Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (4) : 450-458    https://doi.org/10.1007/s12200-020-1024-0
REVIEW ARTICLE
Recent progress in the research on using CuSbS2 and its derivative CuPbSbS3 as absorbers in case of photovoltaic devices
Muyi ZHANG1,2, Chong WANG1, Chao CHEN1(), Jiang TANG1,2,3
1. Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2. China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China
3. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(1363 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Thin-film solar cells show considerable application potential as alternative photovoltaic technologies. Cuprous antimony chalcogen materials and their derivatives, represented as CuSbS2 and CuPbSbS3, respectively, exhibit the advantages of low cost, massive elemental abundance, stability, and good photoelectric properties, including a suitable bandgap and large optical absorption coefficient. These advantages demonstrate that they can be used as light absorbers in photovoltaic applications. In this study, we review the major properties, fabrication methods, and recent progress of the performance of the devices containing CuSbS2 and CuPbSbS3. Furthermore, the limitations and future development prospects with respect to the CuSbS2 and CuPbSbS3 solar cells are discussed.

Keywords CuSbS2      CuPbSbS3      properties      fabrication      performance     
Corresponding Author(s): Chao CHEN   
Just Accepted Date: 02 April 2020   Online First Date: 21 May 2020    Issue Date: 06 December 2021
 Cite this article:   
Muyi ZHANG,Chong WANG,Chao CHEN, et al. Recent progress in the research on using CuSbS2 and its derivative CuPbSbS3 as absorbers in case of photovoltaic devices[J]. Front. Optoelectron., 2021, 14(4): 450-458.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1024-0
https://academic.hep.com.cn/foe/EN/Y2021/V14/I4/450
Fig.1  Comparison of the elemental abundance versus price
Fig.2  Crystal structures of CuSbS2 and CuPbSbS3
Fig.3  Band structures of (a) CuSbS2 and (b) CuPbSbS3 obtained via DFT [13]. Copyright 2020. Reproduced with permission from Elsevier
Fig.4  (a) and (b) Optical absorption coefficients of CuSbS2 and CuPbSbS3, and their linear fittings that are extrapolated to the bandgaps (insets). (c) and (d) UPS spectra of CuSbS2 and CuPbSbS3. Insets show the magnified low-energy spectra and their linear fittings [11,13]. Copyright 2014. Reproduced with permission from ACS Publications; copyright 2020. Reproduced with permission from Elsevier
Fig.5  TGA curves of (a) CuSbS2 powder and (b) CuPbSbS3 solution [11,13]. Copyright 2014. Reproduced with permission from ACS Publications; copyright 2020. Reproduced with permission from Elsevier
CuSbS2 CuPbSbS3
mineral species chalcostibite bournonite
crystal system orthorhombic orthorhombic
space group Pnma (No. 62) Pmn21 (No. 31)
lattice parameter/Å a 6.018 7.885
b 3.796 8.287
c 14.495 8.816
crystal structure 2D layer 3D network
electronic dimensionality <3D 3D
absorption coefficient/cm1
(visible wavelength)
>7 × 104 >4 × 105
bandgap/eV 1.40 1.31
maximum efficiency limit 23% 33%
CBM/eV −3.85 −3.93
VBM/eV −5.25 −5.24
Fermi energy/eV −4.86 −4.86
conduction type p p
hole mobility/(cm2·v−1·s−1) 49 7
carrier concentration/cm−3 2.66 × 1018 6.08 × 1014
dielectric constant ~13 7.1–7.6
melting point/°C 551 522
density/(g·cm−3) 5.03 5.63
Tab.1  Material and optoelectronic properties of CuSbS2 and CuPbSbS3
Fig.6  (a) CuSbS2 device structure exhibiting the best performance until now. (b) CuPbSbS3 device structure exhibiting the best performance until now [13,21]. Copyright 2016 and 2020. Reproduced with permission from Elsevier
absorber device structure fabrication VOC/mV JSC/(mA?cm−2) FF/% PCE/% year Ref.
CuSbS2 glass/Mo/CuSbS2/CdS/ZnO:Al electrochemical deposition 490 14.73 44 3.13 2014 [29]
CuSbS2 glass/FTO/TiO2/mp-TiO2/CuSbS2/HTM/Au metal/thiourea+ spin coating 304 21.50 46.8 3.10 2015 [31]
CuSbS2 glass/Mo/CuSbS2/CdS/ZnO/ZnO:Al/Ag two-stage
co-evaporation
526 9.57 37.4 1.90 2016 [24]
CuSbS2 glass/Mo/CuSbS2/CdS/i-ZnO/n-ZnO/Al spin coating 470 15.64 43.56 3.22 2016 [21]
CuSbS2 glass/Mo/TiN/CuSbS2/GaN/In0.15Ga0.85N/ITO co-sputtering 295 33.78 30 2.99 2017 [25]
CuPbSbS3 glass/ITO/CdS/CuPbSbS3/HTM/Au BDCA solution
+ spin coating
699 8.19 39 2.23 2020 [13]
Tab.2  Fabrication methods and performances of the efficient CuSbS2 and CuPbSbS3 devices (PCEs>1.9%) developed since 2014
1 J Shay, S Wagner, H Kasper. Efficient CuInSe2/CdS solar cells. Applied Physics Letters, 1975, 27(2): 89–90
https://doi.org/10.1063/1.88372
2 M Nakamura, K Yamaguchi, Y Kimoto, Y Yasaki, T Kato, H Sugimoto. Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics, 2019, 9(6): 1863–1867
https://doi.org/10.1109/JPHOTOV.2019.2937218
3 W M Haynes, D R Lide. Abundance of Elements in the Earth’s Crust and in the Sea. CRC Handbook of Chemistry and Physics. 95th edition, Internet Version. CRC Press, 2014
4 Y Rodriguez-Lazcano, M Nair, P. NairCuxSbySz thin films produced by annealing chemically deposited Sb2S3-CuS thin films. Modern Physics Letters B, 2001, 15(17n19): 667–670
5 Y Rodríguez-Lazcano, M Nair, P Nair. CuSbS2 thin film formed through annealing chemically deposited Sb2S3–CuS thin films. Journal of Crystal Growth, 2001, 223(3): 399–406
https://doi.org/10.1016/S0022-0248(01)00672-8
6 W Shockley, H J Queisser. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510–519
https://doi.org/10.1063/1.1736034
7 J Zhou, G Q Bian, Q Y Zhu, Y Zhang, C Y Li, J Dai. Solvothermal crystal growth of CuSbQ2 (Q= S, Se) and the correlation between macroscopic morphology and microscopic structure. Journal of Solid State Chemistry, 2009, 182(2): 259–264
https://doi.org/10.1016/j.jssc.2008.10.025
8 K Hoang, S D Mahanti. Atomic and electronic structures of IV–VI2 ternary chalcogenides. Journal of Science: Advanced Materials and Devices, 2016, 1(1): 51–56
9 C Tablero. The optical properties of CuPbSbS3-bournonite with photovoltaic applications. Theoretical Chemistry Accounts, 2016, 135(5): 126
https://doi.org/10.1007/s00214-016-1890-0
10 M Frumar, T Kala, J Horak. Growth and some physical properties of semiconducting CuPbSbS3 crystals. Journal of Crystal Growth, 1973, 20(3): 239–244
https://doi.org/10.1016/0022-0248(73)90011-0
11 B Yang, L Wang, J Han, Y Zhou, H Song, S Chen, J Zhong, L Lv, D Niu, J Tang. CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chemistry of Materials, 2014, 26(10): 3135–3143
https://doi.org/10.1021/cm500516v
12 T Tinoco, C Rincón, M Quintero, G S Pérez. Phase diagram and optical energy gaps for CuInyGa1−ySe2 alloys. Physica Status Solidi (a), 1991, 124(2): 427–434
13 Y Liu, B Yang, M Zhang, B Xia, C Chen, X Liu, J Zhong, Z Xiao, J Tang. Bournonite CuPbSbS3: an electronically-3D, defect-tolerant, and solution-processable semiconductor for efficient solar cells. Nano Energy, 2020, 71: 104574
https://doi.org/10.1016/j.nanoen.2020.104574
14 P Majsztrik, M Kirkham, V Garcia-Negron, E Lara-Curzio, E Skoug, D Morelli. Effect of thermal processing on the microstructure and composition of Cu–Sb–Se compounds. Journal of Materials Science, 2013, 48(5): 2188–2198
https://doi.org/10.1007/s10853-012-6994-x
15 Y Zhang, V Ozolins, D Morelli, C Wolverton. Prediction of new stable compounds and promising thermoelectrics in the Cu–Sb–Se system. Chemistry of Materials, 2014, 26(11): 3427–3435
https://doi.org/10.1021/cm5006828
16 A Edenharter, W Nowacki, Y Takéuchi. Verfeinerung der Kristallstruktur von Bournonit [(SbS3)2|CuIV2PbVIIPbVIII] und von Seligmannit [(AsS3)2|Cu2IVPbVIIPbVIII]. Zeitschrift für Kristallographie. Crystalline Materials, 1970, 131(1–6): 397–417
https://doi.org/10.1524/zkri.1970.131.1-6.397
17 Z Xiao, W Meng, J Wang, D B Mitzi, Y Yan. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Materials Horizons, 2017, 4(2): 206–216
https://doi.org/10.1039/C6MH00519E
18 D J Temple, A B Kehoe, J P Allen, G W Watson, D O Scanlon. Geometry, electronic structure, and bonding in CuMCh2 (M= Sb, Bi; Ch= S, Se): alternative solar cell absorber materials? Journal of Physical Chemistry C, 2012, 116(13): 7334–7340
https://doi.org/10.1021/jp300862v
19 S Rühle. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Solar Energy, 2016, 130: 139–147
https://doi.org/10.1016/j.solener.2016.02.015
20 G Niu, X Guo, L Wang. Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 8970–8980
https://doi.org/10.1039/C4TA04994B
21 S Banu, S J Ahn, S K Ahn, K Yoon, A Cho. Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks. Solar Energy Materials and Solar Cells, 2016, 151: 14–23
https://doi.org/10.1016/j.solmat.2016.02.013
22 A Rabhi, M Kanzari, B Rezig. Growth and vacuum post-annealing effect on the properties of the new absorber CuSbS2 thin films. Materials Letters, 2008, 62(20): 3576–3578
https://doi.org/10.1016/j.matlet.2008.04.003
23 C Garza, S Shaji, A Arato, E P Tijerina, G A Castillo, T D Roy, B Krishnan. p-Type CuSbS2 thin films by thermal diffusion of copper into Sb2S3. Solar Energy Materials and Solar Cells, 2011, 95(8): 2001–2005
https://doi.org/10.1016/j.solmat.2010.06.011
24 L Wan, C Ma, K Hu, R Zhou, X Mao, S Pan, L H Wong, J Xu. Two-stage co-evaporated CuSbS2 thin films for solar cells. Journal of Alloys and Compounds, 2016, 680: 182–190
https://doi.org/10.1016/j.jallcom.2016.04.193
25 A D Saragih, D H Kuo, T T A Tuan. Thin film solar cell based on p-CuSbS2 together with Cd-free GaN/InGaN bilayer. Journal of Materials Science Materials in Electronics, 2017, 28(3): 2996–3003
https://doi.org/10.1007/s10854-016-5885-3
26 A W Welch, P P Zawadzki, S Lany, C A Wolden, A Zakutayev. Self-regulated growth and tunable properties of CuSbS2 solar absorbers. Solar Energy Materials and Solar Cells, 2015, 132: 499–506
https://doi.org/10.1016/j.solmat.2014.09.041
27 Y Rodríguez-Lazcano, M Nair, P Nair. Photovoltaic pin structure of Sb2S3 and CuSbS2 absorber films obtained via chemical bath deposition. Journal of the Electrochemical Society, 2005, 152(8): G635–G638
https://doi.org/10.1149/1.1945387
28 S Manolache, A Duta, L Isac, M Nanu, A Goossens, J Schoonman. The influence of the precursor concentration on CuSbS2 thin films deposited from aqueous solutions. Thin Solid Films, 2007, 515(15): 5957–5960
https://doi.org/10.1016/j.tsf.2006.12.046
29 W Septina, S Ikeda, Y Iga, T Harada, M Matsumura. Thin film solar cell based on CuSbS2 absorber fabricated from an electrochemically deposited metal stack. Thin Solid Films, 2014, 550: 700–704
https://doi.org/10.1016/j.tsf.2013.11.046
30 Y Zhang, J Huang, C Yan, K Sun, X Cui, F Liu, Z Liu, X Zhang, X Liu, J A Stride, M A Green, X Hao. High open-circuit voltage CuSbS2 solar cells achieved through the formation of epitaxial growth of CdS/CuSbS2 hetero-interface by post-annealing treatment. Progress in Photovoltaics: Research and Applications, 2019, 27(1): 37–43
https://doi.org/10.1002/pip.3061
31 Y C Choi, E J Yeom, T K Ahn, S I Seok. CuSbS2 -sensitized inorganic-organic heterojunction solar cells fabricated using a metal-thiourea complex solution. Angewandte Chemie International Edition, 2015, 54(13): 4005–4009
https://doi.org/10.1002/anie.201411329 pmid: 25650302
[1] Yongfeng FU, Jing CHEN, Weiming WU, Yu HUANG, Jie HONG, Long CHEN, Zhongbin LI. A QoT prediction technique based on machine learning and NLSE for QoS and new lightpaths in optical communication networks[J]. Front. Optoelectron., 2021, 14(4): 513-521.
[2] Dong Kyo OH, Taejun LEE, Byoungsu KO, Trevon BADLOE, Jong G. OK, Junsuk RHO. Nanoimprint lithography for high-throughput fabrication of metasurfaces[J]. Front. Optoelectron., 2021, 14(2): 229-251.
[3] Pengfei FU, Sanlue HU, Jiang TANG, Zewen XIAO. Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites[J]. Front. Optoelectron., 2021, 14(2): 252-259.
[4] Peipei DU, Liang GAO, Jiang TANG. Focus on performance of perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 235-245.
[5] Yuhan YAO, Zhao CHENG, Jianji DONG, Xinliang ZHANG. Performance of integrated optical switches based on 2D materials and beyond[J]. Front. Optoelectron., 2020, 13(2): 129-138.
[6] Oliver SALE, Safaa HASSAN, Noah HURLEY, Khadijah ALNASSER, Usha PHILIPOSE, Hualiang ZHANG, Yuankun LIN. Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics[J]. Front. Optoelectron., 2020, 13(1): 12-17.
[7] Tianliang WANG, Xiaoying LIU. A novel modulation format identification based on amplitude histogram space[J]. Front. Optoelectron., 2019, 12(2): 190-196.
[8] Tieshan YANG, Han LIN, Baohua JIA. Two-dimensional material functional devices enabled by direct laser fabrication[J]. Front. Optoelectron., 2018, 11(1): 2-22.
[9] Weichong TANG, Zili ZHANG, Ke XIAO, Changchun ZHAO, Zhiyuan ZHENG. Terahertz frequency characterization of anisotropic structure of tourmaline[J]. Front. Optoelectron., 2017, 10(4): 409-413.
[10] Yonglun TANG, Haibo REN, Jiarui HUANG. Synthesis of porous TiO2 nanowires and their photocatalytic properties[J]. Front. Optoelectron., 2017, 10(4): 395-401.
[11] Shoujun DING, Qingli ZHANG, Wenpeng LIU, Jianqiao LUO, Dunlu SUN. Basic properties of a new Nd-doped laser crystal: Nd:GdNbO4[J]. Front. Optoelectron., 2017, 10(2): 111-116.
[12] Yingqin PENG,Yuli CHEN,Qi SUI,Dawei WANG,Dongyu GENG,Freddy FU,Zhaohui LI. In-band OSNR monitoring based on low-bandwidth coherent receiver and tunable laser[J]. Front. Optoelectron., 2016, 9(3): 526-530.
[13] Zhicheng LIU,Hao SUN,Leijun YIN,Yongzhuo LI,Jianxing ZHANG,Cun-Zheng NING. Single crystal erbium compound nanowires as high gain material for on-chip light source applications[J]. Front. Optoelectron., 2016, 9(2): 312-317.
[14] Wei XIONG,Yunshen ZHOU,Wenjia HOU,Lijia JIANG,Masoud MAHJOURI-SAMANI,Jongbok PARK,Xiangnan HE,Yang GAO,Lisha FAN,Tommaso BALDACCHINI,Jean-Francois SILVAIN,Yongfeng LU. Laser-based micro/nanofabrication in one, two and three dimensions[J]. Front. Optoelectron., 2015, 8(4): 351-378.
[15] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed