Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (1) : 51-65    https://doi.org/10.1007/s11515-014-1288-0
REVIEW
Gamma-glutamyl transferases: A structural, mechanistic and physiological perspective
Sharath BALAKRISHNA,Asmita A. PRABHUNE()
Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
 Download: PDF(524 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Gamma glutamyl transferases (GGT) are highly conserved enzymes that occur from bacteria to humans. They remove terminal γ-glutamyl residue from peptides and amides. GGTs play an important role in the homeostasis of glutathione (a major cellular antioxidant) and in the detoxification of xenobiotics in mammals. They are implicated in diseases like diabetes, inflammation, neurodegenerative diseases and cardiovascular diseases. The physiological role of GGTs in bacteria is still unclear. Nothing is known about the basis for the strong conservation of the enzyme across the living system. The review focuses on the enzyme’s physiology, chemistry and structural properties of the enzyme with emphasis on the evolutionary relationships. The available data indicate that the members of the GGT family share common structural features but are functionally heterogenous.

Keywords Gamma glutamyl transferase      Ntn hydrolase      structure      catalysis      function     
Corresponding Author(s): Asmita A. PRABHUNE   
Issue Date: 09 October 2014
 Cite this article:   
Sharath BALAKRISHNA,Asmita A. PRABHUNE. Gamma-glutamyl transferases: A structural, mechanistic and physiological perspective[J]. Front. Biol., 2014, 9(1): 51-65.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1288-0
https://academic.hep.com.cn/fib/EN/Y2014/V9/I1/51
Fig.1  Multiple sequence alignment of GGT from different organisms. The sequence numbering corresponds to B. subtilis GGT. Identical residues are shaded, and similar residues are boxed. The residues representing catalytic nucleophile, substrate binding, and oxyanion hole are marked with the letters N, B, and O, respectively (residue identity as in Ref X). Sequences shown are for GGTs of, B. subtilis (P54422), E. coli (P18956), rat (Q9QWE9), human (P36269), Culex mosquito (B0XE48), Arabidopsis thaliana (Q39078) and yeast (Q05902). The respective UniProtKB accession number is given in the parenthesis. The figure was prepared with CLUSTALW (Thompson et al., 1994) and ESPRIPT (Gouet et al., 1999).
Fig.2  Structures of GGTs from (A) B. subtilis (PDB Code 2v36) and (B) humans (PDB Code 4GDX.α-Helices and β-strands are represented as cylinders and arrows respectively. (C) Superposition of Cα trace of GGTs from B. subtilis (red) and humans (blue). The figures were prepared using PyMOL (The PyMOL Molecular Graphics System, Version 1.6 Schr?dinger, LLC).
Fig.3  Diagrammatic representation of interactions that bind the γ-glutamyl moiety of the substrate to the active site. Interactions with the catalytic nucleophile and stabilization of the tetrahedral intermediate by oxyanion hole are also shown.
Fig.4  Schematic representation of the mechanism of GGT catalyzed hydrolysis of a γ-glutamyl amide.
Fig.5  Schematic representation of γ-Glutamyl Cycle.
OrganismFunctionReference
MammalsHomeostasis of glutathioneRenal reabsorption of cysteineDetoxification of xenobiotics959697
Bacillus subtilisDepolymeration of polyglutamic acid into glutamic acid for nutritional need3
Helicobacter pyloriColonization of gastro-intestinal mucosa115
Neisseria meningitidisColonization of brain117
Allium sepa (Onion)Production of volatile compounds103
Tab.1  Physiological role of some GGT members
1 Anderson M E, Allison R D, Meister A (1982). Interconversion of leukotrienes catalyzed by purified gamma-glutamyl transpeptidase: concomitant formation of leukotriene D4 and gamma-glutamyl amino acids. Proc Natl Acad Sci USA, 79(4): 1088–1091
https://doi.org/10.1073/pnas.79.4.1088 pmid: 6122208
2 Arendt C S, Hochstrasser M (1999). Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J, 18(13): 3575–3585
https://doi.org/10.1093/emboj/18.13.3575 pmid: 10393174
3 Benlloch M, Ortega A, Ferrer P, Segarra R, Obrador E, Asensi M, Carretero J, Estrela J M (2005). Acceleration of glutathione efflux and inhibition of gamma-glutamyltranspeptidase sensitize metastatic B16 melanoma cells to endothelium-induced cytotoxicity. J Biol Chem, 280(8): 6950–6959
https://doi.org/10.1074/jbc.M408531200 pmid: 15561710
4 Boanca G, Sand A, Barycki J J (2006). Uncoupling the enzymatic and autoprocessing activities of Helicobacter pylori gamma-glutamyltranspeptidase. J Biol Chem, 281(28): 19029–19037
https://doi.org/10.1074/jbc.M603381200 pmid: 16672227
5 Boanca G, Sand A, Okada T, Suzuki H, Kumagai H, Fukuyama K, Barycki J J (2007). Autoprocessing of Helicobacter pylori gamma-glutamyltranspeptidase leads to the formation of a threonine-threonine catalytic dyad. J Biol Chem, 282(1): 534–541
https://doi.org/10.1074/jbc.M607694200 pmid: 17107958
6 Boanca G, Sand A, Okada T, Suzuki H, Kumagai H, Fukuyama K, Barycki J J (2007). Autoprocessing of Helicobacter pylori gamma-glutamyltranspeptidase leads to the formation of a threonine-threonine catalytic dyad. J Biol Chem, 282(1): 534–541
https://doi.org/10.1074/jbc.M607694200 pmid: 17107958
7 Bochtler M, Ditzel L, Groll M, Huber R (1997). Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc Natl Acad Sci USA, 94(12): 6070–6074
https://doi.org/10.1073/pnas.94.12.6070 pmid: 9177170
8 Bompard-Gilles C, Villeret V, Davies G J, Fanuel L, Joris B, Frère J M, Van Beeumen J (2000). A new variant of the Ntn hydrolase fold revealed by the crystal structure of L-aminopeptidase D-ala-esterase/amidase from Ochrobactrum anthropi. Structure, 8(2): 153–162
https://doi.org/10.1016/S0969-2126(00)00091-5 pmid: 10673442
9 Brannigan J A, Dodson G, Duggleby H J, Moody P C, Smith J L, Tomchick D R, Murzin A G (1995). A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature, 378(6555): 416–419
https://doi.org/10.1038/378416a0 pmid: 7477383
10 Candela T, Fouet A (2006). Poly-gamma-glutamate in bacteria. Mol Microbiol, 60(5): 1091–1098
https://doi.org/10.1111/j.1365-2958.2006.05179.x pmid: 16689787
11 Carter B Z, Shi Z Z, Barrios R, Lieberman M W (1998). gamma-glutamyl leukotrienase, a gamma-glutamyl transpeptidase gene family member, is expressed primarily in spleen. J Biol Chem, 273(43): 28277–28285
https://doi.org/10.1074/jbc.273.43.28277 pmid: 9774450
12 Carter B Z, Wiseman A L, Orkiszewski R, Ballard K D, Ou C N, Lieberman M W (1997). Metabolism of leukotriene C4 in gamma-glutamyl transpeptidase-deficient mice. J Biol Chem, 272(19): 12305–12310
https://doi.org/10.1074/jbc.272.19.12305 pmid: 9139674
13 Castonguay R, Lherbet C, Keillor J W (2003). Kinetic studies of rat kidney gamma-glutamyltranspeptidase deacylation reveal a general base-catalyzed mechanism. Biochemistry, 42(39): 11504–11513
https://doi.org/10.1021/bi035064b pmid: 14516202
14 Chevalier C, Thiberge J M, Ferrero R L, Labigne A (1999). Essential role of Helicobacter pylori gamma-glutamyltranspeptidase for the colonization of the gastric mucosa of mice. Mol Microbiol, 31(5): 1359–1372
https://doi.org/10.1046/j.1365-2958.1999.01271.x pmid: 10200957
15 Chikhi N, Holic N, Guellaen G, Laperche Y (1999). Gamma-glutamyl transpeptidase gene organization and expression: a comparative analysis in rat, mouse, pig and human species. Comp Biochem Physiol B Biochem Mol Biol, 122(4): 367–380
https://doi.org/10.1016/S0305-0491(99)00013-9 pmid: 10392451
16 Cook N D, Upperton K P, Challis B C, Peters T J (1987). The donor specificity and kinetics of the hydrolysis reaction of gamma-glutamyltransferase. Biochim Biophys Acta, 914(3): 240–245
https://doi.org/10.1016/0167-4838(87)90283-4 pmid: 2887205
17 Duggleby H J, Tolley S P, Hill C P, Dodson E J, Dodson G, Moody P C (1995). Penicillin acylase has a single-amino-acid catalytic centre. Nature, 373(6511): 264–268
https://doi.org/10.1038/373264a0 pmid: 7816145
18 Dunbar J A, Ogston S A, Ritchie A, Devgun M S, Hagart J, Martin B T (1985). Are problem drinkers dangerous drivers? An investigation of arrest for drinking and driving, serum gamma glutamyltranspeptidase activities, blood alcohol concentrations, and road traffic accidents: the Tayside Safe Driving Project. Br Med J (Clin Res Ed), 290(6471): 827–830
https://doi.org/10.1136/bmj.290.6471.827 pmid: 2858243
19 Elce J S, Broxmeyer B (1976). γ-glutamyltransferase of rat kidney. Simultaneous assay of the hydrolysis and transfer reactions with (glutamate-14C)glutathione. Biochem J, 153(2): 223–2326004
pmid: 6004
20 Elkins J M, Kershaw N J, Schofield C J (2005). X-ray crystal structure of ornithine acetyltransferase from the clavulanic acid biosynthesis gene cluster. Biochem J, 385(Pt 2): 565–573
https://doi.org/10.1042/BJ20040814 pmid: 15352873
21 Galivan J, Ryan T J, Chave K, Rhee M, Yao R, Yin D (2000). Glutamyl hydrolase. pharmacological role and enzymatic characterization. Pharmacol Ther, 85(3): 207–215
https://doi.org/10.1016/S0163-7258(99)00063-7 pmid: 10739875
22 Gardell S J, Tate S S (1980). Affinity labeling of gamma-glutamyl transpeptidase by glutamine antagonists. Effects of the gamma-glutamyl transferase and proteinase activities. FEBS Lett, 122(2): 171–174
https://doi.org/10.1016/0014-5793(80)80430-3 pmid: 6110564
23 Gardell S J, Tate S S (1983). Effects of bile acids and their glycine conjugates on gamma-glutamyl transpeptidase. J Biol Chem, 258(10): 6198–6201
pmid: 6133861
24 Gjerde H, Sakshaug J, M?rland J (1986). Heavy drinking among Norwegian male drunken drivers: a study of gamma-glutamyltransferase. Alcohol Clin Exp Res, 10(2): 209–212
https://doi.org/10.1111/j.1530-0277.1986.tb05073.x pmid: 2872834
25 Gouet P, Courcelle E, Stuart D I, Métoz F (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics, 15(4): 305–308
https://doi.org/10.1093/bioinformatics/15.4.305 pmid: 10320398
26 Gounni A S, Spanel-Borowski K, Palacios M, Heusser C, Moncada S, Lobos E (2001). Pulmonary inflammation induced by a recombinant Brugia malayi gamma-glutamyl transpeptidase homolog: involvement of humoral autoimmune responses. Mol Med, 7(5): 344–354
pmid: 11474580
27 Guo H C, Xu Q, Buckley D, Guan C (1998). Crystal structures of Flavobacterium glycosylasparaginase. An N-terminal nucleophile hydrolase activated by intramolecular proteolysis. J Biol Chem, 273(32): 20205–20212
https://doi.org/10.1074/jbc.273.32.20205 pmid: 9685368
28 Han L, Hiratake J, Tachi N, Suzuki H, Kumagai H, Sakata K (2006). Gamma-(monophenyl)phosphono glutamate analogues as mechanism-based inhibitors of gamma-glutamyl transpeptidase. Bioorg Med Chem, 14(17): 6043–6054
https://doi.org/10.1016/j.bmc.2006.05.008 pmid: 16716594
29 Hanigan M H (1995). Expression of gamma-glutamyl transpeptidase provides tumor cells with a selective growth advantage at physiological concentrations of cyst(e)ine. Carcinogenesis, 16(2): 181–185
https://doi.org/10.1093/carcin/16.2.181 pmid: 7859346
30 Hashimoto Y, Futamura A, Nakarai H, Nakahara K (2001). Relationship between response of gamma-glutamyl transpeptidase to alcohol drinking and risk factors for coronary heart disease. Atherosclerosis, 158(2): 465–470
https://doi.org/10.1016/S0021-9150(01)00455-5 pmid: 11583727
31 Heisterkamp N, Rajpert-De Meyts E, Uribe L, Forman H J, Groffen J (1991). Identification of a human gamma-glutamyl cleaving enzyme related to, but distinct from, gamma-glutamyl transpeptidase. Proc Natl Acad Sci USA, 88(14): 6303–6307
https://doi.org/10.1073/pnas.88.14.6303 pmid: 1676842
32 Hinchman C A, Matsumoto H, Simmons T W, Ballatori N (1991). Intrahepatic conversion of a glutathione conjugate to its mercapturic acid. Metabolism of 1-chloro-2,4-dinitrobenzene in isolated perfused rat and guinea pig livers. J Biol Chem, 266(33): 22179–22185
pmid: 1939239
33 Huseby N E (1977). Purification and some properties of gamma-glutamyltransferase from human liver. Biochim Biophys Acta, 483(1): 46–5618197
https://doi.org/10.1016/0005-2744(77)90006-7 pmid: 18197
34 Ikeda Y, Fujii J, Anderson M E, Taniguchi N, Meister A (1995). Involvement of Ser-451 and Ser-452 in the catalysis of human gamma-glutamyl transpeptidase. J Biol Chem, 270(38): 22223–22228
https://doi.org/10.1074/jbc.270.38.22223 pmid: 7673200
35 Ikeda Y, Fujii J, Taniguchi N, Meister A (1995). Expression of an active glycosylated human gamma-glutamyl transpeptidase mutant that lacks a membrane anchor domain. Proc Natl Acad Sci USA, 92(1): 126–130
https://doi.org/10.1073/pnas.92.1.126 pmid: 7816801
36 Ikeda Y, Taniguchi N (2005). Gene expression of gamma-glutamyltranspeptidase. Methods Enzymol, 401: 408–425
pmid: 16399400
37 Inoue M, Hiratake J, Suzuki H, Kumagai H, Sakata K (2000). Identification of catalytic nucleophile of Escherichia coli gamma-glutamyltranspeptidase by gamma-monofluorophosphono derivative of glutamic acid: N-terminal thr-391 in small subunit is the nucleophile. Biochemistry, 39(26): 7764–7771
https://doi.org/10.1021/bi000220p pmid: 10869181
38 Ishikawa T, Hasegawa S, Kasai T, Obata Y (1967). Changes in amino acid composition during germination of soybean Part IV Identification of α- and γ-glutamylaspartic acid. Agric Biol Chem, 31(4): 490–493
https://doi.org/10.1271/bbb1961.31.490
39 Isupov M N, Obmolova G, Butterworth S, Badet-Denisot M A, Badet B, Polikarpov I, Littlechild J A, Teplyakov A (1996). Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 A crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase. Structure, 4(7): 801–810
https://doi.org/10.1016/S0969-2126(96)00087-1 pmid: 8805567
40 Karkowsky A M, Bergamini M V W, Orlowski M (1976). Kinetic studies of sheep kidney gamma-glutamyl transpeptidase. J Biol Chem, 251(15): 4736–47437566
pmid: 7566
41 Kasai T, Ohmiya A, Sakamura S (1982). γ-Glutamyltranspeptidases in the metabolism of γ-glutamyl peptides in plants. Phytochemistry, 21(6): 1233–1239
https://doi.org/10.1016/0031-9422(82)80117-9
42 Kawasaki Y, Ogawa T, Sasaoka K (1982). Occurrence and some properties of a novel γ-glutamyl transpeptidase responsible for the synthesis of γ-L-glutamyl-D-alanine in pea seedlings. Biochim Biophys Acta, 716(2): 194–200
https://doi.org/10.1016/0304-4165(82)90268-9
43 Kean E A, Hare E R (1980). γ-Glutamyl transpeptidase of the ackee plant. Phytochemistry, 19(2): 194–203
https://doi.org/10.1016/S0031-9422(00)81960-3
44 Keillor J W, Castonguay R, Lherbet C (2005). Gamma-glutamyl transpeptidase substrate specificity and catalytic mechanism. Methods Enzymol, 401: 449–467
pmid: 16399402
45 Keillor J W, Menard A, Castonguay R, Lherbet C, Rivard C (2004). Pre-steady-state kinetic studies of rat kidney γ-glutamyl transpeptidase confirm its ping-pong mechanism. J Phys Org Chem, 17(67): 529–536
https://doi.org/10.1002/poc.777
46 Kim J H, Krahn J M, Tomchick D R, Smith J L, Zalkin H (1996). Structure and function of the glutamine phosphoribosylpyrophosphate amidotransferase glutamine site and communication with the phosphoribosylpyrophosphate site. J Biol Chem, 271(26): 15549–15557
https://doi.org/10.1074/jbc.271.26.15549 pmid: 8663035
47 Kim Y, Yoon K H, Khang Y, Turley S, Hol W G (2000). The 2.0 A crystal structure of cephalosporin acylase. Structure, 8(10): 1059–1068
https://doi.org/10.1016/S0969-2126(00)00505-0 pmid: 11080627
48 Kimura K, Itoh Y (2003). Characterization of poly-gamma-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of Bacillus subtilis encapsulated with poly-gamma-glutamate. Appl Environ Microbiol, 69(5): 2491–2497
https://doi.org/10.1128/AEM.69.5.2491-2497.2003 pmid: 12732513
49 Kimura K, Tran L S, Uchida I, Itoh Y (2004). Characterization of Bacillus subtilis gamma-glutamyltransferase and its involvement in the degradation of capsule poly-gamma-glutamate. Microbiology, 150(Pt 12): 4115–4123
https://doi.org/10.1099/mic.0.27467-0 pmid: 15583164
50 King J B, West M B, Cook P F, Hanigan M H (2009). A novel, species-specific class of uncompetitive inhibitors of γ-glutamyl transpeptidase. J Biol Chem, 284(14): 9059–9065
https://doi.org/10.1074/jbc.M809608200 pmid: 19203993
51 Kumar R S, Brannigan J A, Prabhune A A, Pundle A V, Dodson G G, Dodson E J, Suresh C G (2006). Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase. J Biol Chem, 281(43): 32516–32525
https://doi.org/10.1074/jbc.M604172200 pmid: 16905539
52 Lee D H, Ha M H, Kim J H, Christiani D C, Gross M D, Steffes M, Blomhoff R, Jacobs D R Jr (2003). Gamma-glutamyltransferase and diabetes—a 4 year follow-up study. Diabetologia, 46(3): 359–364
pmid: 12687334
53 Lee Y S, Kim H W, Park S S (2000). The role of alpha-amino group of the N-terminal serine of beta subunit for enzyme catalysis and autoproteolytic activation of glutaryl 7-aminocephalosporanic acid acylase. J Biol Chem, 275(50): 39200–39206
https://doi.org/10.1074/jbc.M002504200 pmid: 10991936
54 Leustek T, Martin M N, Bick J A, Davies J P (2000). Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol, 51(1): 141–165
https://doi.org/10.1146/annurev.arplant.51.1.141 pmid: 15012189
55 Lherbet C, Keillor J W (2004). Probing the stereochemistry of the active site of gamma-glutamyl transpeptidase using sulfur derivatives of l-glutamic acid. Org Biomol Chem, 2(2): 238–245
https://doi.org/10.1039/b310767a pmid: 14737648
56 Lherbet C, Keillor J W (2004). Probing the stereochemistry of the active site of gamma-glutamyl transpeptidase using sulfur derivatives of l-glutamic acid. Org Biomol Chem, 2(2): 238–245
https://doi.org/10.1039/b310767a pmid: 14737648
57 Li Y, Chen J, Jiang W, Mao X, Zhao G, Wang E (1999). In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130. Eur J Biochem, 262(3): 713–719
https://doi.org/10.1046/j.1432-1327.1999.00417.x pmid: 10411632
58 Lieberman M W, Wiseman A L, Shi Z Z, Carter B Z, Barrios R, Ou C N, Chévez-Barrios P, Wang Y, Habib G M, Goodman J C, Huang S L, Lebovitz R M, Matzuk M M (1996). Growth retardation and cysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc Natl Acad Sci USA, 93(15): 7923–7926
https://doi.org/10.1073/pnas.93.15.7923 pmid: 8755578
59 Lieberman M W, Wiseman A L, Shi Z Z, Carter B Z, Barrios R, Ou C N, Chévez-Barrios P, Wang Y, Habib G M, Goodman J C, Huang S L, Lebovitz R M, Matzuk M M (1996). Growth retardation and cysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc Natl Acad Sci USA, 93(15): 7923–7926
https://doi.org/10.1073/pnas.93.15.7923 pmid: 8755578
60 London R E, Gabel S A (2001). Development and evaluation of a boronate inhibitor of gamma-glutamyl transpeptidase. Arch Biochem Biophys, 385(2): 250–258
https://doi.org/10.1006/abbi.2000.2169 pmid: 11368005
61 L?we J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995). Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science, 268(5210): 533–539
https://doi.org/10.1126/science.7725097 pmid: 7725097
62 Martin M N, Slovin J P (2000). Purified gamma-glutamyl transpeptidases from tomato exhibit high affinity for glutathione and glutathione S-conjugates. Plant Physiol, 122(4): 1417–1426
https://doi.org/10.1104/pp.122.4.1417 pmid: 10759537
63 Mathew M W, Chen Y, Wickham S (2013). Novel insights into eukaryotic γ-glutamyl transpeptidase 1from the crystal structure of the glutamate-bound human enzyme. J Biol Chem, (In press)
64 Mayatepek E, Okun J G, Meissner T, Assmann B, Hammond J, Zschocke J, Lehmann W D (2004). Synthesis and metabolism of leukotrienes in gamma-glutamyl transpeptidase deficiency. J Lipid Res, 45(5): 900–904
https://doi.org/10.1194/jlr.M300462-JLR200 pmid: 14754911
65 Mehdi K, Thierie J, Penninckx M J (2001). gamma-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione. Biochem J, 359(Pt 3): 631–637
https://doi.org/10.1042/0264-6021:3590631 pmid: 11672438
66 Meister A (1973). On the enzymology of amino acid transport. Science, 180(4081): 33–39
https://doi.org/10.1126/science.180.4081.33 pmid: 4144403
67 Ménard A, Castonguay R, Lherbet C, Rivard C, Roupioz Y, Keillor J W (2001). Nonlinear free energy relationship in the general-acid-catalyzed acylation of rat kidney gamma-glutamyl transpeptidase by a series of gamma-glutamyl anilide substrate analogues. Biochemistry, 40(42): 12678–12685
https://doi.org/10.1021/bi011234d pmid: 11601992
68 Mesiter A, Anderson M E (1973). Glutathione. Annu Rev Biochem, 52(1): 711–760
https://doi.org/10.1146/annurev.bi.52.070183.003431
69 Michalska K, Brzezinski K, Jaskolski M (2005). Crystal structure of isoaspartyl aminopeptidase in complex with L-aspartate. J Biol Chem, 280(31): 28484–28491
https://doi.org/10.1074/jbc.M504501200 pmid: 15946951
70 Minami H, Suzuki H, Kumagai H (2003). A mutant Bacillus subtilis gamma-glutamyltranspeptidase specialized in hydrolysis activity. FEMS Microbiol Lett, 224(2): 169–173
https://doi.org/10.1016/S0378-1097(03)00456-7 pmid: 12892879
71 Minami H, Suzuki H, Kumagai H (2004). Gamma-glutamyltranspeptidase, but not YwrD, is important in utilization of extracellular glutathione as a sulfur source in Bacillus subtilis. J Biol Chem, 186: 1213–1214
72 Nakayama R, Kumagai H, Tochikura T (1984). Gamma-glutamyltranspeptidase from Proteus mirabilis: localization and activation by phospholipids. J Bacteriol, 160(3): 1031–1036
pmid: 6150026
73 Nemesánszky E, Lott J A (1985). Gamma-glutamyltransferase and its isoenzymes: progress and problems. Clin Chem, 31(6): 797–803
pmid: 2859933
74 Niederau C, Niederau M, Strohmeyer G, Bertling L, Sonnenberg A (1990). Does acute consumption of large alcohol amounts lead to pancreatic injury? A prospective study of serum pancreatic enzymes in 300 drunken drivers. Digestion, 45(2): 115–120
https://doi.org/10.1159/000200232 pmid: 1693581
75 Niida S, Kawahara M, Ishizuka Y, Ikeda Y, Kondo T, Hibi T, Suzuki Y, Ikeda K, Taniguchi N (2004). Gamma-glutamyltranspeptidase stimulates receptor activator of nuclear factor-kappaB ligand expression independent of its enzymatic activity and serves as a pathological bone-resorbing factor. J Biol Chem, 279(7): 5752–5756
https://doi.org/10.1074/jbc.M311905200 pmid: 14634009
76 Obrador E, Carretero J, Ortega A, Medina I, Rodilla V, Pellicer J A, Estrela J M (2002). Gamma-glutamyl transpeptidase overexpression increases metastatic growth of B16 melanoma cells in the mouse liver. Hepatology, 35(1): 74–81
https://doi.org/10.1053/jhep.2002.30277 pmid: 11786961
77 Oertli M, Noben M, Engler D B, Semper R P, Reuter S, Maxeiner J, Gerhard M, Taube C, Müller A (2013). Helicobacter pylori γ-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proc Natl Acad Sci USA, 110(8): 3047–3052
https://doi.org/10.1073/pnas.1211248110 pmid: 23382221
78 Ogawa Y, Hosoyama H, Hamano M, Motai H (1991). Purification and properties of gamma-glutamyltranspeptidase from Bacillus subtilis (natto). Agric Biol Chem, 55(12): 2971–2977
https://doi.org/10.1271/bbb1961.55.2971 pmid: 1371053
79 Okada T, Suzuki H, Wada K, Kumagai H, Fukuyama K (2006). Crystal structures of gamma-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate. Proc Natl Acad Sci USA, 103(17): 6471–6476
https://doi.org/10.1073/pnas.0511020103 pmid: 16618936
80 Okada T, Suzuki H, Wada K, Kumagai H, Fukuyama K (2006). Crystal structures of gamma-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate. Proc Natl Acad Sci USA, 103(17): 6471–6476
https://doi.org/10.1073/pnas.0511020103 pmid: 16618936
81 Okada T, Suzuki H, Wada K, Kumagai H, Fukuyama K (2007). Crystal structure of the gamma-glutamyltranspeptidase precursor protein from Escherichia coli. Structural changes upon autocatalytic processing and implications for the maturation mechanism. J Biol Chem, 282(4): 2433–2439
https://doi.org/10.1074/jbc.M607490200 pmid: 17135273
82 Ortega A L, Carretero J, Obrador E, Gambini J, Asensi M, Rodilla V, Estrela J M (2003). Tumor cytotoxicity by endothelial cells. Impairment of the mitochondrial system for glutathione uptake in mouse B16 melanoma cells that survive after in vitro interaction with the hepatic sinusoidal endothelium. J Biol Chem, 278(16): 13888–13897
https://doi.org/10.1074/jbc.M207140200 pmid: 12578841
83 Pei J, Grishin N V (2003). Peptidase family U34 belongs to the superfamily of N-terminal nucleophile hydrolases. Protein Sci, 12(5): 1131–1135
https://doi.org/10.1110/ps.0240803 pmid: 12717035
84 Pompella A, De Tata V, Paolicchi A, Zunino F (2006). Expression of gamma-glutamyltransferase in cancer cells and its significance in drug resistance. Biochem Pharmacol, 71(3): 231–238
https://doi.org/10.1016/j.bcp.2005.10.005 pmid: 16303117
85 Rawlings N D, Morton F R, Barrett A J (2006). MEROPS: the peptidase database. Nucleic Acids Res, 34(Suppl 1): D270–D272
https://doi.org/10.1093/nar/gkj089 pmid: 16381862
86 Saridakis V, Christendat D, Thygesen A, Arrowsmith C H, Edwards A M, Pai E F (2002). Crystal structure of Methanobacterium thermoautotrophicum conserved protein MTH1020 reveals an NTN-hydrolase fold. Proteins, 48(1): 141–143
https://doi.org/10.1002/prot.10147 pmid: 12012346
87 Scouller K, Conigrave K M, Macaskill P, Irwig L, Whitfield J B (2000). Should we use carbohydrate-deficient transferrin instead of gamma-glutamyltransferase for detecting problem drinkers? A systematic review and metaanalysis. Clin Chem, 46(12): 1894–1902
pmid: 11106319
88 Sharath B, Prabhune AA, Suresh CG, Wilkinson AJ, Brannigan JA (2010). Crystal structure of Gamma Glutamyl Transferase from Bacillus subtilis. Protein Data Bank deposit ID 2v36
89 Shaw L M, London J W, Fetterolf D, Garfinkel D (1977). Gamma-Glutamyltransferase: kinetic properties and assay conditions when gamma-glutamyl-4-nitroanilide and its 3-carboxy derivative are used as donor substrates. Clin Chem, 23(1): 79–8512882
pmid: 12882
90 Shaw L M, London J W, Petersen L E (1978). Isolation of gamma-glutamyltransferase from human liver, and comparison with the enzyme from human kidney. Clin Chem, 24(6): 905–91526481
pmid: 26481
91 Shaw L M, Str?mme J H, London J L, Theodorsen L (1983). International Federation of Clinical Chemistry. Scientific Committee, Analytical Section. Expert Panel on Enzymes. IFCC methods for measurement of enzymes. Part 4. IFCC methods for gamma-glutamyltransferase ((gamma-glutamyl)-peptide: amino acid gamma-glutamyltransferase, EC 2.3.2.2). IFCC Document, Stage 2, Draft 2, 1983-01 with a view to an IFCC Recommendation. Clin Chim Acta, 135(3): 315F–338F
pmid: 6141014
92 Sherwood R F, Melton R G, Alwan S M, Hughes P (1985). Purification and properties of carboxypeptidase G2 from Pseudomonas sp. strain RS-16. Use of a novel triazine dye affinity method. Eur J Biochem, 148(3): 447–453
https://doi.org/10.1111/j.1432-1033.1985.tb08860.x pmid: 3838935
93 Sian J, Dexter D T, Lees A J, Daniel S, Jenner P, Marsden C D (1994). Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol, 36(3): 356–361
https://doi.org/10.1002/ana.410360306 pmid: 8080243
94 Singh J C, Chander J, Singh S, Singh G, Atal C K (1986). gamma-Glutamyl transpeptidase: a novel biochemical marker in inflammation. Biochem Pharmacol, 35(21): 3753–3760
https://doi.org/10.1016/0006-2952(86)90660-X pmid: 2877669
95 Smith T K, Ikeda Y, Fujii J, Taniguchi N, Meister A (1995). Different sites of acivicin binding and inactivation of gamma-glutamyl transpeptidases. Proc Natl Acad Sci USA, 92(6): 2360–2364
https://doi.org/10.1073/pnas.92.6.2360 pmid: 7892271
96 Smith T K, Meister A (1994). Active deglycosylated mammalian gamma-glutamyl transpeptidase. FASEB J, 8(9): 661–664
pmid: 7911768
97 Storozhenko S, Belles-Boix E, Babiychuk E, Hérouart D, Davey M W, Slooten L, Van Montagu M, Inzé D, Kushnir S (2002). Gamma-glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, processing, and biochemical properties. Plant Physiol, 128(3): 1109–1119
https://doi.org/10.1104/pp.010887 pmid: 11891265
98 Stromme J H, Theodorsen L (1976). Gamma-glutamyltransferase: Substrate inhibition, kinetic mechanism, and assay conditions. Clin Chem, 22(4): 417–4213296
pmid: 3296
99 Suresh C G, Pundle A V, SivaRaman H, Rao K N, Brannigan J A, McVey C E, Verma C S, Dauter Z, Dodson E J, Dodson G G (1999). Penicillin V acylase crystal structure reveals new Ntn-hydrolase family members. Nat Struct Biol, 6(5): 414–416
https://doi.org/10.1038/8213 pmid: 10331865
100 Suzuki H, Hashimoto W, Kumagai H (1993). Escherichia coli K-12 can utilize an exogenous gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase is essential. J Bacteriol, 175(18): 6038–6040
pmid: 8104180
101 Suzuki H, Kumagai H (2002). Autocatalytic processing of gamma-glutamyltranspeptidase. J Biol Chem, 277(45): 43536–43543
https://doi.org/10.1074/jbc.M207680200 pmid: 12207027
102 Suzuki H, Kumagai H, Tochikura T (1986). Gamma-glutamyltranspeptidase from Escherichia coli K-12: formation and localization. J Bacteriol, 168(3): 1332–1335
pmid: 2877975
103 Suzuki H, Kumagai H, Tochikura T (1986). Gamma-glutamyltranspeptidase from Escherichia coli K-12: purification and properties. J Bacteriol, 168(3): 1325–1331
pmid: 2877974
104 Suzuki H, Miwa C, Ishihara S, Kumagai H (2004). A single amino acid substitution converts gamma-glutamyltranspeptidase to a class IV cephalosporin acylase (glutaryl-7-aminocephalosporanic acid acylase). Appl Environ Microbiol, 70(10): 6324–6328
https://doi.org/10.1128/AEM.70.10.6324-6328.2004 pmid: 15466585
105 Szasz G (1969). A kinetic photometric method for serum gamma-glutamyl transpeptidase. Clin Chem, 15(2): 124–136
pmid: 5773262
106 Takahashi H, Hirose K, Watanabe H (2004). Necessity of meningococcal gamma-glutamyl aminopeptidase for Neisseria meningitidis growth in rat cerebrospinal fluid (CSF) and CSF-like medium. J Bacteriol, 186(1): 244–247
https://doi.org/10.1128/JB.186.1.244-247.2004 pmid: 14679245
107 Takahashi H, Watanabe H (2004). Post-translational processing of Neisseria meningitidis gamma-glutamyl aminopeptidase and its association with inner membrane facing to the cytoplasmic space. FEMS Microbiol Lett, 234(1): 27–35
pmid: 15109716
108 Tanaka T O, Hirata T, Futamura K, et al (1993). Purification and characterization of poly (γ-glutamic acid) hydrolase from a filamentous fungus, Myrothecium sp. TM 4222. Biosci Biotechnol Biochem, 57(12): 2148–2153
https://doi.org/10.1271/bbb.57.2148
109 Taniguchi N, Ikeda Y (1998). gamma-Glutamyl transpeptidase: catalytic mechanism and gene expression. Adv Enzymol Relat Areas Mol Biol, 72: 239–278
pmid: 9559055
110 Tate S S, Meister A (1974). Interaction of gamma-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione. J Biol Chem, 249(23): 7593–7602
pmid: 4154944
111 Tate S S, Meister A (1974). Stimulation of the hydrolytic activity and decrease of the transpeptidase activity of gamma-glutamyl transpeptidase by maleate; identity of a rat kidney maleate-stimulated glutaminase and gamma-glutamyl transpeptidase. Proc Natl Acad Sci USA, 71(9): 3329–3333
https://doi.org/10.1073/pnas.71.9.3329 pmid: 4154442
112 Tate S S, Meister A (1977). Affinity labeling of gamma-glutamyl transpeptidase and location of the gamma-glutamyl binding site on the light subunit. Proc Natl Acad Sci USA, 74(3): 931–93515260
https://doi.org/10.1073/pnas.74.3.931 pmid: 15260
113 Tate S S, Meister A (1978). Serine-borate complex as a transition-state inhibitor of gamma-glutamyl transpeptidase. Proc Natl Acad Sci USA, 75(10): 4806–480933382
https://doi.org/10.1073/pnas.75.10.4806 pmid: 33382
114 Tate S S, Meister A (1985). gamma-Glutamyl transpeptidase from kidney. Methods Enzymol, 113: 400–419
pmid: 2868390
115 Thompson G A, Meister A (1977). Interrelationships between the binding sites for amino acids, dipeptides, and gamma-glutamyl donors in gamma-glutamyl transpeptidase. J Biol Chem, 252(19): 6792–679819479
pmid: 19479
116 Thompson G A, Meister A (1980). Modulation of gamma-glutamyl transpeptidase activities by hippurate and related compounds. J Biol Chem, 255(5): 2109–2113
pmid: 6101598
117 Thompson J D, Higgins D G, Gibson T J (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 22(22): 4673–4680
https://doi.org/10.1093/nar/22.22.4673 pmid: 7984417
118 Toller I M, Neelsen K J, Steger M, Hartung M L, Hottiger M O, Stucki M, Kalali B, Gerhard M, Sartori A A, Lopes M, Müller A (2011). Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc Natl Acad Sci USA, 108(36): 14944–14949
https://doi.org/10.1073/pnas.1100959108 pmid: 21896770
119 Volcani B E, Margalith P (1957). A new species (Flavobacterium polyglutamicum) which hydrolyzes the gamma-L-glutamyl bond in polypeptides. J Bacteriol, 74(5): 646–655
pmid: 13481004
120 Wada K, Irie M, Suzuki H, Fukuyama K (2010). Crystal structure of the halotolerant gamma-glutamyltranspeptidase from Bacillus subtilis in complex with glutamate reveals a unique architecture of the solvent-exposed catalytic pocket. FEBS J, 277(4): 1000–1009
https://doi.org/10.1111/j.1742-4658.2009.07543.x pmid: 20088880
121 Webb E C (1992). Enzyme Nomenclature 1992 Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes, International Union of Biochemistry and Molecular Biology. San Diego, Calif, USA: Academic Press, 6th edition
122 Whitfield J B (2001). Gamma glutamyl transferase. Crit Rev Clin Lab Sci, 38(4): 263–355
https://doi.org/10.1080/20014091084227 pmid: 11563810
123 Whitfield J B, Pounder R E, Neale G, Moss D W (1972). Serum-glytamyl transpeptidase activity in liver disease. Gut, 13(9): 702–708
https://doi.org/10.1136/gut.13.9.702 pmid: 4404786
124 Xu K, Strauch M A (1996). Identification, sequence, and expression of the gene encoding gamma-glutamyltranspeptidase in Bacillus subtilis. J Bacteriol, 178(14): 4319–4322
pmid: 8763966
125 Yamaguchi T, Takei N, Araki K, Ishii K, Nagano T, Ichikawa T, Kumanishi T, Nawa H (2000). Molecular characterization of a novel gamma-glutamyl transpeptidase homologue found in rat brain. J Biochem, 128(1): 101–106
https://doi.org/10.1093/oxfordjournals.jbchem.a022718 pmid: 10876163
126 Yao R, Schneider E, Ryan T J, Galivan J (1996). Human gamma-glutamyl hydrolase: cloning and characterization of the enzyme expressed in vitro. Proc Natl Acad Sci USA, 93(19): 10134–10138
https://doi.org/10.1073/pnas.93.19.10134 pmid: 8816764
127 Zhang H, Forman H J, Choi J (2005). Gamma-glutamyl transpeptidase in glutathione biosynthesis. Methods Enzymol, 401: 468–483
pmid: 16399403
[1] Karimeh Haghani, Pouyan Asadi, Gholamreza Taheripak, Ali Noori-Zadeh, Shahram Darabi, Salar Bakhtiyari. Association of mitochondrial dysfunction and lipid metabolism with type 2 diabetes mellitus: A review of literature[J]. Front. Biol., 2018, 13(6): 406-417.
[2] Soumya Nair, Sandra Suresh, Arya Kaniyassery, Panchami Jaya, Jayanthi Abraham. A review on melatonin action as therapeutic agent in cancer[J]. Front. Biol., 2018, 13(3): 180-189.
[3] Reza Talebi, Ahmad Ahmadi, Fazlollah Afraz. Construction of protein–protein interaction network based on transcriptome profiling of ovine granulosa cells during the sheep’s anestrus phase[J]. Front. Biol., 2018, 13(3): 215-225.
[4] Mahin Najafian, Yalda Jafrideh, Behnaz Ghazisaeidi. Effectiveness of fractional CO2 laser in women with stress urinary incontinence[J]. Front. Biol., 2018, 13(2): 145-148.
[5] Anupama Sharma, Renu Bist, Surender Singh. Thiamine deficiency perturbed energy metabolism enzymes in brain mitochondrial fraction of Swiss mice[J]. Front. Biol., 2017, 12(4): 290-297.
[6] Shipeng Shao, Lei Chang, Yingping Hou, Yujie Sun. Illuminating the structure and dynamics of chromatin by fluorescence labeling[J]. Front. Biol., 2017, 12(4): 241-257.
[7] Deanna H. Morris,Calvin K. Yip,Yi Shi,Brian T. Chait,Qing Jun Wang. Beclin 1-Vps34 complex architecture: Understanding the nuts and bolts of therapeutic targets[J]. Front. Biol., 2015, 10(5): 398-426.
[8] Annalisa Zecchin,Aleksandra Brajic,Peter Carmeliet. Targeting endothelial cell metabolism: new therapeutic prospects?[J]. Front. Biol., 2015, 10(2): 125-140.
[9] Lakshmi KELAMANGALATH, George M. SMITH. Neurotrophin treatment to promote regeneration after traumatic CNS injury[J]. Front Biol, 2013, 8(5): 486-495.
[10] Yiping WEN, Chen WANG, Sui HUANG. The perinucleolar compartment associates with malignancy[J]. Front Biol, 2013, 8(4): 369-376.
[11] Lijun WANG, Marit NILSEN-HAMILTON. Biomineralization proteins: from vertebrates to bacteria[J]. Front Biol, 2013, 8(2): 234-246.
[12] Elham DAVOUDI-DEHAGHANI, Ali Mohammad FOROUGHMAND, Babak SAFFARI, Massoud HOUSHMAND, Hamid GALEHDARI, Mehdi SHAFA SHARIAT PANAHI, Majid YAVARIAN, Mohammad Hossein SANATI, Somayeh TORFI. Mitochondrial DNA sequence diversity in three ethnic populations from the South-west Iran: a preliminary study[J]. Front Biol, 2011, 6(5): 422-432.
[13] Julhash U. KAZI. The mechanism of protein kinase C regulation[J]. Front Biol, 2011, 6(4): 328-336.
[14] Sharangdhar S. PHATAK, Hoang T. TRAN, Shuxing ZHANG. Novel computational biology methods and their applications to drug discovery[J]. Front Biol, 2011, 6(4): 289-299.
[15] Afsar U. AHMED. An overview of inflammation: mechanism and consequences[J]. Front Biol, 2011, 6(4): 274-281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed