Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2018, Vol. 11 Issue (4) : 385-393    https://doi.org/10.1007/s12200-018-0822-0
RESEARCH ARTICLE
Luminescent disordered nanostructures: synthesis and characterization of CdSe nano-agglomerates
Ruiqing HU, Yifeng SHI, Haifeng BAO()
School of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China
 Download: PDF(381 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A disorderly nanostructured CdSe nano-agglomerates (NAs) with tunable emission are synthesized in aqueous solution. Although the CdSe NAs have diameters of about 20 nm that are larger than the Bohr radius of the crystal bulk, they show size-dependent emission similar to the CdSe nanocrystals. The CdSe NAs represent a collective energy state based on Anderson localization.

Keywords nano-agglomerates      CdSe      photoluminescence     
Corresponding Author(s): Haifeng BAO   
Just Accepted Date: 07 June 2018   Online First Date: 07 August 2018    Issue Date: 21 December 2018
 Cite this article:   
Ruiqing HU,Yifeng SHI,Haifeng BAO. Luminescent disordered nanostructures: synthesis and characterization of CdSe nano-agglomerates[J]. Front. Optoelectron., 2018, 11(4): 385-393.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-018-0822-0
https://academic.hep.com.cn/foe/EN/Y2018/V11/I4/385
Fig.1  Typical TEM images of as-prepared CdSe NAs (a, b, c) with ED pattern shown in the inset of (c), the size and corresponding PL of (a), (b), (c) is 17 nm (520 nm), 22 nm (581 nm), 25 nm (630 nm), respectively. The inset pictures also show size-dependent change of the PL color of colloidal solutions of CdSe NAs upon UV-excitation (365 nm)
Fig.2  XPS spectra (up) and the WAXD diffractograms (down) of CdSe NAs, which the PL emission peak is 596 nm (a) and 532 nm (b)
Fig.3  Schematic model for the formation of CdSe NAs. I, pH= 10, 100°C; II, CdSe cluster coagulated to form NAs
Fig.4  (a) Temporal evolution of the absorption spectra of the CdSe NAs. (b) Enhancement of PL intensity upon aging at room temperature every 24 h (from the bottom up), lex = 390 nm. (c) Room temperature PL and PLE spectra of CdSe NAs ( 17 nm (green), 22 nm (yellow) and 25 nm (orange)). (D) For a CdSe NAs sample, (lex = 337 nm, lem = 566 nm), the PL decayed with a lifetime of 8.4 ns. The PL decay is fitted exponentially. Here, ex, excitation spectrum; em, emission spectrum
Fig.5  (a) Mott-CFO model proposed for density of states in bulk disordered semiconductor, the localized states which are shown shaded are separated from the non-localized states by mobility edges in the conduction band (EC) and the valance band (EV). (b) In the case of nanoscale disordered semiconductor, the localized states become discrete because of quantum confinement; upon photo-excitation an electron transmit from the highest occupied localized state to the unoccupied localized states, and the recombination lead to a photon emission. EF is the Fermi energy level
Fig.6  Typical TEM images of the as-prepared dispersive NAs (a) and NAs mass (b), the ED patterns of them show notable difference (c is the dispersive NAs and d is the NAs mass)
Fig.7  Room temperature UV-Vis absorption spectra (a), PL and PLE spectra (b) and PL lifetime (c) of four samples, which are dispersive NAs (black line), added ligand PTBT and heated for 1 h (red line), 4 h (green line) and 26 h (blue line), respectively. All the samples are in aqueous solution, and the PL lifetimes are recorded at 566 nm (lex = 337 nm). The last image is size-dependent change of the photoluminescence color of CdSe NAs mass deposited in the cavities on glass slide upon UV- excitation (365 nm)
1 A PAlivisatos. Perspectives on the physical chemistry of semiconductor nanocrystals. Journal of Physical Chemistry, 1996, 100(31): 13226–13239
https://doi.org/10.1021/jp9535506
2 MNirmal, L E Brus. Luminescence photophysics in semiconductor nanocrystals. Accounts of Chemical Research, 1999, 32(5): 407–414
https://doi.org/10.1021/ar9700320
3 MMaillard, L Motte, A TNgo, M PPileni. Rings and hexagons made of nanocrystals: a marangoni effect. Journal of Physical Chemistry B, 2000, 104(50): 11871–11877
https://doi.org/10.1021/jp002605n
4 YYang, O Chen, AAngerhofer, Y CCao. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. Journal of the American Chemical Society, 2006, 128(38): 12428–12429
https://doi.org/10.1021/ja064818h pmid: 16984188
5 DKovalev, H Heckler, GPolisski, FKoch. Optical properties of Si nanocrystals. Physica Status Solidi, 1999, 215(2): 871–932
https://doi.org/10.1002/(SICI)1521-3951(199910)215:2<871::AID-PSSB871>3.0.CO;2-9
6 LQu, W W Yu, X Peng.In situ observation of the nucleation and growth of CdSe nanocrystals. Nano Letters, 2004, 4(3): 465–469
https://doi.org/10.1021/nl035211r
7 W C WChan, SNie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016–2018
https://doi.org/10.1126/science.281.5385.2016 pmid: 9748158
8 C BMurray, D J Norris, M G Bawendi. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715
https://doi.org/10.1021/ja00072a025
9 C BMurray, C Kagan, M GBawendi. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Research, 2000, 30(1): 545–610
10 K KSadasivuni, AKafy, L Zhai, H UKo, SMun, J Kim. Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small, 2015, 11(8): 994–1002
https://doi.org/10.1002/smll.201402109 pmid: 25293649
11 RChristopher Doty , HYu , C Shih , BKorgel . Temperature-dependent electron transport through silver nanocrystal superlattices. Journal of Physical Chemistry B, 2015, 105(35): 8291–8296
12 CStephen, F Stephen, KBrian, FDonald. Time-resolved small-angle X-ray scattering studies of nanocrystal superlattice self-assembly. Journal of the American Chemical Society, 2015, 120(12): 2969–2970
13 TJia, A Kolpin, CMa, R CChan, W MKwok, S CTsang. A graphene dispersed CdS-MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water. Chemical Communications, 2014, 50(10): 1185–1188
https://doi.org/10.1039/C3CC47301E pmid: 24326768
14 M VArtemyev, A I Bibik, L I Gurinovich, S V Gaponenko, H Jaschinski, UWoggon. Optical properties of dense and diluted ensembles of semiconductor quantum dots. Physica Status Solidi, 2001, 224(2): 393–396
https://doi.org/10.1002/1521-3951(200103)224:2<393::AID-PSSB393>3.0.CO;2-F
15 M VArtemyev, U Woggon, HJaschinski, L IGurinovich, S VGaponenko. Spectroscopic study of electronic states in an ensemble of closeccacked CdSe nanocrystals. Journal of Physical Chemistry B, 2000, 104(49): 11617–11621
https://doi.org/10.1021/jp002085w
16 J PGe, Y D Li, G Q Yang. Mechanism of aqueous ultrasonic reaction: controlled synthesis, luminescence properties of amorphous cluster and nanocrystalline CdSe. Chemical Communications, 2002, 17(17): 1826–1827
https://doi.org/10.1039/b203230a pmid: 12271628
17 X DMa, X F Qian, J Yin, H AXi, Z KZhu. Preparation and characterization of polyvinyl alcohol-capped CdSe nanoparticles at room temperature. Journal of Colloid and Interface Science, 2002, 252(1): 77–81
https://doi.org/10.1006/jcis.2002.8377 pmid: 16290764
18 JZhu, S Xu, HWang, JZhu, H. ChenSonochemical synthesis of CdSe hollow spherical assemblies via an in-situ template route. Advanced Materials, 2003, 15 (2):156–159
19 N FMott, E A Davis. Electronic Processes. In: Non-Crystalline Materials. 2nd Edition, Oxford: Clarendon Press, 1979
20 P WAnderson. Absence of diffusion in certain random lattices. Physical Review, 1958, 109(5): 1492–1505
https://doi.org/10.1103/PhysRev.109.1492
21 L WZhong, A H Steven, V Igor, L WRobert, BJames, D ENeal, B AKathy. Superlattices of self-assembled tetrahedral Ag nanocrystals. Advanced Materials, 2010, 10(10): 808–812
22 QMa, R Xiong, Y MHuang. Tunable photoluminescence of porous silicon by liquid crystal infiltration. Journal of Luminescence, 2011, 131(10): 2053–2057
https://doi.org/10.1016/j.jlumin.2011.04.049
23 ISwart, P Liljeroth, DVanmaekelbergh. Scanning probe microscopy and spectroscopy of colloidal semiconductor nanocrystals and assembled structures. Chemical Reviews, 2016, 116(18): 11181–11219
https://doi.org/10.1021/acs.chemrev.5b00678 pmid: 26900754
[1] Santosh K. GUPTA, Yuanbing MAO. Recent advances, challenges, and opportunities of inorganic nanoscintillators[J]. Front. Optoelectron., 2020, 13(2): 156-187.
[2] Yanxiong E,Zhibiao HAO,Jiadong YU,Chao WU,Lai WANG,Bing XIONG,Jian WANG,Yanjun HAN,Changzheng SUN,Yi LUO. Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE[J]. Front. Optoelectron., 2016, 9(2): 318-322.
[3] E. KASPER, M. OEHME, J. WERNER, T. AGUIROV, M. KITTLER. Direct band gap luminescence from Ge on Si pin diodes[J]. Front Optoelec, 2012, 5(3): 256-260.
[4] Yijie HUO, Hai LIN, Robert CHEN, Yiwen RONG, Theodore I. KAMINS, James S. HARRIS. MBE growth of tensile-strained Ge quantum wells and quantum dots[J]. Front Optoelec, 2012, 5(1): 112-116.
[5] Zhongwei SHI, Lirong HUANG, Yi YU, Peng TIAN, Hanchao WANG. Influence of V/III ratio on QD size distribution[J]. Front Optoelec Chin, 2011, 4(4): 364-368.
[6] Caixia SONG, Yuwei SUN, Yaohua XU, Debao WANG. Synthesis and optical property of ZnO nano-/micro-rods[J]. Front Optoelec Chin, 2011, 4(2): 156-160.
[7] Youbao NI, Haixin WU, Mingsheng MAO, Chen LIN, Ganchao CHENG, Zhenyou WANG. Synthesis and growth of nonlinear infrared crystal material CdSe via seeded oriented temperature gradient solution zoning method[J]. Front Optoelec Chin, 2011, 4(2): 141-145.
[8] Pijus Kanti SAMANTA, Partha Roy CHAUDHURI. Substrate effect on morphology and photoluminescence from ZnO monopods and bipods[J]. Front Optoelec Chin, 2011, 4(2): 130-136.
[9] Jieying KONG, Bin LIU, Rong ZHANG, Zili XIE, Yong ZHANG, Xiangqian XIU, Youdou ZHENG. Optical properties of InN films grown by MOCVD[J]. Front Optoelec Chin, 2008, 1(3-4): 341-344.
[10] Guoliang LIU, Jianghong YAO, Jingjun XU, Zhanguo WANG. Temperature dependence of photoluminescence of QD arrays[J]. Front Optoelec Chin, 2008, 1(3-4): 258-262.
[11] JIA Guozhi, YAO Jianghong, SHU Yongchun, WANG Zhanguo. Optical properties and structure of InAs quantum dots in near-infrared band[J]. Front. Optoelectron., 2008, 1(1-2): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed