Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (3) : 330-337    https://doi.org/10.1007/s12200-011-0220-3
RESEARCH ARTICLE
High accuracy numerical solutions for band structures in strained quantum well semiconductor optical amplifiers
Xi HUANG, Cui QIN, Xinliang ZHANG()
Wuhan National Laboratory for Optoelectronics, College of Optoelectonic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(353 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we have calculated the band structure of strained quantum well (QW) semiconductor optical amplifiers (SOAs) by using plane wave expansion method (PWEM) and finite difference method (FDM), respectively. The difference between these two numerical methods is presented. First, the solution of Schr?dinger’s equation in a conduction band for parabolic potential well is used to check the validity and accuracy of these two numerical methods. For the PWEM, its stability and computational speed are investigated as a function of the number of plane waves and the period of QW. For FDM, effects of mesh size and QW width on its accuracy and calculation time are discussed. Finally, we find that the computational speed of FDM generally is faster than that of PWEM. However, the PWEM is more efficient than the FDM when wider SOAs are needed to be calculated. Therefore, to obtain high accuracy and efficient numerical solutions for band structures, numerical methods should be selected depending on required accuracy, device structure and further applications.

Keywords semiconductor optical amplifier      quantum well devices      plane wave expansion method      finite difference method     
Corresponding Author(s): ZHANG Xinliang,Email:xlzhang@mail.hust.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Xi HUANG,Cui QIN,Xinliang ZHANG. High accuracy numerical solutions for band structures in strained quantum well semiconductor optical amplifiers[J]. Front Optoelec Chin, 2011, 4(3): 330-337.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0220-3
https://academic.hep.com.cn/foe/EN/Y2011/V4/I3/330
Fig.1  The lowest four confined eigenenergies of a finite parabolic quantum well, black lines from bottom to top: the lowest four confined eigenenergies, blue line: parabolic potential
FDMPWEMaccurate solution
nEn/eVEn/(2E1)En/eVEn/(2E1)En/eVEn/(2E1)
10.1184880.5000.1181690.5000.1182090.500
20.3555271.5000.3545891.5000.3546291.500
30.5925252.5000.5910092.5000.5910492.500
40.8294823.5000.8274293.5010.8274693.500
51.0664004.4991.0638494.5011.0638894.500
61.3032775.4991.3002695.5011.3003095.500
71.5401146.4981.5366896.5021.5367296.500
81.7769107.4981.7731097.5021.7731497.500
92.0136668.4972.0095298.5022.0095698.500
102.2503829.4962.2459499.5032.2459899.500
Tab.1  Convergence test of two numerical methods at г point
Fig.2  Percentage error in the first ten eigenenergies solved by two numerical methods
Fig.3  CPU time with two different numerical methods as a function of parabolic quantum well period
Fig.4  Rectangular potential well and the first two wavefunctions in conduction band. (a) FDM method; (b) PWEM method (solid line: the first sub-band in the conduction, dotted line: the second sub-band)
Fig.5  Envelope wavefunction for HH1 sub-band of rectangular potential well with different numerical methods. HH is heavy hole sub-band, LH is light hole sub-band, SO is spin-orbit sub-band. (a) FDM method; (b) PWEM method
Fig.6  Energy dispersions in conduction band (a) and valence band (b) solved by two different numerical methods, inset (a1): the detail of conduction band
Fig.7  Percentage error in the first eigenenergy (compared with analytic solution) as a function of quantum well period (a), the number of plane waves (b) and mesh size (c), respectively
1 Huang X, Qin C, Huang D X, Zhang X L. Local carrier recovery acceleration in quantum well semiconductor optical amplifiers. IEEE Journal of Quantum Electronics , 2010, 46(10): 1047-1013
doi: 10.1109/JQE.2010.2047713
2 Meuer C, Schmidt-Langhorst C, Schmeckebier H, Fiol G, Arsenijevi? D, Schubert C, Bimberg D. 40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier. Optics Express , 2011, 19(4): 3788-3798
doi: 10.1364/OE.19.003788 pmid:21369203
3 Meuer C, Schmidt-Langhorst C, Bonk R, Schmeckebier H, Arsenijevi? D, Fiol G, Galperin A, Leuthold J, Schubert C, Bimberg D. 80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering. Optics Express , 2011, 19(6): 5134-5142
doi: 10.1364/OE.19.005134 pmid:21445148
4 Tan G L, Xu J M. Modeling of gain, differential gain, index change, and linewidth enhancement factor for strain-compensated QW’s. IEEE Photonics Technology Letters , 1998, 10(10): 1386-1388
doi: 10.1109/68.720269
5 Chang C S, Chuang S L, Lien C S. Modeling of strained quantum-well lasers with spin-orbit coupling. IEEE Journal on Selected Topics in Quantum Electronics , 1995, 1(2): 218-229
doi: 10.1109/2944.401200
6 Liu Y, Tangdiongga E, Li Z, de Waardt H, Koonen A M J, Khoe G D, Shu X W, Bennion I, Dorren H J S. Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier. Journal of Lightwave Technology , 2007, 25(1): 103-108
doi: 10.1109/JLT.2006.888484
7 Liu Y, Tangdiongga E, Li Z, Zhang S X, de Waardt H, Khoe G D, Dorren H J S. Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter. Journal of Lightwave Technology , 2006, 24(1): 230-236
doi: 10.1109/JLT.2005.861136
8 Dong J J, Zhang X L, Xu J, Huangg D X. 40 Gb/s all-optical logic NOR and OR gates using a semiconductor optical amplifier: experimental demonstration and theoretical analysis. Optics Communications , 2008, 281(6): 1710-1715
9 M?rk J, Mecozzi A. Response function for gain and refractive index dynamics in active semiconductor waveguides. Applied Physics Letters , 1994, 65(14): 1736-1738
doi: 10.1063/1.112900
10 Nielsen M L, M?rk J, Suzuki R, Sakaguchi J, Ueno Y. Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches. Optics Express , 2006, 14(1): 331-347
doi: 10.1364/OPEX.14.000331 pmid:19503347
11 Yamanaka T, Yoshikuni Y, Yokoyama K, Lui W, Seki S. Theoretical study on enhanced differential gain and extremely reduced linewidth enhancement factor in quantum-well lasers. IEEE Journal of Quantum Electronics , 1993, 29(6): 1609-1616
doi: 10.1109/3.234412
12 Harrison P. Quantum wells, wires, and dots. Theoretical and Computational Physics . West Sussex, UK: John Wiley & Sons, 2001
13 Chuang S L. Physics of Optoelectronic Devices. New York: Wiley-Interscience, 1995
14 Chao C Y P, Chuang S L. Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells. Physical Review B: Condensed Matter and Materials Physics , 1992, 46(7): 4110-4122
doi: 10.1103/PhysRevB.46.4110 pmid:10004141
[1] Zhefeng HU, Jianhui XU, Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay[J]. Front. Optoelectron., 2017, 10(2): 180-188.
[2] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[3] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[4] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[5] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[6] Claudio PORZI, Giovanni SERAFINO, Sergio PINNA, An NGUYEN, Giampiero CONTESTABILE, Antonella BOGONI. Review on SOA-MZI-based photonic add/drop and switching operations[J]. Front Optoelec, 2013, 6(1): 67-77.
[7] Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
[8] Ehsan MOHADESRAD, Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
[9] Hussein TALEB, Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 445-456.
[10] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
[11] Duan LIU, Songnian FU, Ming TANG, Ping SHUM, Deming LIU. Rayleigh backscattering noise in single-fiber loopback duplex WDM-PON architecture[J]. Front Optoelec, 2012, 5(4): 435-438.
[12] Xuelin YANG, Cen WU, Weisheng HU. High-speed optical binary data pattern recognition for network security applications[J]. Front Optoelec, 2012, 5(3): 271-278.
[13] Yin ZHANG, Jianji DONG, Lei LEI, Hao HE, Xinliang ZHANG. 40-Gbit/s 3-input all-optical priority encoder based on cross-gain modulation in two parallel semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(2): 195-199.
[14] Xiaofan ZHAO, Caiyun LOU, Yanming FENG. Optical signal processing based on semiconductor optical amplifier and tunable delay interferometer[J]. Front Optoelec Chin, 2011, 4(3): 308-314.
[15] Enming XU, Peili LI, Fei WANG, Jianfei GUAN. Microwave photonic filters based on optical semiconductor amplifier[J]. Front Optoelec Chin, 2011, 4(3): 270-276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed