Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (2) : 156-187    https://doi.org/10.1007/s12200-020-1003-5
REVIEW ARTICLE
Recent advances, challenges, and opportunities of inorganic nanoscintillators
Santosh K. GUPTA1, Yuanbing MAO2()
1. Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
2. Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
 Download: PDF(4241 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This review article highlights the exploration of inorganic nanoscintillators for various scientific and technological applications in the fields of radiation detection, bioimaging, and medical theranostics. Various aspects of nanoscintillators pertaining to their fundamental principles, mechanism, structure, applications are briefly discussed. The mechanisms of inorganic nanoscintillators are explained based on the fundamental principles, instrumentation involved, and associated physical and chemical phenomena, etc. Subsequently, the promise of nanoscintillators over the existing single-crystal scintillators and other types of scintillators is presented, enabling their development for multifunctional applications. The processes governing the scintillation mechanisms in nanodomains, such as surface, structure, quantum, and dielectric confinement, are explained to reveal the underlying nanoscale scintillation phenomena. Additionally, suitable examples are provided to explain these processes based on the published data. Furthermore, we attempt to explain the different types of inorganic nanoscintillators in terms of the powder nanoparticles, thin films, nanoceramics, and glasses to ensure that the effect of nanoscience in different nanoscintillator domains can be appreciated. The limitations of nanoscintillators are also highlighted in this review article. The advantages of nanostructured scintillators, including their property-driven applications, are also explained. This review article presents the considerable application potential of nanostructured scintillators with respect to important aspects as well as their physical and application significance in a concise manner.

Keywords scintillators      nanoscintillators      inorganic      photoluminescence      radioluminescence     
Corresponding Author(s): Yuanbing MAO   
Just Accepted Date: 26 March 2020   Online First Date: 27 May 2020    Issue Date: 21 July 2020
 Cite this article:   
Santosh K. GUPTA,Yuanbing MAO. Recent advances, challenges, and opportunities of inorganic nanoscintillators[J]. Front. Optoelectron., 2020, 13(2): 156-187.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1003-5
https://academic.hep.com.cn/foe/EN/Y2020/V13/I2/156
Fig.1  Instrumental setup involved in the scintillation process
Fig.2  Schematic depicting the various stages involved in scintillation [9]. Copyright 2010. Reproduced with permission from Elsevier
Fig.3  (a) Mechanism of scintillation in inorganic crystals and (b) emission spectra of three typical inorganic scintillators with and without activators [22]. Copyright 2013. Reproduced with permission from Springer
nanocrystalline @ 50-keV X-rays single crystal @ 662-keV gamma rays
sample name (abbreviation) formula crystallite size /nm relative intensity (%BGO) between 300 and 400 nm relative intensity (%BGO) between 200 and 1000 nm formula luminosity (photons/MeV) relative luminosity (%BGO) between 200 and 1000 nm
BGO Bi4Ge3O12 20 100 100 Bi4Ge3O12 7200 100
Y3Al5O12 (undoped) 12190 149
YAG Y3Al5O12 80 491 30 Y3Al5O12:Pr (0.08%) 14700 180
YAG:Pr (1%) Y3Al5O12:Pr 80 3414 141 Y3Al5O12:Pr (0.1%) 19440 270
YAG:Pr (0.75%) Y3Al5O12:Pr 80 2620 118 Y3Al5O12:Pr (0.16%) 13770 131
YAG:Pr (1.25%) Y3Al5O12:Pr 80 2660 98 Y3Al5O12:Pr (0.24%) 15500 190
YAG:Pr (1%)@ SiO2 Y3Al5O12:Pr@SiO2 120 855 42 Y3Al5O12:Pr (0.25%) 16000 222
YAG:Pr (1.5%) Y3Al5O12:Pr 90 2960 120 Y3Al5O12:Pr (0.33%) 15610 216
YAG:Pr (1.75%) Y3Al5O12:Pr 90 2620 94 Y3Al5O12:Pr (0.6%) 11600 140
Y3Al5O12:Pr (0.65%) 14670 203
Y3Al5O12:Pr (0.8%) 8000 111
LSAO:Pr (0.5%) (La,Sr)AlO4:Pr 190 4 9 (La,Sr)AlO4:Pr - -
GSO:Ce (10%) Gd2Si2O7:Ce (10%) 120 782 41 Gd2Si2O7:Ce 12500 174
GYGAG:Pr (1%)Gd (Gd0.7,Y0.3)3(Al0.5,Ga0.5)5O12:Pr (1%) 100 255 116 (Gd,Y)3A5O12:Pr (1%) - -
GYGAG:Pr (1%)Ga (Gd0.5,Y0.5)3(Al0.3,Ga0.7)5O12:Pr (1%) 100 1220 49 Y3(Ga,Al)5O12:Pr (1%) - -
LYSO:Pr (1%)CR (Lu,Y)2SiO5 (1%) 90 350 65 (Lu,Y)2SiO5:Ce (LYSO) 27000 375
LYSO:Pr (1%)SP (Lu,Y)2SiO5 (1%) 20 44 29 Lu1.8Y0.2SiO5:Ce (LYSO) 34000 472
BaF2 BaF2 50 78 3 BaF2 single crystal 3900/10000 54/139
Tab.1  Comparison of the RL intensity of NCSs and BSCs [82]. Copyright 2014. Reproduced with permission from Elsevier
Fig.4  Emission spectra of the Eu3+-doped (a) bulk and (b) nanosized Y2Sn2O7 [110]. Copyright 2013. Reproduced with permission from Elsevier. (c) Emission spectra of the Eu3+-doped bulk and nanosized Gd2O3 [101]. Copyright 2010. Reproduced with permission from IEEE
Fig.5  De-excitation process of nanosized and bulk crystals under the influence of crystal field fluctuation [101]. Copyright 2010. Reproduced with permission from IEEE
Fig.6  RL spectra of (a) the LuAG:Ce:Tb powder and (b) single crystals [111]. Copyright 2011. Reproduced with permission from Elsevier
Fig.7  RL spectra of (a) the La2Zr2O7:Eu3+ NPs [126] (Copyright 2011. Reproduced with permission from Elsevier), (b) Gd2O3:Eu3+ [127] (Copyright 2013. Reproduced with permission from the Department of Materials Science and Engineering,?University?of?Florida,?Gainesville,?Florida and (c) the BaF2:Ce3+ NPs [127] (Copyright 2013. Reproduced with permission from the Department of Materials Science and Engineering,?University?of?Florida,?Gainesville,?Florida)
Fig.8  RL spectra of the (a) Gd2O2S:Eu3+ NPs [123] (Copyright 2011. Reproduced with permission from the Royal Society of Chemistry), (b) LaF3:Eu3+ NPs [128] (Copyright 2010. Reproduced with permission from IEEE), (c) BaF3:Ce NPs [128] (Copyright 2010. Reproduced with permission from IEEE), and (d) HfO2 NPs [137] (Copyright 2017. Reproduced with permission from the Japan Society of Applied Physics)
Fig.9  Scintillation output of the quantum dot nanoporous glass composites under (a) a and (b) γ irradiation. Both the pulse height spectra were corrected from the background radiation. A Gaussian fit of the 59-keV line of americium-241 shown in the inset indicates an experimental energy resolution DE/E of 15% at this energy [146] (Copyright 2006. Reproduced with permission from the American Chemical Society). (c) Scintillation temporal behavior of (n-C6H13NH3)2PbI4 measured with the streak camera and fitted with the sum of two or one exponential decays [147] (Copyright 2014. Reproduced with permission from the Japan Society of Applied Physics)
Fig.10  Band energy diagrams of the CdSe/ZnS, CdSe/ZnSe/ZnS, and CdSe/CdS/ZnS nanocrystals [154]. Copyright 2010. Reproduced with permission from PCCP Owner Societies
Fig.11  RL spectra of the (a) La2Hf2O7:Pr3+ NPs [36] (Copyright 2018. Reproduced with permission from Royal Society of Chemistry), (b) La2Hf2O7:Eu3+ NPs [40] (Copyright 2017. Reproduced with permission from Elsevier), and (c) La2Hf2O7:Ce3+ bulk microcrystalline powder [159] (Copyright 2012. Reproduced with permission from Elsevier)
Fig.12  RL spectra of the (a) LaF3:Eu, (b) BaF2:Ce, and (c) CaF2:Eu nanoscintillators [5]. Copyright 2011. Reproduced with permission from Hindawi
Fig.13  RL spectra of the (a) PMMA:Gd3Ga3Al2O12:Ce (GGAG:Ce) film under different X-ray tube voltages [165] (Copyright 2017. Reproduced with permission from the American Chemical Society), (b) BaF2 NPs:polystyrene film having different NP sizes [166] (Copyright 2016. Reproduced with permission from Elsevier), and (c) SrF2 NPs:polystyrene film having different NP sizes. Curve 7 represents the spectrum of the SrF2 microcrystalline powder pellet having the same thickness as the film [167] (Copyright 2017. Reproduced with permission from Elsevier)
Fig.14  (a) Synthesis of Hf–MOF and Zr–MOF and (b) X-ray-induced generation of fast photoelectrons from heavy Hf and Zr metals followed by the scintillation of the anthracene-based linkers in the visible spectrum [31]. Copyright 2014. Reproduced with permission from the American Chemical Society
Fig.15  RL signals of the Hf–MOF, Zr–MOF, and control samples (from left to right): HfO2 and ZrO2 colloidal NPs, H2L alone, H2L+ HfO2 colloid, H2L+ ZrO2 colloid, Hf–MOF, and Zr–MOF. The concentration of H2L, Hf, or Zr in the samples is 1.2 mM. The X-ray dosages are 1 Gy/10 s with an effective X-ray energy of ~18.9 keV (40-kV tube voltage and 0.08-mA tube current) and a detection gain of 200. (b) RL signals of Hf–MOF and Zr–MOF with different concentrations and radiation tube voltages [31]. Copyright 2014. Reproduced with permission from the American Chemical Society
Fig.16  (a) RL spectra of the BaF2 NPs having different sizes [174] (Copyright 2014. Reproduced with permission from AIP), (b) RL spectra of the CaF2 NPs having different sizes [186] (Copyright 2012. Reproduced with permission from AIP), and (c) RL spectra of the LuPO4:Ce NPs [188] (Copyright 2014. Reproduced with permission from Elsevier)
Fig.17  (a) Schematic of a typical RLM setup using a 500-mm CdWO4 scintillator (left) and a 10-mm Lu2O3:Eu scintillator (right). (b) Comparison of the sensitivities of the Lu2O3:Eu and CdWO4 scintillators [191]. Copyright 2015. Reproduced with permission from Elsevier
Fig.18  Beta RL spectra of transparent 5% Eu-doped Lu2O3 ceramic compared with the Tb-doped glass scintillator along with their integral light yields [194]. Copyright 2010. Reproduced with permission from Elsevier
Fig.19  RL spectra of (a) phosphate glass and (b) lead phosphate glass [195].
Fig.20  RL spectra of the Tb3+-doped Na5Gd9F32 GC scintillators. The inset shows the dependence of the PL and XEL intensities on the Tb3+ concentration [201]. Copyright 2018. Reproduced with permission from the Optical Society of America
Fig.21  (a) γ and α energy spectra derived from the 133Ba and 241Am isotopes, respectively, attenuated through 3.7-cm air by irradiating a 1 cm × 1 cm thin composite assembly of para-MEH–PPV and PbSe NPs. The spectra were obtained for various durations, as shown in the legend. The inset shows a TEM micrograph of PbSe NPs under assembly. (b) Typical 133Ba spectra derived from a thin detector in which the Pb and Se X-ray escape peaks are prominent [202]
year Nanoparticle size nanoparticle concentration photosensitizer X-ray energy biological model
2008 LaF3:Tb3+ 15 nm 0.035 M* Meso-tetra (4-carboxyphenyl) porphine (MTCP) 120 keV N/A
2010 ZnO nanorods (NRs) 0.5 mm N/A P rotoporphyrin dimethyl ester (PPDME) N/A T47D cells
2011 Y2O3 12 nm 2.5–95 mg/mL Psoralen 2 Gy, 160 or 320 kVp PC3 cells
2011 Gd2O2S:Tb 20 mm 5 mg/mL Photofrin II 120 keV, 20 mAs human glioblastoma cells
2013 Tb2O3 10 nm 1 mM Porphyrin N/A N/A
2013 ZnO 50 nm 0.3–0.6 mM Mesi-tetra (4-sulfonatophenyl) porphyrin (TSPP) N/A Escherichia coli
2014 LaF3:Ce3+ 2 mm 1 mg/mL Protoporphyrin IX (PPIX) 3 Gy PC3 cells
2016 Sr2MgSi2O7:Eu2+, Dy3+ 273 nm 10 mg/mL Protoporphyrin IX (PPIX) 1–7 Gy PC3
2014 Cu–Cy 50–100 nm 50 mg Self 5 Gy MCF-7 Xenograft
2016 AnS:Cu, Co 4 nm 0.05 mM Tetrabromorhodamine-123 (TBrRh123) 2 Gy PC3 cells
2015 SrAl2O4:Eu2+ 80 nm 50 mg/mL Merocyanine 540 (MC540) 0.5 Gy U87MG Xenograft
2015 LaF3:Tb 3–45 nm N/A Rose Bengal (RB) 2–10 keV N/A
2015 LaF3:Tb 3–45 nm 20 mg/mL Rose Bengal (RB) N/A tumor model
2016 CeF3 7–11 nm 0.1–0.9 mM Veterporfin (VP) 6 Gy, 8 keV, or 6 MeV Panc-1
2015 LiYF4:Ce3+ 34 nm 25–50 mg/mL ZnO 8 Gy HeLa cells
2015 SiC/SiOx NWs 20 nm 50 mg/mL Porphyrin 2 Gy, 6 MV A549 cells
2015 ZnO/SiO3 98 nm 0.005–0.05 M ZnO 200 kVp, 2 Gy LNCaP and Du145 cells
2015 GdEuC12 micelle 4.6 nm 500 mM Hypericin (Hyp) 5–40 keV HeLa cells
Tab.2  Different nanoscintillators exploited for XPDT [108]. Copyright 2018. Reproduced with permission from Impact Journals, LLC
Fig.22  Steps involved in the X-ray irradiation of tumors to produce singlet oxygen [213]. Copyright 2013. Reproduced with permission from the American Chemical Society
Fig.23  (a) Scintillating NPs serve as an X-ray transducer to generate 1O2 through the energy transfer process. (b) Diagram of the PDT mechanism that occurs when energy is transferred from the ScNPs to activate the PS. PS’s electrons from the ground state (S0) absorb energy and move to singlet-excited states (S1) [1]. Copyright 2016. Reproduced with permission from the American chemical society
Fig.24  Imaging of the X-ray-excited optical luminescence [231]. Copyright 2011. Reproduced with permission from the American chemical society
Fig.25  Core–shell NaYF4:Yb,Er nanoscintillator for X-ray induced shortwave IR luminescence in case of optical bioimaging [226]. Copyright 2015. Reproduced with permission from the American Chemical Society
Fig.26  X-ray detection of the pathological bio-objects bound to NPs [239]. Copyright 2009. Reproduced with permission from IEEE
1 A Kamkaew, F Chen, Y Zhan, R L Majewski, W Cai. Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano, 2016, 10(4): 3918–3935
https://doi.org/10.1021/acsnano.6b01401 pmid: 27043181
2 M D Birowosuto, D Cortecchia, W Drozdowski, K Brylew, W Lachmanski, A Bruno, C Soci. X-ray scintillation in lead halide perovskite crystals. Scientific Reports, 2016, 6(1): 37254
https://doi.org/10.1038/srep37254 pmid: 27849019
3 Y Tsubota, J H Kaneko, M Higuchi, S Nishiyama, H Ishibashi. High-temperature scintillation properties of orthorhombic Gd2Si2O7 aiming at well logging. Applied Physics Express, 2015, 8(6): 062602
https://doi.org/10.7567/APEX.8.062602
4 P Lecoq. Development of new scintillators for medical applications. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 809: 130–139
https://doi.org/10.1016/j.nima.2015.08.041
5 L G Jacobsohn, K B Sprinkle, S A Roberts, C J Kucera, T L James, E G Yukihara, T A DeVol, J Ballato. Fluoride nanoscintillators. Journal of Nanomaterials, 2011, 2011: 1
https://doi.org/10.1155/2011/523638
6 P A Rodnyi. Physical Processes in Inorganic Scintillators. Boca Raton: CRC Press, 1997
7 S K Lee, S Y Kang, D Y Jang, C H Lee, S M. Kang Comparison of new simple methods in fabricating ZnS (Ag) scintillators for detecting alpha particles. Nuclear science and technology, 2011, 1: 194–197
8 G F Knoll. Radiation Detection and Measurement. New York: John Wiley & Sons, 2010
9 G Bizarri. Scintillation mechanisms of inorganic materials: from crystal characteristics to scintillation properties. Journal of Crystal Growth, 2010, 312(8): 1213–1215
https://doi.org/10.1016/j.jcrysgro.2009.12.063
10 W Shockley. Problems related top-n junctions in silicon. Czechoslovak Journal of Physics, 1961, 11(2): 81–121
https://doi.org/10.1007/BF01688613
11 D Robbins. On predicting the maximum efficiency of phosphor systems excited by ionizing radiation. Journal of the Electrochemical Society, 1980, 127(12): 2694–2702
https://doi.org/10.1149/1.2129574
12 G Blasse. Search for new inorganic scintillators. IEEE Transactions on Nuclear Science, 1991, 38(1): 30–31
https://doi.org/10.1109/23.64638
13 G Blasse. Scintillator materials. Chemistry of Materials, 1994, 6(9): 1465–1475
https://doi.org/10.1021/cm00045a002
14 G Blasse. Luminescent materials: is there still news? Journal of Alloys and Compounds, 1995, 225(1–2): 529–533
https://doi.org/10.1016/0925-8388(94)07096-2
15 S Derenzo, M Weber, E Bourret-Courchesne, M Klintenberg. The quest for the ideal inorganic scintillator. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505(1–2): 111–117
https://doi.org/10.1016/S0168-9002(03)01031-3
16 S E Derenzo, W Moses, J Cahoon, R Perera, J Litton. Prospects for new inorganic scintillators. IEEE Transactions on Nuclear Science, 1990, 37(2): 203–208
https://doi.org/10.1109/23.106619
17 M Ishii, M Kobayashi. Single crystals for radiation detectors. Progress in Crystal Growth and Characterization of Materials, 1992, 23: 245–311
https://doi.org/10.1016/0960-8974(92)90025-L
18 B D Milbrath, A J Peurrung, M Bliss, W J Weber. Radiation detector materials: an overview. Journal of Materials Research, 2008, 23(10): 2561–2581
https://doi.org/10.1557/JMR.2008.0319
19 C Liu, Z Li, T J Hajagos, D Kishpaugh, D Y Chen, Q Pei. Transparent ultra-high-loading quantum dot/polymer nanocomposite monolith for gamma scintillation. ACS Nano, 2017, 11(6): 6422–6430
https://doi.org/10.1021/acsnano.7b02923 pmid: 28551988
20 R Heath, R Hofstadter, E Hughes. Inorganic scintillators: a review of techniques and applications. Nuclear Instruments and Methods, 1979, 162(1–3): 431–476
https://doi.org/10.1016/0029-554X(79)90728-6
21 M J Weber. Inorganic scintillators: today and tomorrow. Journal of Luminescence, 2002, 100(1–4): 35–45
https://doi.org/10.1016/S0022-2313(02)00423-4
22 T K. Gupta Characterization of Radiation Detectors (Scintillators) Used in Nuclear Medicine, Radiation, Ionization, and Detection in Nuclear Medicine. Berlin: Springer, 2013, 367–449
23 C SyS. Inorganic Scintillator Detectors. Available online via Caensys website
24 P Lecoq, A Gektin, M. Korzhik Influence of Crystal Structure Defects on Scintillation Properties. In: Inorganic Scintillators for Detector Systems. Particle Acceleration and Detection. Berlin: Springer, 2017, 197–252
25 M Nikl, V Laguta, A. Vedda Complex oxide scintillators: material defects and scintillation performance. Physica Status Solidi (B), 2008, 245: 1701–1722
26 V Lisitsyn, L Lisitsyna, E Polisadova. Complex defects in crystal scintillation materials and phosphors. IOP Conference Series. Materials Science and Engineering, 2017, 168: 012086
https://doi.org/10.1088/1757-899X/168/1/012086
27 M M Kuklja. Defects in yttrium aluminium perovskite and garnet crystals: atomistic study. Journal of Physics Condensed Matter, 2000, 12(13): 2953–2967
https://doi.org/10.1088/0953-8984/12/13/307
28 D Nikolopoulos, I Valais, C Michail, A Bakas, C Fountzoula, D Cantzos, D Bhattacharyya, I Sianoudis, G Fountos, P Yannakopoulos, G Panayiotakis, I Kandarakis. Radioluminescence properties of the CdSe/ZnS quantum dot nanocrystals with analysis of long-memory trends. Radiation Measurements, 2016, 92: 19–31
https://doi.org/10.1016/j.radmeas.2016.06.004
29 Y Osakada, G Pratx, C Sun, M Sakamoto, M Ahmad, O Volotskova, Q Ong, T Teranishi, Y Harada, L Xing, B Cui. Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters. Chemical Communications, 2014, 50(27): 3549–3551
https://doi.org/10.1039/C3CC48661C pmid: 24463467
30 Y Osakada, G Pratx, L Hanson, P E Solomon, L Xing, B Cui. X-ray excitable luminescent polymer dots doped with an iridium(III) complex. Chemical Communications, 2013, 49(39): 4319–4321
https://doi.org/10.1039/c2cc37169c pmid: 23320256
31 C Wang, O Volotskova, K Lu, M Ahmad, C Sun, L Xing, W Lin. Synergistic assembly of heavy metal clusters and luminescent organic bridging ligands in metal-organic frameworks for highly efficient X-ray scintillation. Journal of the American Chemical Society, 2014, 136(17): 6171–6174
https://doi.org/10.1021/ja500671h pmid: 24730683
32 M J Yaffe, J A Rowlands. X-ray detectors for digital radiography. Physics in Medicine and Biology, 1997, 42(1): 1–39
https://doi.org/10.1088/0031-9155/42/1/001 pmid: 9015806
33 S K Gupta, J P Zuniga, M Abdou, Y Mao. Thermal annealing effects on La2Hf2O7:Eu3+ nanoparticles: a curious case study of structural evolution and site-specific photo- and radio-luminescence. Inorganic Chemistry Frontiers, 2018, 5(10): 2508–2521
https://doi.org/10.1039/C8QI00713F
34 S K Gupta, J P Zuniga, P S Ghosh, M Abdou, Y Mao. Correlating structure and luminescence properties of undoped and Eu3+-doped La2Hf2O7 nanoparticles prepared with different coprecipitating pH values through experimental and theoretical studies. Inorganic Chemistry, 2018, 57(18): 11815–11830
https://doi.org/10.1021/acs.inorgchem.8b01983 pmid: 30178662
35 M Pokhrel, S K Gupta, K Wahid, Y Mao. Pyrochlore rare-earth hafnate RE2Hf2O7 (RE= La and Pr) nanoparticles stabilized by molten-salt synthesis at low temperature. Inorganic Chemistry, 2019, 58(2): 1241–1251
https://doi.org/10.1021/acs.inorgchem.8b02728 pmid: 30614686
36 J P Zuniga, S K Gupta, M Pokhrel, Y Mao. Exploring the optical properties of La2Hf2O7:Pr3+ nanoparticles under UV and X-ray excitation for potential lighting and scintillating applications. New Journal of Chemistry, 2018, 42(12): 9381–9392
https://doi.org/10.1039/C8NJ00895G
37 J P Zuniga, S K Gupta, M Abdou, Y Mao. Effect of molten salt synthesis processing duration on the photo- and radioluminescence of UV-, visible-, and X-ray-excitable La2Hf2O7:Eu3+ nanoparticles. ACS Omega, 2018, 3(7): 7757–7770
https://doi.org/10.1021/acsomega.8b00987 pmid: 31458923
38 M Pokhrel, M Alcoutlabi, Y Mao. Optical and X-ray induced luminescence from Eu3+ doped La2Zr2O7 nanoparticles. Journal of Alloys and Compounds, 2017, 693: 719–729
https://doi.org/10.1016/j.jallcom.2016.09.218
39 M Pokhrel, A Burger, M Groza, Y Mao. Enhance the photoluminescence and radioluminescence of La2Zr2O7:Eu3+ core nanoparticles by coating with a thin Y2O3 shell. Optical Materials, 2017, 68: 35–41
https://doi.org/10.1016/j.optmat.2016.11.008
40 K Wahid, M Pokhrel, Y Mao. Structural, photoluminescence and radioluminescence properties of Eu3+ doped La2Hf2O7 nanoparticles. Journal of Solid State Chemistry, 2017, 245: 89–97
https://doi.org/10.1016/j.jssc.2016.10.004
41 S K Gupta, M Abdou, P S Ghosh, J P Zuniga, Y Mao. Thermally induced disorder-order phase transition of Gd2Hf2O7:Eu3+ nanoparticles and its implication on photo- and radioluminescence. ACS Omega, 2019, 4(2): 2779–2791
https://doi.org/10.1021/acsomega.8b03458 pmid: 31459510
42 S K Gupta, M Abdou, J P Zuniga, P S Ghosh, E Molina, B Xu, M Chipara, Y Mao. Roles of oxygen vacancies and pH induced size changes on photo- and radioluminescence of undoped and Eu3+-doped La2Zr2O7 nanoparticles. Journal of Luminescence, 2019, 209: 302–315
https://doi.org/10.1016/j.jlumin.2019.01.059
43 M Abdou, S K Gupta, J P Zuniga, Y Mao. On structure and phase transformation of uranium doped La2Hf2O7 nanoparticles as an efficient nuclear waste host. Materials Chemistry Frontiers, 2018, 2(12): 2201–2211
https://doi.org/10.1039/C8QM00266E
44 S K Gupta, M Abdou, J P Zuniga, A A Puretzky, Y Mao. Samarium-activated La2Hf2O7 nanoparticles as multifunctional phosphors. ACS Omega, 2019, 4(19): 17956–17966
https://doi.org/10.1021/acsomega.9b01318 pmid: 31720499
45 S K Gupta, J P Zuniga, M Abdou, P S Ghosh, Y Mao. Optical properties of undoped, Eu3+ doped and Li+ co-doped Y2Hf2O7 nanoparticles and polymer nanocomposite films. Inorganic Chemistry Frontiers, 2020, 7(2): 505–518
https://doi.org/10.1039/C9QI01181A
46 J P Zuniga, S K Gupta, M Abdou, H A De Santiago, A A Puretzky, M P Thomas, B S Guiton, J Liu, Y Mao. Size, structure, and luminescence of Nd2Zr2O7 nanoparticles by molten salt synthesis. Journal of Materials Science, 2019, 54(19): 12411–12423
https://doi.org/10.1007/s10853-019-03745-9
47 M Abdou, S K Gupta, J P Zuniga, Y Mao. Insight into the effect of A-site cations on structural and optical properties of RE2Hf2O7:U nanoparticles. Journal of Luminescence, 2019, 210: 425–434
https://doi.org/10.1016/j.jlumin.2019.02.059
48 S K Gupta, M A Penilla Garcia, J P Zuniga, M Abdou, Y Mao. Visible and ultraviolet upconversion and near infrared downconversion luminescence from lanthanide doped La2Zr2O7 nanoparticles. Journal of Luminescence, 2019, 214: 116591
https://doi.org/10.1016/j.jlumin.2019.116591
49 S K Gupta, J P Zuniga, M Abdou, M P Thomas, M De Alwis Goonatilleke, B S Guiton, Y Mao. Lanthanide-doped lanthanum hafnate nanoparticles as multicolor phosphors for warm white lighting and scintillators. Chemical Engineering Journal, 2020, 379: 122314
https://doi.org/10.1016/j.cej.2019.122314
50 M A Penilla Garcia, S K Gupta, Y Mao. Effects of molten-salt processing parameters on the structural and optical properties of preformed La2Zr2O7:Eu3+ nanoparticles. Ceramics International, 2020, 46(2): 1352–1361
https://doi.org/10.1016/j.ceramint.2019.09.098
51 S Jagtap, P Chopade, S Tadepalli, A Bhalerao, S Gosavi. A review on the progress of ZnSe as inorganic scintillator. Opto-Electronics Review, 2019, 27(1): 90–103
https://doi.org/10.1016/j.opelre.2019.01.001
52 Q Chen, J Wu, X Ou, B Huang, J Almutlaq, A A Zhumekenov, X Guan, S Han, L Liang, Z Yi, J Li, X Xie, Y Wang, Y Li, D Fan, D B L Teh, A H All, O F Mohammed, O M Bakr, T Wu, M Bettinelli, H Yang, W Huang, X Liu. All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561(7721): 88–93
https://doi.org/10.1038/s41586-018-0451-1 pmid: 30150772
53 W Pan, H Wu, J Luo, Z Deng, C Ge, C Chen, X Jiang, W J Yin, G Niu, L Zhu, L Yin, Y Zhou, Q Xie, X Ke, M Sui, J Tang. Cs2AgBiB6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726–732
https://doi.org/10.1038/s41566-017-0012-4
54 Y Zhang, R Sun, X Ou, K Fu, Q Chen, Y Ding, L J Xu, L Liu, Y Han, A V Malko, X Liu, H Yang, O M Bakr, H Liu, O F Mohammed. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano, 2019, 13(2): 2520–2525
https://doi.org/10.1021/acsnano.8b09484 pmid: 30721023
55 H Fu. Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: from materials to solar cells. Solar Energy Materials and Solar Cells, 2019, 193: 107–132
https://doi.org/10.1016/j.solmat.2018.12.038
56 X Wang, T Zhang, Y Lou, Y Zhao. All-inorganic lead-free perovskites for optoelectronic applications. Materials Chemistry Frontiers, 2019, 3(3): 365–375
https://doi.org/10.1039/C8QM00611C
57 S Yamamoto, K Kamada, A Yoshikawa. Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. Scientific Reports, 2018, 8(1): 3194
https://doi.org/10.1038/s41598-018-21500-z pmid: 29453459
58 A Berneking, A Gola, A Ferri, F Finster, D Rucatti, G Paternoster, N J Shah, C Piemonte, C Lerche. A new PET detector concept for compact preclinical high-resolution hybrid MR-PET. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888: 44–52
https://doi.org/10.1016/j.nima.2018.01.040
59 C C Hsu, S L Lin, C A Chang. Lanthanide-doped core-shell-shell nanocomposite for dual photodynamic therapy and luminescence imaging by a single X-ray excitation source. ACS Applied Materials & Interfaces, 2018, 10(9): 7859–7870
https://doi.org/10.1021/acsami.8b00015 pmid: 29405703
60 X Li, Z Xue, M Jiang, Y Li, S Zeng, H Liu. Soft X-ray activated NaYF4:Gd/Tb scintillating nanorods for in vivo dual-modal X-ray/X-ray-induced optical bioimaging. Nanoscale, 2018, 10(1): 342–350
https://doi.org/10.1039/C7NR02926H pmid: 29215103
61 C Hu, L Zhang, R Y Zhu, A Chen, Z Wang, L Ying, Z Yu. Ultrafast inorganic scintillators for GHz hard X-Ray imaging. IEEE Transactions on Nuclear Science, 2018, 65(8): 2097–2104
https://doi.org/10.1109/TNS.2018.2808103
62 S R Miller, H B Bhandari, P Bhattacharya, C Brecher, J Crespi, A Couture, C Dinca, M Rommel, V V Nagarkar. Reduced afterglow codoped CsI:Tl for high energy imaging. IEEE Transactions on Nuclear Science, 2018, 65(8): 2105–2108
https://doi.org/10.1109/TNS.2018.2807986
63 G Blasse, B Grabmaier. Luminescent Materials. Berlin: Springer Science & Business Media, 2012
64 B Grabmaier, W Rossner, J. LeppertCeramic scintillators for X-Ray computed tomography. Physica Status Solidi (A), 1992, 130: K183–K187
65 C Greskovich, S Duclos. Ceramic scintillators. Annual Review of Materials Science, 1997, 27(1): 69–88
https://doi.org/10.1146/annurev.matsci.27.1.69
66 G Buşe, A Giuliani, P De Marcillac, S Marnieros, C Nones, V Novati, E Olivieri, D Poda, T Redon, J B Sand, P Veber, M Velázquez, A S. Zolotarova First scintillating bolometer tests of a CLYMENE R&D on Li2MoO4 scintillators towards a large-scale double-beta decay experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 891: 87–91
67 M Zhu, H Qi, M Pan, Q Hou, B Jiang, Y Jin, H Han, Z Song, H Zhang. Growth and luminescent properties of Yb:YAG and Ca co-doped Yb:YAG ultrafast scintillation crystals. Journal of Crystal Growth, 2018, 490: 51–55
https://doi.org/10.1016/j.jcrysgro.2018.03.015
68 A Khan, G Rooh, H Kim, S Kim. Ce3+-activated Tl2GdCl5: novel halide scintillator for X-ray and γ-ray detection. Journal of Alloys and Compounds, 2018, 741: 878–882
https://doi.org/10.1016/j.jallcom.2018.01.204
69 J Jung, G Hirata, G Gundiah, S Derenzo, W Wrasidlo, S Kesari, M Makale, J McKittrick. Identification and development of nanoscintillators for biotechnology applications. Journal of Luminescence, 2014, 154: 569–577
https://doi.org/10.1016/j.jlumin.2014.05.040
70 J S Klein, C Sun, G Pratx. Radioluminescence in biomedicine: physics, applications, and models. Physics in Medicine and Biology, 2019, 64(4): 04TR01
https://doi.org/10.1088/1361-6560/aaf4de pmid: 30524090
71 Growing Single Crystals. In: Carter C B, Norton M G, eds. Ceramic Materials: Science and Engineering. New York: Springer, 2007, 507–526
72 D Savytskii, B Knorr, V Dierolf, H Jain. Demonstration of single crystal growth via solid-solid transformation of a glass. Scientific Reports, 2016, 6(1): 23324
https://doi.org/10.1038/srep23324 pmid: 26988919
73 M Kivambe, B Aissa, N Tabet. Emerging technologies in crystal growth of photovoltaic silicon: progress and challenges. Energy Procedia, 2017, 130: 7–13
https://doi.org/10.1016/j.egypro.2017.09.405
74 C Zhang, J Lin. Defect-related luminescent materials: synthesis, emission properties and applications. Chemical Society Reviews, 2012, 41(23): 7938–7961
https://doi.org/10.1039/c2cs35215j pmid: 23019577
75 D E Persyk, M A Schardt, T E Moi, K A Ritter, G Muehllehner. Research on pure sodium iodide as a practical scintillator. IEEE Transactions on Nuclear Science, 1980, 27(1): 167–171
https://doi.org/10.1109/TNS.1980.4330821
76 L Andryushchenko, B Grinev, L Udovichenko, A Litichevsky. Improved NaI(Tl) scintillation detectors. Instruments and Experimental Techniques, 1997, 40: 59–63
77 L Verger, P Ouvrier-Buffet, F Mathy, G Montemont, M Picone, J Rustique, C Riffard. Performance of a new CdZnTe portable spectrometric system for high energy applications. IEEE Transactions on Nuclear Science, 2005, 52(5): 1733–1738
https://doi.org/10.1109/TNS.2005.856716
78 W Berninger. Monolithic gamma detector arrays and position sensitive detectors in high purity germanium. IEEE Transactions on Nuclear Science, 1974, 21(1): 374–378
https://doi.org/10.1109/TNS.1974.4327485
79 B D Milbrath, A J Peurrung, M Bliss, W J Weber. Radiation detector materials: an overview. Journal of Materials Research, 2008, 23(10): 2561–2581
https://doi.org/10.1557/JMR.2008.0319
80 M Nikl. Scintillation detectors for X-rays. Measurement Science & Technology, 2006, 17(4): R37–R54
https://doi.org/10.1088/0957-0233/17/4/R01
81 C Greskovich, S Duclos. Ceramic scinitillators. Annual Review of Materials Science, 1997, 27(1): 69–88
https://doi.org/10.1146/annurev.matsci.27.1.69
82 J Y Jung, G A Hirata, G Gundiah, S Derenzo, W Wrasidlo, S Kesari, M T Makale, J McKittrick. Identification and development of nanoscintillators for biotechnology applications. Journal of Luminescence, 2014, 154: 569–577
https://doi.org/10.1016/j.jlumin.2014.05.040
83 S S Brown, A J Rondinone, S Dai. Applications of Nanoparticles in Scintillation Detectors. Washington: ACS Publications, 2007
84 C Liu, Z Li, T J Hajagos, D Kishpaugh, D Y Chen, Q Pei. Transparent ultra-high-loading quantum dot/polymer nanocomposite monolith for gamma scintillation. ACS Nano, 2017, 11(6): 6422–6430
https://doi.org/10.1021/acsnano.7b02923 pmid: 28551988
85 S Yildirim, E C K Asal, K Ertekin, E Celik. Luminescent properties of scintillator nanophosphors produced by flame spray pyrolysis. Journal of Luminescence, 2017, 187: 304–312
https://doi.org/10.1016/j.jlumin.2017.03.034
86 B A Hernandez-Sanchez, T J Boyle, J Villone, P Yang, M Kinnan, S Hoppe, S Thoma, K M Hattar, F P Doty. Size effects on the properties of high Z scintillator materials. In: Proceedings of Penetrating Radiation Systems and Applications XIII, International Society for Optics and Photonics, 2012, 85090G
87 J W Stouwdam, F C van Veggel. Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification. Langmuir, 2004, 20(26): 11763–11771
https://doi.org/10.1021/la048379g pmid: 15595809
88 K Kömpe, O Lehmann, M Haase. Spectroscopic distinction of surface and volume ions in cerium (III)-and terbium (III)-containing core and core/shell nanoparticles. Chemistry of Materials, 2006, 18(18): 4442–4446
https://doi.org/10.1021/cm060857g
89 D Cooke, J K Lee, B Bennett, J Groves, L Jacobsohn, E McKigney, R Muenchausen, M Nastasi, K Sickafus, M Tang, J A Valdez, J Y Kim, K S Hong. Luminescent properties and reduced dimensional behavior of hydrothermally prepared Y2SiO5:Ce nanophosphors. Applied Physics Letters, 2006, 88(10): 103108
https://doi.org/10.1063/1.2183737
90 R Muenchausen, L Jacobsohn, B Bennett, E McKigney, J Smith, D Cooke. A novel method for extracting oscillator strength of select rare-earth ion optical transitions in nanostructured dielectric materials. Solid State Communications, 2006, 139(10): 497–500
https://doi.org/10.1016/j.ssc.2006.07.022
91 B Kyung Cha, S Jun Lee, P Muralidharan, J Yul Kim, D K Kim, G Cho. Characterization and imaging performance of nanoscintillator screen for high resolution X-ray imaging detectors. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 633: S294–S296
https://doi.org/10.1016/j.nima.2010.06.193
92 N V Klassen, V V Kedrov, Y A Ossipyan, S Z Shmurak, I M Shmyt Ko, O A Krivko, E A Kudrenko, V N Kurlov, N P Kobelev, A P Kiselev, S I Bozhko. Nanoscintillators for microscopic diagnostics of biological and medical objects and medical therapy. IEEE Transactions on Nanobioscience, 2009, 8(1): 20–32
https://doi.org/10.1109/TNB.2009.2016551 pmid: 19304500
93 J P Scaffidi, M K Gregas, B Lauly, Y Zhang, T Vo-Dinh. Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation. ACS Nano, 2011, 5(6): 4679–4687
https://doi.org/10.1021/nn200511m pmid: 21553850
94 I Roy, T Y Ohulchanskyy, H E Pudavar, E J Bergey, A R Oseroff, J Morgan, T J Dougherty, P N Prasad. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. Journal of the American Chemical Society, 2003, 125(26): 7860–7865
https://doi.org/10.1021/ja0343095 pmid: 12823004
95 P Guss, R Guise, D Yuan, S Mukhopadhyay, R O’Brien, D Lowe, Z Kang, H Menkara, V V Nagarkar. Lanthanum halide nanoparticle scintillators for nuclear radiation detection. Journal of Applied Physics, 2013, 113(6): 064303
https://doi.org/10.1063/1.4790867
96 R J Walters, J Kalkman, A Polman, H A Atwater, M J A de Dood. Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2. Physical Review B, 2006, 73(13): 132302
https://doi.org/10.1103/PhysRevB.73.132302
97 A C Balazs, T Emrick, T P Russell. Nanoparticle polymer composites: where two small worlds meet. Science, 2006, 314(5802): 1107–1110
https://doi.org/10.1126/science.1130557 pmid: 17110567
98 S E Létant, T F Wang. Semiconductor quantum dot scintillation under γ-ray irradiation. Nano Letters, 2006, 6(12): 2877–2880
https://doi.org/10.1021/nl0620942 pmid: 17163723
99 C Liu. High-Z nanoparticle/polymer nanocomposites for gamma-ray scintillation detectors. Dissertation for the Doctoral Degree. Los Angeles: University of California, 2017
100 B M Novak. Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Advanced Materials, 1993, 5(6): 422–433
https://doi.org/10.1002/adma.19930050603
101 C Dujardin, D Amans, A Belsky, F Chaput, G Ledoux, A Pillonnet. Luminescence and scintillation properties at the nanoscale. IEEE Transactions on Nuclear Science, 2010, 57(3): 1348–1354
https://doi.org/10.1109/TNS.2009.2035697
102 J B Braverman, L Fabris, J Newby, D Hornback, K P Ziock. Three-dimensional event localization in bulk scintillator crystals using optical coded apertures. In: Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2014, 1–8
103 J B. Braverman Event localization in bulk scintillator crystals using optical coded apertures. Dissertation for the Doctoral Degree. Knoxville: University of Tennessee, 2015
104 C Melcher. Perspectives on the future development of new scintillators. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1–2): 6–14
https://doi.org/10.1016/j.nima.2004.07.222
105 A Taheri, S Saramad, S Setayeshi. Geant4 simulation of zinc oxide nanowires in anodized aluminum oxide template as a low energy X-ray scintillator detector. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 701: 30–36
https://doi.org/10.1016/j.nima.2012.10.074
106 A Taheri, S Saramad, S Ghalenoei, S Setayeshi. Taheri-Saramad X-ray detector (TSXD): a novel high spatial resolution X-ray imager based on ZnO nano scintillator wires in polycarbonate membrane. Review of Scientific Instruments, 2014, 85(1): 013112
https://doi.org/10.1063/1.4862468 pmid: 24517750
107 C Ashworth. Super scintillators. Nature Reviews. Materials, 2018, 3(10): 355
https://doi.org/10.1038/s41578-018-0056-1
108 L A Alves, L B Ferreira, P F Pacheco, E A C Mendivelso, P C N Teixeira, R X Faria. Pore forming channels as a drug delivery system for photodynamic therapy in cancer associated with nanoscintillators. Oncotarget, 2018, 9(38): 25342–25354
https://doi.org/10.18632/oncotarget.25150 pmid: 29861876
109 M Winterer, R Nitsche, H Hahn. Local structure in nanocrystalline ZrO2 and Y2O3 by EXAFS. Nanostructured Materials, 1997, 9(1–8): 397–400
https://doi.org/10.1016/S0965-9773(97)00092-5
110 S Nigam, V Sudarsan, C Majumder, R Vatsa. Structural differences existing in bulk and nanoparticles of Y2Sn2O7: investigated by experimental and theoretical methods. Journal of Solid State Chemistry, 2013, 200: 202–208
https://doi.org/10.1016/j.jssc.2013.01.031
111 P A. Cutler Synthesis and scintillation of single crystal and polycrystalline rare-earth-activated lutetium aluminum garnet. Dissertation for the Master Degree. Knoxville: University of Tennessee, 2010
112 N N Ryskin, P Dorenbos, C W E Eijk, S K Batygov. Scintillation properties of Lu3Al5-xScxO12 crystals. Journal of Physics Condensed Matter, 1994, 6(47): 10423–10434
https://doi.org/10.1088/0953-8984/6/47/025
113 M Zhuravleva, K Yang, M Spurrier-Koschan, P Szupryczynski, A Yoshikawa, C Melcher. Crystal growth and characterization of LuAG:Ce:Tb scintillator. Journal of Crystal Growth, 2010, 312(8): 1244–1248
https://doi.org/10.1016/j.jcrysgro.2009.11.021
114 A Edgar, M Bartle, C Varoy, S Raymond, G Williams. Structure and scintillation properties of cerium-doped barium chloride ceramics: effects of cation and anion substitution. IEEE Transactions on Nuclear Science, 2010, 57(3): 1218–1222
https://doi.org/10.1109/TNS.2010.2046181
115 X Peng, M C Schlamp, A V Kadavanich, A P Alivisatos. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. Journal of the American Chemical Society, 1997, 119(30): 7019–7029
https://doi.org/10.1021/ja970754m
116 G Ledoux, J Gong, F Huisken. Effect of passivation and aging on the photoluminescence of silicon nanocrystals. Applied Physics Letters, 2001, 79(24): 4028–4030
https://doi.org/10.1063/1.1426273
117 A Huignard, V Buissette, A C Franville, T Gacoin, J P Boilot. Emission processes in YVO4:Eu nanoparticles. Journal of Physical Chemistry B, 2003, 107(28): 6754–6759
https://doi.org/10.1021/jp0342226
118 F Wang, J Wang, X Liu. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angewandte Chemie, 2010, 49(41): 7456–7460
https://doi.org/10.1002/anie.201003959 pmid: 20809558
119 J Han, G Hirata, J Talbot, J McKittrick. Luminescence enhancement of Y2O3:Eu3+ and Y2SiO5:Ce3+,Tb3+ core particles with SiO2 shells. Materials Science and Engineering B, 2011, 176(5): 436–441
https://doi.org/10.1016/j.mseb.2011.01.003
120 G Z Li, M Yu, Z L Wang, J Lin, R S Wang, J Fang. Sol–gel fabrication and photoluminescence properties of SiO2@Gd2O3: Eu3+ core-shell particles. Journal of Nanoscience and Nanotechnology, 2006, 6(5): 1416–1422
https://doi.org/10.1166/jnn.2006.195 pmid: 16792374
121 A Bao, H Lai, Y Yang, Z Liu, C Tao, H Yang. Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles. Journal of Nanoparticle Research, 2010, 12(2): 635–643
https://doi.org/10.1007/s11051-009-9633-y
122 M Yu, H Wang, C Lin, G Li, J Lin. Sol–gel synthesis and photoluminescence properties of spherical SiO2@LaPO4:Ce3+/Tb3+ particles with a core–shell structure. Nanotechnology, 2006, 17(13): 3245–3252
https://doi.org/10.1088/0957-4484/17/13/028
123 S A Osseni, S Lechevallier, M Verelst, C Dujardin, J Dexpert-Ghys, D Neumeyer, M Leclercq, H Baaziz, D Cussac, V Santran, R Mauricot. New nanoplatform based on Gd2O2S:Eu3+ core: synthesis, characterization and use for in vitro bio-labelling. Journal of Materials Chemistry, 2011, 21(45): 18365–18372
https://doi.org/10.1039/c1jm13542b
124 G Ledoux, B Mercier, C Louis, C Dujardin, O Tillement, P Perriat. Synthesis and optical characterization of Gd2O3:Eu3+ nanocrystals: surface states and VUV excitation. Radiation Measurements, 2004, 38(4–6): 763–766
https://doi.org/10.1016/j.radmeas.2004.03.011
125 A A Bol, A Meijerink. Luminescence quantum efficiency of nanocrystalline ZnS:Mn2+. 1. Surface passivation and Mn2+ concentration. Journal of Physical Chemistry B, 2001, 105(42): 10197–10202
https://doi.org/10.1021/jp0107560
126 M Pokhrel, A Burger, M Groza, Y Mao. Enhance the photoluminescence and radioluminescence of La2Zr2O7:Eu3+ core nanoparticles by coating with a thin Y2O3 shell. Optical Materials, 2017, 68: 35–41
https://doi.org/10.1016/j.optmat.2016.11.008
127 P H Holloway, M Davidson, L G Jacobsohn. Strategy for enhanced light output from luminescent nanoparticles. Technical report. Gainesville: Florida University, 2013
128 L Jacobsohn, C Kucera, K Sprinkle, S Roberts, E Yukihara, T DeVol, J Ballato. Scintillation of nanoparticles: case study of rare earth doped fluorides. Nuclear Science Symposium Conference Record (NSS/MIC), IEEE, 2010, 1600–1602
129 S K Gupta, K Sudarshan, P Ghosh, K Sanyal, A Srivastava, A Arya, P Pujari, R Kadam. Luminescence of undoped and Eu3+ doped nanocrystalline SrWO4 scheelite: time resolved fluorescence complimented by DFT and positron annihilation spectroscopic studies. RSC Advances, 2016, 6(5): 3792–3805
https://doi.org/10.1039/C5RA23876E
130 S K Gupta, K Sudarshan, P Ghosh, A Srivastava, S Bevara, P Pujari, R Kadam. Role of various defects in the photoluminescence characteristics of nanocrystalline Nd2Zr2O7: an investigation through spectroscopic and DFT calculations. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2016, 4(22): 4988–5000
https://doi.org/10.1039/C6TC01032F
131 S K Gupta, K Sudarshan, A Srivastava, R Kadam. Visible light emission from bulk and nano SrWO4: possible role of defects in photoluminescence. Journal of Luminescence, 2017, 192: 1220–1226
https://doi.org/10.1016/j.jlumin.2017.08.060
132 F Vetrone, J C Boyer, J A Capobianco, A Speghini, M Bettinelli. Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3:Er3+. Chemistry of Materials, 2003, 15(14): 2737–2743
https://doi.org/10.1021/cm0301930
133 L Yang, L Li, M Zhao, G Li. Size-induced variations in bulk/surface structures and their impact on photoluminescence properties of GdVO4:Eu3+ nanoparticles. Physical Chemistry Chemical Physics, 2012, 14(28): 9956–9965
https://doi.org/10.1039/c2cp41136a pmid: 22714545
134 L Jacobsohn, K Sprinkle, C Kucera, T James, S Roberts, H Qian, E Yukihara, T DeVol, J Ballato. Synthesis, luminescence and scintillation of rare earth doped lanthanum fluoride nanoparticles. Optical Materials, 2010, 33(2): 136–140
https://doi.org/10.1016/j.optmat.2010.07.025
135 N Klassen, V Kedrov, V Kurlov, Y A Ossipyan, S Shmurak, I Shmyt’ko, G Strukova, N Kobelev, E Kudrenko, O Krivko, A P Kiselev, A V Bazhenov, T N Fursova. Advantages and problems of nanocrystalline scintillators. IEEE Transactions on Nuclear Science, 2008, 55(3): 1536–1541
https://doi.org/10.1109/TNS.2008.924050
136 B K Cha, S J Lee, P Muralidharan, J Y Kim, D K Kim, G Cho. Characterization and imaging performance of nanoscintillator screen for high resolution X-ray imaging detectors. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 633: S294–S296
https://doi.org/10.1016/j.nima.2010.06.193
137 F Hiyama, T Noguchi, M Koshimizu, S Kishimoto, R Haruki, F Nishikido, T Yanagida, Y Fujimoto, T Aida, S Takami, T Adschiri, K Asai. X-ray detection capabilities of plastic scintillators incorporated with hafnium oxide nanoparticles surface-modified with phenyl propionic acid. Japanese Journal of Applied Physics, 2018, 57(1): 012601
https://doi.org/10.7567/JJAP.57.012601
138 J P Reithmaier, G Sęk, A Löffler, C Hofmann, S Kuhn, S Reitzenstein, L V Keldysh, V D Kulakovskii, T L Reinecke, A Forchel. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 2004, 432(7014): 197–200
https://doi.org/10.1038/nature02969 pmid: 15538362
139 N Klassen, I Shmyt’ko, G Strukova, V Kedrov, N Kobelev, E Kudrenko, A Kiseliov, N Prokopiuk. Improvement of scintillation parameters in complex oxides by formation of nanocrystalline structures. In: Proceedings of 8th International SCINT Conference, 2005, 228–231
140 J Wilkinson, K Ucer, R Williams. The oscillator strength of extended exciton states and possibility for very fast scintillators. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1–2): 66–70
https://doi.org/10.1016/j.nima.2004.07.236
141 R J Elliot, R Loudon. Theory of the absorption edge in semiconductors in a high magnetic field. Journal of Physics and Chemistry of Solids, 1960, 15: 196–207
142 C Murray, D J Norris, M G Bawendi. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715
https://doi.org/10.1021/ja00072a025
143 D J Milliron, S M Hughes, Y Cui, L Manna, J Li, L W Wang, A P Alivisatos. Colloidal nanocrystal heterostructures with linear and branched topology. Nature, 2004, 430(6996): 190–195
https://doi.org/10.1038/nature02695 pmid: 15241410
144 J M Costa-Fernández, R Pereiro, A Sanz-Medel. The use of luminescent quantum dots for optical sensing. Trends in Analytical Chemistry, 2006, 25(3): 207–218
https://doi.org/10.1016/j.trac.2005.07.008
145 M Henini, M Bugajski. Advances in self-assembled semiconductor quantum dot lasers. Microelectronics Journal, 2005, 36(11): 950–956
https://doi.org/10.1016/j.mejo.2005.04.017
146 S E Létant, T F Wang. Semiconductor quantum dot scintillation under γ-ray irradiation. Nano Letters, 2006, 6(12): 2877–2880
https://doi.org/10.1021/nl0620942 pmid: 17163723
147 K Shibuya, M Koshimizu, H Murakami, Y Muroya, Y Katsumura, K Asai. Development of ultra-fast semiconducting scintillators using quantum confinement effect. Japanese Journal of Applied Physics, 2004, 43(10B): L1333–L1336
https://doi.org/10.1143/JJAP.43.L1333
148 B Liu, Q Wu, Z Zhu, C Cheng, M Gu, J Xu, H Chen, J Liu, L Chen, Z Zhang, X Ouyang. Directional emission of quantum dot scintillators controlled by photonic crystals. Applied Physics Letters, 2017, 111(8): 081904
https://doi.org/10.1063/1.4993816
149 G Blasse, B Grabmaier. Energy Transfer, Luminescent Materials. Berlin: Springer, 1994, 91–107
150 S F Wuister, C de Mello Donega, A Meijerink. Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media. Journal of Chemical Physics, 2004, 121(9): 4310–4315
https://doi.org/10.1063/1.1773154 pmid: 15332980
151 G Lamouche, P Lavallard, T Gacoin. Optical properties of dye molecules as a function of the surrounding dielectric medium. Physical Review A, 1999, 59(6): 4668–4674
https://doi.org/10.1103/PhysRevA.59.4668
152 R Meltzer, S Feofilov, B Tissue, H Yuan. Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium. Physical Review B, 1999, 60(20): R14012–R14015
https://doi.org/10.1103/PhysRevB.60.R14012
153 K Dolgaleva, R W Boyd, P W Milonni. Influence of local-field effects on the radiative lifetime of liquid suspensions of Nd:YAG nanoparticles. Journal of the Optical Society of America B, Optical Physics, 2007, 24(3): 516–521
https://doi.org/10.1364/JOSAB.24.000516
154 B Chon, S J Lim, W Kim, J Seo, H Kang, T Joo, J Hwang, S K Shin. Shell and ligand-dependent blinking of CdSe-based core/shell nanocrystals. Physical Chemistry Chemical Physics, 2010, 12(32): 9312–9319
https://doi.org/10.1039/b924917f pmid: 20607188
155 J G Li, Y Sakka. Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12). Science and Technology of Advanced Materials, 2015, 16(1): 014902
https://doi.org/10.1088/1468-6996/16/1/014902 pmid: 27877750
156 Z M Seeley, N J Cherepy, S A Payne. Expanded phase stability of Gd-based garnet transparent ceramic scintillators. Journal of Materials Research, 2014, 29(19): 2332–2337
https://doi.org/10.1557/jmr.2014.235
157 M Nikl, K Kamada, V Babin, J Pejchal, K Pilarova, E Mihokova, A Beitlerova, K Bartosiewicz, S Kurosawa, A Yoshikawa. Defect engineering in Ce-doped aluminum garnet single crystal scintillators. Crystal Growth & Design, 2014, 14(9): 4827–4833
https://doi.org/10.1021/cg501005s
158 M Nikl, A Yoshikawa, K Kamada, K Nejezchleb, C R Stanek, J A Mares, K Blazek. Development of LuAG-based scintillator crystals: a review. Progress in Crystal Growth and Characterization of Materials, 2013, 59(2): 47–72
https://doi.org/10.1016/j.pcrysgrow.2013.02.001
159 Y Eagleman, M Weber, A Chaudhry, S Derenzo. Luminescence study of cerium-doped La2Hf2O7: effects due to trivalent and tetravalent cerium and oxygen vacancies. Journal of Luminescence, 2012, 132(11): 2889–2896
https://doi.org/10.1016/j.jlumin.2012.06.002
160 S K Gupta, J P Zuniga, P S Ghosh, M Abdou, Y Mao. Correlating structure and luminescence properties of undoped and La2Hf2O7:Eu3+NPs prepared with different coprecipitating pH values through experimental and theoretical studies. Inorganic Chemistry, 2018, 57: 11815–11830
https://doi.org/10.1021/acs.inorgchem.8b01983 pmid: 30178662
161 J Cao, L Chen, W Chen, D Xu, X Sun, H Guo. Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals. Optical Materials Express, 2016, 6(7): 2201–2206
https://doi.org/10.1364/OME.6.002201
162 K Schwartz. Atomic Physics Methods in Modern Research. Berlin: Springer, 1997
163 E Benitez, D Husk, S Schnatterly, C Tarrio. A surface recombination model applied to large features in inorganic phosphor efficiency measurements in the soft X-ray region. Journal of Applied Physics, 1991, 70(6): 3256–3260
https://doi.org/10.1063/1.350331
164 V Mikhailik, H Kraus, G Miller, M Mykhaylyk, D Wahl. Luminescence of CaWO4, CaMoO4, and ZnWO4 scintillating crystals under different excitations. Journal of Applied Physics, 2005, 97(8): 083523
https://doi.org/10.1063/1.1872198
165 S Sen, M Tyagi, K Sharma, P S Sarkar, S Sarkar, C B Basak, S Pitale, M Ghosh, S C Gadkari. Organic-inorganic composite films based on Gd3Ga3Al2O12:Ce scintillator nanoparticles for X-ray imaging applications. ACS Applied Materials & Interfaces, 2017, 9(42): 37310–37320
https://doi.org/10.1021/acsami.7b11289 pmid: 28990750
166 T Demkiv, O Halyatkin, V Vistovskyy, A Gektin, A Voloshinovskii. Luminescent and kinetic properties of the polystyrene composites based on BaF2 nanoparticles. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 810: 1–5
https://doi.org/10.1016/j.nima.2015.11.130
167 T Demkiv, O Halyatkin, V Vistovskyy, V Hevyk, P Yakibchuk, A Gektin, A Voloshinovskii. X-ray excited luminescence of polystyrene composites loaded with SrF2 nanoparticles. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 847: 47–51
https://doi.org/10.1016/j.nima.2016.11.028
168 P Martins, P Martins, V Correia, J Rocha, S Lanceros-Mendez. Gd2O3:Eu nanoparticle-based poly (vinylidene fluoride) composites for indirect X-ray detection. Journal of Electronic Materials, 2015, 44(1): 129–135
https://doi.org/10.1007/s11664-014-3407-8
169 J Oliveira, P Martins, P Martins, V Correia, J Rocha, S Lanceros-Mendez. Gd2O3:Eu3+/PPO/POPOP/PS composites for digital imaging radiation detectors. Applied Physics A, Materials Science & Processing, 2015, 121(2): 581–587
https://doi.org/10.1007/s00339-015-9435-2
170 Z Kang, Y Zhang, H Menkara, B K Wagner, C J Summers, W Lawrence, V Nagarkar. CdTe quantum dots and polymer nanocomposites for X-ray scintillation and imaging. Applied Physics Letters, 2011, 98(18): 181914
https://doi.org/10.1063/1.3589366 pmid: 21629562
171 W G Lawrence, S Thacker, S Palamakumbura, K J Riley, V V Nagarkar. Quantum dot-organic polymer composite materials for radiation detection and imaging. IEEE Transactions on Nuclear Science, 2012, 59(1): 215–221
https://doi.org/10.1109/TNS.2011.2178861
172 S Chen, R Gaume. Transparent bulk-size nanocomposites with high inorganic loading. Applied Physics Letters, 2015, 107(24): 241906
https://doi.org/10.1063/1.4938001
173 H Chen, M M Rogalski, J N Anker. Advances in functional X-ray imaging techniques and contrast agents. Physical Chemistry Chemical Physics, 2012, 14(39): 13469–13486
https://doi.org/10.1039/c2cp41858d pmid: 22962667
174 V Vistovskyy, A Zhyshkovych, O Halyatkin, N Mitina, A Zaichenko, P Rodnyi, A Vasil’ev, A Gektin, A Voloshinovskii. The luminescence of BaF2 nanoparticles upon high-energy excitation. Journal of Applied Physics, 2014, 116(5): 054308
https://doi.org/10.1063/1.4892112
175 M Laval, M Moszyński, R Allemand, E Cormoreche, P Guinet, R Odru, J Vacher. Barium fluoride—inorganic scintillator for subnanosecond timing. Nuclear Instruments and Methods in Physics Research, 1983, 206(1–2): 169–176
https://doi.org/10.1016/0167-5087(83)91254-1
176 H J Im, S Saengkerdsub, A C Stephan, M D Pawel, D E Holcomb, S Dai. Transparent solid-state lithiated neutron scintillators based on self-assembly of polystyrene-block-poly(ethylene oxide) copolymer architectures. Advanced Materials, 2004, 16(19): 1757–1761
https://doi.org/10.1002/adma.200400337
177 B Kesanli, K Hong, K Meyer, H J Im, S Dai. Highly efficient solid-state neutron scintillators based on hybrid sol–gel nanocomposite materials. Applied Physics Letters, 2006, 89(21): 214104
https://doi.org/10.1063/1.2393003
178 K E deKrafft, W S Boyle, L M Burk, O Z Zhou, W Lin. Zr- and Hf-based nanoscale metal-organic frameworks as contrast agents for computed tomography. Journal of Materials Chemistry, 2012, 22(35): 18139–18144
https://doi.org/10.1039/c2jm32299d pmid: 23049169
179 F Doty, C Bauer, A Skulan, P Grant, M Allendorf. Scintillating metal-organic frameworks: a new class of radiation detection materials. Advanced Materials, 2009, 21(1): 95–101
https://doi.org/10.1002/adma.200801753
180 J J Perry IV, P L Feng, S T Meek, K Leong, F P Doty, M D Allendorf. Connecting structure with function in metal–organic frameworks to design novel photo- and radioluminescent materials. Journal of Materials Chemistry, 2012, 22(20): 10235–10248
https://doi.org/10.1039/c2jm16627e
181 P Alexander, A Lacey, L Lyons. Absorption and luminescence origins in anthracene crystals. Journal of Chemical Physics, 1961, 34(6): 2200–2201
https://doi.org/10.1063/1.1731863
182 A Dekker, F Lipsett. Fluorescent spectra of some organic solid solutions. Canadian Journal of Physics, 1952, 30(3): 165–173
https://doi.org/10.1139/p52-017
183 W Helfrich, F Lipsett. Fluorescence and defect fluorescence of anthracene at 4.2° K. Journal of Chemical Physics, 1965, 43(12): 4368–4376
https://doi.org/10.1063/1.1696699
184 J Hubbell, S Seltzer. NIST standard reference database 126, Gaithersburg, MD: National Institute of Standards and Technology 1996
185 V Vistovskyy, A Zhyshkovych, Y M Chornodolskyy, O Myagkota, A Gloskovskii, A Gektin, A Vasil’ev, P Rodnyi, A Voloshinovskii. Self-trapped exciton and core-valence luminescence in BaF2 nanoparticles. Journal of Applied Physics, 2013, 114(19): 194306
https://doi.org/10.1063/1.4831953
186 V Vistovskyy, A Zhyshkovych, N Mitina, A Zaichenko, A Gektin, A Vasil’ev, A Voloshinovskii. Relaxation of electronic excitations in CaF2 nanoparticles. Journal of Applied Physics, 2012, 112(2): 024325
https://doi.org/10.1063/1.4739488
187 T Malyy, V Vistovskyy, Z Khapko, A Pushak, N Mitina, A Zaichenko, A Gektin, A Voloshinovskii. Recombination luminescence of LaPO4-Eu and LaPO4-Pr nanoparticles. Journal of Applied Physics, 2013, 113(22): 224305
https://doi.org/10.1063/1.4808797
188 V Vistovskyy, T Malyy, A Pushak, A Vas’Kiv, A Shapoval, N Mitina, A Gektin, A Zaichenko, A Voloshinovskii. Luminescence and scintillation properties of LuPO4-Ce nanoparticles. Journal of Luminescence, 2014, 145: 232–236
https://doi.org/10.1016/j.jlumin.2013.07.027
189 G Bizarri, W W Moses, J Singh, A Vasil’Ev, R Williams. An analytical model of nonproportional scintillator light yield in terms of recombination rates. Journal of Applied Physics, 2009, 105(4): 044507
https://doi.org/10.1063/1.3081651
190 L Sudheendra, G K Das, C Li, D Stark, J Cena, S Cherry, I M Kennedy. NaGdF4:Eu3+ nanoparticles for enhanced X-ray excited optical imaging. Chemistry of Materials, 2014, 26(5): 1881–1888
https://doi.org/10.1021/cm404044n pmid: 24803724
191 D Sengupta, S Miller, Z Marton, F Chin, V Nagarkar, G Pratx. Bright Lu2O3:Eu thin-film scintillators for high-resolution radioluminescence microscopy. Advanced Healthcare Materials, 2015, 4(14): 2064–2070
https://doi.org/10.1002/adhm.201500372 pmid: 26183115
192 A Ikesue, Y L Aung. Synthesis and performance of advanced ceramic lasers. Journal of the American Ceramic Society, 2006, 89(6): 1936–1944
https://doi.org/10.1111/j.1551-2916.2006.01043.x
193 J W McCauley, P Patel, M Chen, G Gilde, E Strassburger, B Paliwal, K Ramesh, D P Dandekar. AlON: a brief history of its emergence and evolution. Journal of the European Ceramic Society, 2009, 29(2): 223–236
https://doi.org/10.1016/j.jeurceramsoc.2008.03.046
194 N Cherepy, J Kuntz, Z Seeley, S Fisher, O Drury, B Sturm, T Hurst, R Sanner, J Roberts, S Payne. Transparent ceramic scintillators for gamma spectroscopy and radiography. In: Proceedings of Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XII, International Society for Optics and Photonics, 2010, 78050I
195 M W Kielty. Cerium doped glasses: search for a new scintillator. Dissertation for the Master Degree. Clemson: Clemson University, 2016
196 A Biswas, G Maciel, C Friend, P Prasad. Upconversion properties of a transparent Er3+–Yb3+ co-doped LaF3–SiO2 glass-ceramics prepared by sol–gel method. Journal of Non-Crystalline Solids, 2003, 316(2–3): 393–397
https://doi.org/10.1016/S0022-3093(02)01951-8
197 de Faoite D, Hanlon L, Roberts O, Ulyanov A, McBreen S, Tobin I, Stanton K T. Development of glass-ceramic scintillators for gamma-ray astronomy, Journal of Physics: Conference Series, 2015, 012002
198 M B Barta, J H Nadler, Z Kang, B K Wagner, R Rosson, B Kahn. Effect of host glass matrix on structural and optical behavior of glass–ceramic nanocomposite scintillators. Optical Materials, 2013, 36(2): 287–293
https://doi.org/10.1016/j.optmat.2013.09.010
199 S Baccaro, A Cecilia, E Mihokova, M Nikl, K Nitsch, P Polato, G Zanella, R Zannoni. Radiation damage induced by γ irradiation on Ce3+ doped phosphate and silicate scintillating glasses. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 476(3): 785–789
https://doi.org/10.1016/S0168-9002(01)01676-X
200 Z Kang, B K Wagner, J H Nadler, R Rosson, B Kahn, M B Barta. Transparent glass scintillators, methods of making same and devices using same. Google Patents, 2016
201 W Chen, J Cao, F Hu, R Wei, L Chen, X Sun, H Guo. Highly efficient Na5Gd9F32:Tb3+ glass ceramic as nanocomposite scintillator for X-ray imaging. Optical Materials Express, 2018, 8(1): 41–49
https://doi.org/10.1364/OME.8.000041
202 M D Hammig. Nanoscale Methods to Enhance the Detection of Ionizing Radiation. In: Nenoi M, ed. Current Topics in Ionizing Radiation Research. London: IntechOpen, 2012
203 P Guss, R Guise, D Yuan, S Mukhopadhyay, R O’Brien, D Lowe, Z Kang, H Menkara, V V Nagarkar. Lanthanum halide nanoparticle scintillators for nuclear radiation detection. Journal of Applied Physics, 2013, 113(6): 064303
https://doi.org/10.1063/1.4790867
204 R G Hall. Nanoscintillators for radiation detection. Dissertation for the Master Degree. Arlington: The University of Texas at Arlington, 2013
205 S Brown, A J Rondinone, S Dai. (ORNL), Oak Ridge, TN (United States), 2007
206 J P Schlomka, E Roessl, R Dorscheid, S Dill, G Martens, T Istel, C Bäumer, C Herrmann, R Steadman, G Zeitler, A Livne, R Proksa. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Physics in Medicine and Biology, 2008, 53(15): 4031–4047
https://doi.org/10.1088/0031-9155/53/15/002 pmid: 18612175
207 N Y Morgan, G Kramer-Marek, P D Smith, K Camphausen, J Capala. Nanoscintillator conjugates as photodynamic therapy-based radiosensitizers: calculation of required physical parameters. Radiation Research, 2009, 171(2): 236–244
208 H Chen, G D Wang, Y J Chuang, Z Zhen, X Chen, P Biddinger, Z Hao, F Liu, B Shen, Z Pan, J Xie. Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Letters, 2015, 15(4): 2249–2256
https://doi.org/10.1021/nl504044p pmid: 25756781
209 S Clement, W Deng, E Camilleri, B C Wilson, E M Goldys. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield. Scientific Reports, 2016, 6(1): 19954
https://doi.org/10.1038/srep19954 pmid: 26818819
210 X Yu, X Liu, W Wu, K Yang, R Mao, F Ahmad, X Chen, W Li. CT/MRI-guided synergistic radiotherapy and X-ray inducible photodynamic therapy using Tb-doped Gd-W-nanoscintillators. Angewandte Chemie International Edition, 2019, 58(7): 2017–2022
https://doi.org/10.1002/anie.201812272 pmid: 30589178
211 H Wang, B Lv, Z Tang, M Zhang, W Ge, Y Liu, X He, K Zhao, X Zheng, M He, W Bu. Scintillator-based nanohybrids with sacrificial electron prodrug for enhanced X-ray-induced photodynamic therapy. Nano Letters, 2018, 18(9): 5768–5774
https://doi.org/10.1021/acs.nanolett.8b02409 pmid: 30052464
212 D Bekah, D Cooper, K Kudinov, C Hill, J Seuntjens, S Bradforth, J Nadeau. Synthesis and characterization of biologically stable, doped LaF3 nanoparticles co-conjugated to PEG and photosensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329: 26–34
https://doi.org/10.1016/j.jphotochem.2016.06.008
213 K T Butterworth, S J McMahon, F J Currell, K M Prise. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 2012, 4(16): 4830–4838
https://doi.org/10.1039/c2nr31227a pmid: 22767423
214 A L Bulin, C Truillet, R Chouikrat, F Lux, C Frochot, D Amans, G Ledoux, O Tillement, P Perriat, M Barberi-Heyob, C Dujardin. X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins. Journal of Physical Chemistry C, 2013, 117(41): 21583–21589
https://doi.org/10.1021/jp4077189
215 M M Moronne. Development of X-ray excitable luminescent probes for scanning X-ray microscopy. Ultramicroscopy, 1999, 77(1–2): 23–36
https://doi.org/10.1016/S0304-3991(99)00002-9 pmid: 10321038
216 N Y Morgan, G Kramer-Marek, P D Smith, K Camphausen, J Capala. Nanoscintillator conjugates as photodynamic therapy-based radiosensitizers: calculation of required physical parameters. Radiation Research, 2009, 171(2): 236–244
https://doi.org/10.1667/RR1470.1 pmid: 19267550
217 B Liu, L Wen, X Zhao. The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering. Solar Energy Materials and Solar Cells, 2008, 92(1): 1–10
https://doi.org/10.1016/j.solmat.2007.07.009
218 W Chen, J Zhang. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. Journal of Nanoscience and Nanotechnology, 2006, 6(4): 1159–1166
https://doi.org/10.1166/jnn.2006.327 pmid: 16736782
219 W Chen, S Wang, S Westcott, J Zhang. Energy-transfer nanocomposite materials and methods of making and using same. Google Patents, 2009
220 G Pratx, C M Carpenter, C Sun, L Xing. X-ray luminescence computed tomography via selective excitation: a feasibility study. IEEE Transactions on Medical Imaging, 2010, 29(12): 1992–1999
https://doi.org/10.1109/TMI.2010.2055883 pmid: 20615807
221 G Pratx, C M Carpenter, C Sun, R P Rao, L Xing. Tomographic molecular imaging of X-ray-excitable nanoparticles. Optics Letters, 2010, 35(20): 3345–3347
https://doi.org/10.1364/OL.35.003345 pmid: 20967061
222 C Li, K Di, J Bec, S R Cherry. X-ray luminescence optical tomography imaging: experimental studies. Optics Letters, 2013, 38(13): 2339–2341
https://doi.org/10.1364/OL.38.002339 pmid: 23811921
223 K Welsher, Z Liu, S P Sherlock, J T Robinson, Z Chen, D Daranciang, H Dai. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature Nanotechnology, 2009, 4(11): 773–780
https://doi.org/10.1038/nnano.2009.294 pmid: 19893526
224 N M Iverson, P W Barone, M Shandell, L J Trudel, S Sen, F Sen, V Ivanov, E Atolia, E Farias, T P McNicholas, N Reuel, N M A Parry, G N Wogan, M S Strano. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nature Nanotechnology, 2013, 8(11): 873–880
https://doi.org/10.1038/nnano.2013.222 pmid: 24185942
225 H Yi, D Ghosh, M H Ham, J Qi, P W Barone, M S Strano, A M Belcher. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Letters, 2012, 12(3): 1176–1183
https://doi.org/10.1021/nl2031663 pmid: 22268625
226 A L Rogach, A Eychmüller, S G Hickey, S V Kershaw. Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. Small, 2007, 3(4): 536–557
https://doi.org/10.1002/smll.200600625 pmid: 17340666
227 D J Naczynski, C Sun, S Türkcan, C Jenkins, A L Koh, D Ikeda, G Pratx, L Xing. X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes. Nano Letters, 2015, 15(1): 96–102
https://doi.org/10.1021/nl504123r pmid: 25485705
228 D J Naczynski, M C Tan, M Zevon, B Wall, J Kohl, A Kulesa, S Chen, C M Roth, R E Riman, P V Moghe. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nature Communications, 2013, 4(1): 2199
https://doi.org/10.1038/ncomms3199 pmid: 23873342
229 J Yorkston. Recent developments in digital radiography detectors. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 580(2): 974–985
https://doi.org/10.1016/j.nima.2007.06.041
230 S Kim, J Park, S Kang, B Cha, S Cho, J Shin, D Son, S Nam. Investigation of the imaging characteristics of the Gd2O3:Eu nanophosphor for high-resolution digital X-ray imaging system. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 576(1): 70–74
https://doi.org/10.1016/j.nima.2007.01.172
231 M Mupparapu, R N Bhargava, S Mullick, S R Singer, N Taskar, A Yekimov. Development and application of a novel nanophosphor scintillator for a low-dose, high-resolution digital X-ray imaging system. International Congress Series, Elsevier, 2005, 1281: 1256–1261
232 H Chen, A L Patrick, Z Yang, D G VanDerveer, J N Anker. High-resolution chemical imaging through tissue with an X-ray scintillator sensor. Analytical Chemistry, 2011, 83(13): 5045–5049
https://doi.org/10.1021/ac200054v pmid: 21619005
233 W W Yu, E Chang, R Drezek, V L Colvin. Water-soluble quantum dots for biomedical applications. Biochemical and Biophysical Research Communications, 2006, 348(3): 781–786
https://doi.org/10.1016/j.bbrc.2006.07.160 pmid: 16904647
234 W Chen. Nanoparticle fluorescence based technology for biological applications. Journal of Nanoscience and Nanotechnology, 2008, 8(3): 1019–1051
https://doi.org/10.1166/jnn.2008.301 pmid: 18468106
235 W Chen, S L Westcott, S Wang, Y Liu. Dose dependent X-ray luminescence in MgF2:Eu2+, Mn2+ phosphors. Journal of Applied Physics, 2008, 103(11): 113103
https://doi.org/10.1063/1.2937084
236 Y Liu, Y Zhang, S Wang, C Pope, W Chen. Optical behaviors of ZnO-porphyrin conjugates and their potential applications for cancer treatment. Applied Physics Letters, 2008, 92(14): 143901
https://doi.org/10.1063/1.2908211
237 Y Liu, W Chen, S Wang, A G Joly. Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation. Applied Physics Letters, 2008, 92(4): 043901
https://doi.org/10.1063/1.2835701
238 Y Liu, W Chen, S Wang, A G Joly, S Westcott, B K Woo. X-ray luminescence of LaF3:Tb3+ and LaF3:Ce3+,Tb3+ water-soluble nanoparticles. Journal of Applied Physics, 2008, 103(6): 063105
https://doi.org/10.1063/1.2890148
239 P Juzenas, W Chen, Y P Sun, M A N Coelho, R Generalov, N Generalova, I L Christensen. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Advanced Drug Delivery Reviews, 2008, 60(15): 1600–1614
https://doi.org/10.1016/j.addr.2008.08.004 pmid: 18840487
240 N V Klassen, V V Kedrov, Y A Ossipyan, S Z Shmurak, I M Shmyt’ko, O A Krivko, E A Kudrenko, V N Kurlov, N P Kobelev, A P Kiselev, S I Bozhko. Nanoscintillators for microscopic diagnostics of biological and medical objects and medical therapy. IEEE Transactions on Nanobioscience, 2009, 8(1): 20–32
https://doi.org/10.1109/TNB.2009.2016551 pmid: 19304500
[1] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[2] Ruiqing HU, Yifeng SHI, Haifeng BAO. Luminescent disordered nanostructures: synthesis and characterization of CdSe nano-agglomerates[J]. Front. Optoelectron., 2018, 11(4): 385-393.
[3] James ARCHER, Enbang LI. Recent advances in photonic dosimeters for medical radiation therapy[J]. Front. Optoelectron., 2018, 11(1): 23-29.
[4] Yanxiong E,Zhibiao HAO,Jiadong YU,Chao WU,Lai WANG,Bing XIONG,Jian WANG,Yanjun HAN,Changzheng SUN,Yi LUO. Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE[J]. Front. Optoelectron., 2016, 9(2): 318-322.
[5] E. KASPER, M. OEHME, J. WERNER, T. AGUIROV, M. KITTLER. Direct band gap luminescence from Ge on Si pin diodes[J]. Front Optoelec, 2012, 5(3): 256-260.
[6] Yijie HUO, Hai LIN, Robert CHEN, Yiwen RONG, Theodore I. KAMINS, James S. HARRIS. MBE growth of tensile-strained Ge quantum wells and quantum dots[J]. Front Optoelec, 2012, 5(1): 112-116.
[7] Zhongwei SHI, Lirong HUANG, Yi YU, Peng TIAN, Hanchao WANG. Influence of V/III ratio on QD size distribution[J]. Front Optoelec Chin, 2011, 4(4): 364-368.
[8] Caixia SONG, Yuwei SUN, Yaohua XU, Debao WANG. Synthesis and optical property of ZnO nano-/micro-rods[J]. Front Optoelec Chin, 2011, 4(2): 156-160.
[9] Pijus Kanti SAMANTA, Partha Roy CHAUDHURI. Substrate effect on morphology and photoluminescence from ZnO monopods and bipods[J]. Front Optoelec Chin, 2011, 4(2): 130-136.
[10] Jieying KONG, Bin LIU, Rong ZHANG, Zili XIE, Yong ZHANG, Xiangqian XIU, Youdou ZHENG. Optical properties of InN films grown by MOCVD[J]. Front Optoelec Chin, 2008, 1(3-4): 341-344.
[11] Guoliang LIU, Jianghong YAO, Jingjun XU, Zhanguo WANG. Temperature dependence of photoluminescence of QD arrays[J]. Front Optoelec Chin, 2008, 1(3-4): 258-262.
[12] JIA Guozhi, YAO Jianghong, SHU Yongchun, WANG Zhanguo. Optical properties and structure of InAs quantum dots in near-infrared band[J]. Front. Optoelectron., 2008, 1(1-2): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed