Murali, J K Reddy Modigunta, Y H Park, J H Lee, J Rawal, S Y Lee, I In, S J Park. (2022). A review on MXene synthesis, stability, and photocatalytic applications. ACS Nano, 16(9): 13370–13429
https://doi.org/10.1021/acsnano.2c04750
31 X Nie, G Li, S Li, Y Luo, W Luo, Q Wan, T An. (2022). Highly efficient adsorption and catalytic degradation of ciprofloxacin by a novel heterogeneous Fenton catalyst of hexapod-like pyrite nanosheets mineral clusters. Applied Catalysis B: Environmental, 300: 120734
https://doi.org/10.1016/j.apcatb.2021.120734
32 K H Park, P F Sun, E H Kang, G D Han, B J Kim, Y Jang, S H Lee, J H Shim, H D Park. (2021). Photocatalytic anti-biofouling performance of nanoporous ceramic membranes treated by atomic layer deposited ZnO. Separation and Purification Technology, 272: 118935
https://doi.org/10.1016/j.seppur.2021.118935
33 C Peng, X Yang, Y Li, H Yu, H Wang, F Peng. (2016). Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity. ACS Applied Materials & Interfaces, 8(9): 6051–6060
https://doi.org/10.1021/acsami.5b11973
34 V Perumal, C Inmozhi, R Uthrakumar, R Robert, M Chandrasekar, S B Mohamed, S Honey, A Raja, F A Al-Mekhlafi, K Kaviyarasu. (2022). Enhancing the photocatalytic performance of surface: treated SnO2 hierarchical nanorods against methylene blue dye under solar irradiation and biological degradation. Environmental Research, 209: 112821
https://doi.org/10.1016/j.envres.2022.112821
35 E Prabakaran, T Velempini, M Molefe, K Pillay. (2021). Comparative study of KF, KCl and KBr doped with graphitic carbon nitride for superior photocatalytic degradation of methylene blue under visible light. Journal of Materials Research and Technology, 15: 6340–6355
https://doi.org/10.1016/j.jmrt.2021.10.128
36 J Ran, G Gao, F T Li, T Y Ma, A Du, S Z Qiao. (2017). Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 8(1): 13907
https://doi.org/10.1038/ncomms13907
37 E SaputraS MuhammadH SunH M AngM O TadéS Wang (2013). Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. Applied Catalysis B: Environmental, 142–143: 729–735
38 M Shekhirev, C E Shuck, A Sarycheva, Y Gogotsi. (2021). Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Progress in Materials Science, 120: 100757
https://doi.org/10.1016/j.pmatsci.2020.100757
39 Y Shen, H Xu, Y Zheng, Y Wang, L Zhang, Z Zhang, L Zhong, Z He. (2023). Fabrication of Bi/BiOCOOH/PVDF with improved photocatalytic activity for the degradation of ciprofloxacin. Surfaces and Interfaces, 42: 103483
https://doi.org/10.1016/j.surfin.2023.103483
40 W Sheng, B Li, X Wang, B Dai, B Yu, X Jia, F Zhou. (2015). Brushing up from “anywhere” under sunlight: a universal surface-initiated polymerization from polydopamine-coated surfaces. Chemical Science, 6(3): 2068–2073
https://doi.org/10.1039/C4SC03851G
41 R Singh, V S K Yadav, M K Purkait. (2019). Cu2O photocatalyst modified antifouling polysulfone mixed matrix membrane for ultrafiltration of protein and visible light driven photocatalytic pharmaceutical removal. Separation and Purification Technology, 212: 191–204
https://doi.org/10.1016/j.seppur.2018.11.029
42 X Sun, X Zhao, X Zhang, G Wu, X Rong, X Wang. (2023). TiO2 nanosheets/Ti3C2Tx MXene 2D/2D composites for excellent microwave absorption. ACS Applied Nano Materials, 6(15): 14421–14430
https://doi.org/10.1021/acsanm.3c02434
43 Y Sun, D Xu, S Li, L Cui, Y Zhuang, W Xing, W Jing. (2021). Assembly of multidimensional MXene-carbon nanotube ultrathin membranes with an enhanced anti-swelling property for water purification. Journal of Membrane Science, 623: 119075
https://doi.org/10.1016/j.memsci.2021.119075
44 Y SunZ Xu Y ZhuangG LiuW JinG LiuW Jing (2018). Tunable dextran retention of MXene-TiO2 mesoporous membranes by adjusting the 2D MXene content. 2D Materials, 5(4): 045003
45 K Wang, Y Zhou, W Xu, D Huang, Z Wang, M Hong. (2016). Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceramics International, 42(7): 8419–8424
https://doi.org/10.1016/j.ceramint.2016.02.059
46 J Xue, W Xiao, L Shi, Y Liu, P Wang, Q Bi. (2023). Efficient degradation of ciprofloxacin by a flower-spherical Bi2MoO6/BiOCl Z-type heterojunction photocatalyst enriched with oxygen vacancies. Journal of Environmental Chemical Engineering, 11(6): 111235
https://doi.org/10.1016/j.jece.2023.111235
47 M Yu, J Hwang, T J Deming. (1999). Role of l-3,4-dihydroxyphenylalanine in mussel adhesive proteins. Journal of the American Chemical Society, 121(24): 5825–5826
https://doi.org/10.1021/ja990469y
48 X Yu, C Zhao, Z Liu, Y Wei, M Yang, B Guo, J Niu. (2023). Preparation of ZnO/Cu2O composite particles and its degradation of ciprofloxacin: analysis of degradation performance and active species. Integrated Ferroelectrics, 236(1): 96–108
https://doi.org/10.1080/10584587.2023.2194831
49 F Zhang, X Wang, H Liu, C Liu, Y Wan, Y Long, Z Cai. (2019). Recent advances and applications of semiconductor photocatalytic technology. Applied Sciences, 9(12): 2489
https://doi.org/10.3390/app9122489
50 T Zhou, L Wang, X Huang, J Unruangsri, H Zhang, R Wang, Q Song, Q Yang, W Li, C Wang. et al.. (2021). PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution. Nature Communications, 12(1): 3934
https://doi.org/10.1038/s41467-021-24179-5
[1] FSE-24066-OF-ZTS_suppl_1 Download
[1] Sajjad Haider, Rab Nawaz, Muzammil Anjum, Tahir Haneef, Vipin Kumar Oad, Salah Uddinkhan, Rawaiz Khan, Muhammad Aqif. Property-performance relationship of core-shell structured black TiO2 photocatalyst for environmental remediation[J]. Front. Environ. Sci. Eng., 2023, 17(9): 111-.
[2] Zhou Zhang, Kai Huo, Tingxuan Yan, Xuwen Liu, Maocong Hu, Zhenhua Yao, Xuguang Liu, Tao Ye. Mechanistic insights into the selective photocatalytic degradation of dyes over TiO2/ZSM-11[J]. Front. Environ. Sci. Eng., 2023, 17(8): 101-.
[3] Cheng Cai, Wenjun Sun, Siyuan He, Yuanna Zhang, Xuelin Wang. Ceramic membrane fouling mechanisms and control for water treatment[J]. Front. Environ. Sci. Eng., 2023, 17(10): 126-.
[4] Xiaoying Wang, Haiguang Zhang, Xu Wang, Shuo Chen, Hongtao Yu, Xie Quan. Electroconductive RGO-MXene membranes with wettability-regulated channels: improved water permeability and electro-enhanced rejection performance[J]. Front. Environ. Sci. Eng., 2023, 17(1): 1-.
[5] Xiaoman Liu, Chang Tian, Yanxia Zhao, Weiying Xu, Dehua Dong, Kaimin Shih, Tao Yan, Wen Song. Enhanced cross-flow filtration with flat-sheet ceramic membranes by titanium-based coagulation for membrane fouling control[J]. Front. Environ. Sci. Eng., 2022, 16(8): 110-.
[6] Ning Wang, Jiangtao Feng, Wei Yan, Luohong Zhang, Yonghong Liu, Ruihua Mu. Dual-functional sites for synergistic adsorption of Cr(VI) and Sb(V) by polyaniline-TiO2 hydrate: Adsorption behaviors, sites and mechanisms[J]. Front. Environ. Sci. Eng., 2022, 16(8): 105-.
[7] Xuesong Liu, Jianmin Wang, Yue-Wern Huang. Understanding the role of nano-TiO2 on the toxicity of Pb on C. dubia through modeling–Is it additive or synergistic?[J]. Front. Environ. Sci. Eng., 2022, 16(5): 59-.
[8] Shan Xue, Shaobin Sun, Weihua Qing, Taobo Huang, Wen Liu, Changqing Liu, Hong Yao, Wen Zhang. Experimental and computational assessment of 1,4-Dioxane degradation in a photo-Fenton reactive ceramic membrane filtration process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 95-.
[9] Chenchen Li, Lijie Yan, Yiming Li, Dan Zhang, Mutai Bao, Limei Dong. TiO2@palygorskite composite for the efficient remediation of oil spills via a dispersion-photodegradation synergy[J]. Front. Environ. Sci. Eng., 2021, 15(4): 72-.
[10] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[11] Reza Katal, Mohammad Tanhaei, Jiangyong Hu. Photocatalytic degradation of the acetaminophen by nanocrystal-engineered TiO2 thin film in batch and continuous system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 27-.
[12] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[13] Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(6): 103-.
[14] Xuemin Hao, Guanlong Wang, Shuo Chen, Hongtao Yu, Xie Quan. Enhanced activation of peroxymonosulfate by CNT-TiO2 under UV-light assistance for efficient degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(5): 77-.
[15] Zhan Wang, Chongyang Shen, Yichun Du, Yulong Zhang, Baoguo Li. Influence of phosphate on deposition and detachment of TiO2 nanoparticles in soil[J]. Front. Environ. Sci. Eng., 2019, 13(5): 79-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed