Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2024, Vol. 17 Issue (3) : 24    https://doi.org/10.1007/s12200-024-00128-0
Real-time detection of aging status of methylammonium lead iodide perovskite thin films by using terahertz time-domain spectroscopy
Jinzhuo Xu1, Yinghui Wu2, Shuting Fan3, Xudong Liu3, Zhen Yin3, Youpeng Yang3, Renheng Wang3, Zhengfang Qian3, Yiwen Sun3()
1. Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
2. Guangdong Provincial Key Laboratory of Durability for Ocean Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
3. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
 Download: PDF(4021 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The inadequate stability of organic–inorganic hybrid perovskites remains a significant barrier to their widespread commercial application in optoelectronic devices. Aging phenomena profoundly affect the optoelectronic performance of perovskite-based devices. In addition to enhancing perovskite stability, the real-time detection of aging status, aimed at monitoring the aging progression, holds paramount importance for both fundamental research and the commercialization of organic–inorganic hybrid perovskites. In this study, the aging status of perovskite was real-time investigated by using terahertz time-domain spectroscopy. Our analysis consistently revealed a gradual decline in the intensity of the absorption peak at 0.968 THz with increasing perovskite aging. Furthermore, a systematic discussion was conducted on the variations in intensity and position of the terahertz absorption peaks as the perovskite aged. These findings facilitate the real-time assessment of perovskite aging, providing a promising method to expedite the commercialization of perovskite-based optoelectronic devices.

Keywords Perovskite      Terahertz spectroscopy      Ageing      Real-time detection     
Corresponding Author(s): Yiwen Sun   
About author:

#These authors contributed equally to this work.

Issue Date: 08 August 2024
 Cite this article:   
Jinzhuo Xu,Yinghui Wu,Shuting Fan, et al. Real-time detection of aging status of methylammonium lead iodide perovskite thin films by using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2024, 17(3): 24.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-024-00128-0
https://academic.hep.com.cn/foe/EN/Y2024/V17/I3/24
1 M.M. Byranvand, , C. Otero-Martínez, , J. Ye, , W. Zuo, , L. Manna, , M. Saliba, , R.L.Z. Hoye, , L. Polavarapu, : Recent progress in mixed A-site cation halide perovskite thin-films and nanocrystals for solar cells and light-emitting diodes. Adv. Opt. Mater. 10 (14), 2200423 (2022)
https://doi.org/10.1002/adom.202200423
2 Z. Saki, , M.M. Byranvand, , N. Taghavinia, , M. Kedia, , M. Saliba, : Solution-processed perovskite thin-films: the journey from lab-to large-scale solar cells. Energy Environ. Sci. 14 (11), 5690- 5722 (2021)
https://doi.org/10.1039/D1EE02018H
3 M. Saliba, : Perovskite solar cells must come of age. Science 359 (6374), 388- 389 (2018)
https://doi.org/10.1126/science.aar5684
4 Y. Rong, , Y. Hu, , A. Mei, , H. Tan, , M.I. Saidaminov, , S.I. Seok, , M.D. Mcgehee, , E.H. Sargent, , H. Han, : Challenges for commercializing perovskite solar cells. Science 361 (6408), 8235 (2018)
https://doi.org/10.1126/science.aat8235
5 J. Burschka, , N. Pellet, , S.J. Moon, , R. Humphry-Baker, , P. Gao, , M.K. Nazeeruddin, , M. Grätzel, : Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499 (7458), 316- 319 (2013)
https://doi.org/10.1038/nature12340
6 D.Y. Son, , J.W. Lee, , Y.J. Choi, , I.H. Jang, , S. Lee, , P.J. Yoo, , H. Shin, , N. Ahn, , M. Choi, , D. Kim, , N.G. Park, : Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1 (7), 1- 8 (2016)
https://doi.org/10.1038/nenergy.2016.81
7 L. Durai, , S. Badhulika, : Current challenges and developments in perovskite-based electrochemical biosensors for effective theragnostics of neurological disorders. ACS Omega 7 (44), 39491- 39497 (2022)
https://doi.org/10.1021/acsomega.2c05591
8 A. Srivastava, , R. Das, , Y.K. Prajapati, : Effect of perovskite material on performance of surface plasmon resonance biosensor. IET Optoelectron. 14 (5), 256- 265 (2020)
https://doi.org/10.1049/iet-opt.2019.0122
9 X. Zhang, , H. Peng, , J. Liu, , Y. Yuan, : Highly sensitive plasmonic biosensor enhanced by perovskite-graphene hybrid configuration. J. Opt. 25 (7), 075002 (2023)
https://doi.org/10.1088/2040-8986/acd463
10 L. Dou, , Y. Yang, , J. You, , Z. Hong, , W.H. Chang, , G. Li, , Y. Yang, : Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5 (1), 5404 (2014)
https://doi.org/10.1038/ncomms6404
11 D. Zhang, , C. Liu, , K. Li, , W. Guo, , F. Gao, , J. Zhou, , X. Zhang, , S. Ruan, : Trapped-electron-induced hole injection in perovskite photodetector with controllable gain. Adv. Opt. Mater. 6 (4), 1701189 (2018)
https://doi.org/10.1002/adom.201701189
12 S.D. Stranks, , H.J. Snaith, : Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10 (5), 391- 402 (2015)
https://doi.org/10.1038/nnano.2015.90
13 M.H. Park, , S.H. Jeong, , H.K. Seo, , C. Wolf, , Y.H. Kim, , H. Kim, , J. Byun, , J.S. Kim, , H. Cho, , T.W. Lee, : Unravelling additivebased nanocrystal pinning for high efficiency organic-inorganic halide perovskite light-emitting diodes. Nano. Energy 42, 157- 165 (2017)
https://doi.org/10.1016/j.nanoen.2017.10.012
14 A. Kojima, , K. Teshima, , Y. Shirai, , T. Miyasaka, : Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131 (17), 6050- 6051 (2009)
https://doi.org/10.1021/ja809598r
15 Q. Tan, , Z. Li, , G. Luo, , X. Zhang, , B. Che, , G. Chen, , H. Gao, , D. He, , G. Ma, , J. Wang, , J. Xiu, , H. Yi, , T. Chen, , Z. He, : Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620 (7974), 545- 551 (2023)
https://doi.org/10.1038/s41586-023-06207-0
16 W. Deng, , L. Huang, , X. Xu, , X. Zhang, , X. Jin, , S.T. Lee, , J. Jie, : Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement. Nano. Lett. 17 (4), 2482- 2489 (2017)
https://doi.org/10.1021/acs.nanolett.7b00166
17 N. Wang, , L. Cheng, , R. Ge, , S. Zhang, , Y. Miao, , W. Zou, , C. Yi, , Y. Sun, , Y. Cao, , R. Yang, , Y. Wei, , Q. Guo, , Y. Ke, , M. Yu, , Y. Jin, , Y. Liu, , Q. Ding, , D. Di, , L. Yang, , G. Xing, , H. Tian, , C. Jin, , F. Gao, , R.H. Friend, , J. Wang, , W. Huang, : Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10 (11), 699- 704 (2016)
https://doi.org/10.1038/nphoton.2016.185
18 L. Mao, , Y. Wu, , C.C. Stoumpos, , B. Traore, , C. Katan, , J. Even, , M.R. Wasielewski, , M.G. Kanatzidis, : Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10-x Clx. J. Am. Chem. Soc. 139 (34), 11956- 11963 (2017)
https://doi.org/10.1021/jacs.7b06143
19 X. Zhang, , H. Liu, , W. Wang, , J. Zhang, , B. Xu, , K.L. Karen, , Y. Zheng, , S. Liu, , S. Chen, , K. Wang, , X.W. Sun, : Hybrid perovskite light-emitting diodes based on perovskite nanocrystals with organic-inorganic mixed cations. Adv. Mater. 29 (18), 1606405 (2017)
https://doi.org/10.1002/adma.201606405
20 Q. Van Le, , H.W. Jang, , S.Y. Kim, : Recent advances toward high-efficiency halide perovskite light-emitting diodes: review and perspective. Small Methods 2 (10), 1700419 (2018)
https://doi.org/10.1002/smtd.201700419
21 J. Xue, , Z. Zhu, , X. Xu, , Y. Gu, , S. Wang, , L. Xu, , Y. Zou, , J. Song, , H. Zeng, , Q. Chen, : Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano. Lett. 18 (12), 7628- 7634 (2018)
https://doi.org/10.1021/acs.nanolett.8b03209
22 J.W. Lee, , D.H. Kim, , H.S. Kim, , S.W. Seo, , S.M. Cho, , N.G. Park, : Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5 (20), 1501310 (2015)
https://doi.org/10.1002/aenm.201501310
23 Z. Li, , M. Yang, , J.S. Park, , S.H. Wei, , J.J. Berry, , K. Zhu, : Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28 (1), 284- 292 (2016)
https://doi.org/10.1021/acs.chemmater.5b04107
24 C. Yi, , J. Luo, , S. Meloni, , A. Boziki, , N. Ashari-Astani, , C. Grätzel, , S.M. Zakeeruddin, , U. Rothlisberger, , M. Grätzel, : Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9 (2), 656- 662 (2016)
https://doi.org/10.1039/C5EE03255E
25 H. Lu, , W. Tian, , F. Cao, , Y. Ma, , B. Gu, , L. Li, : A self-powered and stable all-perovskite photodetector-solar cell nanosystem. Adv. Funct. Mater. 26 (8), 1296- 1302 (2016)
https://doi.org/10.1002/adfm.201504477
26 G. Niu, , X. Guo, , L. Wang, : Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain. 3 (17), 8970- 8980 (2015)
https://doi.org/10.1039/C4TA04994B
27 M.S. Tumusange, , B. Subedi, , C. Chen, , M.M. Junda, , Z. Song, , Y. Yan, , N.J. Podraza, : Impact of humidity and temperature on the stability of the optical properties and structure of MAPbI3, MA0.7FA0.3PbI3 and (FAPbI3)0.95(MAPbBr3)0.05 perovskite thin films. Materials (Basel) 14 (14), 4054 (2021)
28 F. Zhao, , X. Luo, , C. Gu, , J. Chen, , Z. Hu, , Y. Peng, : Novel 3D printing encapsulation strategies for perovskite photodetectors. Adv. Mater. Technol. 7 (12), 2200521 (2022)
https://doi.org/10.1002/admt.202200521
29 Y. Wu, , F. Xie, , H. Chen, , X. Yang, , H. Su, , M. Cai, , Z. Zhou, , T. Noda, , L. Han, : Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. 29 (28), 1701073 (2017)
https://doi.org/10.1002/adma.201701073
30 I. Amenabar, , F. Lopez, , A. Mendikute, : In introductory review to THz non-destructive testing of composite mater. Int. J. Infrared Millim. Terahertz Waves 34 (2), 152- 169 (2013)
https://doi.org/10.1007/s10762-012-9949-z
31 Z. Wu, , L. Wang, , Y. Peng, , A. Young, , S. Seraphin, , H. Xin, : Terahertz characterization of multi-walled carbon nanotube films. J. Appl. Phys. 103 (9), 094324 (2008)
https://doi.org/10.1063/1.2919784
32 M. Karaliūnas, , K.E. Nasser, , A. Urbanowicz, , I. Kašalynas, , D. Bražinskienė, , S. Asadauskas, , G. Valušis, : Non-destructive inspection of food and technical oils by terahertz spectroscopy. Sci. Rep. 8 (1), 18025 (2018)
https://doi.org/10.1038/s41598-018-36151-3
33 D. Zhao, , E.E. Chia, : Free carrier, exciton, and phonon dynamics in lead-halide perovskites studied with ultrafast terahertz spectroscopy. Adv. Opt. Mater. 8 (3), 1900783 (2020)
https://doi.org/10.1002/adom.201900783
34 P. Gopalan, , Y. Wang, , B. Sensale-Rodriguez, : Terahertz characterization of two-dimensional low-conductive layers enabled by metal gratings. Sci. Rep. 11 (1), 2833 (2021)
https://doi.org/10.1038/s41598-021-82560-2
35 V. Železný, , C. Kadlec, , S. Kamba, , D. Repček, , S. Kundu, , M.I. Saidaminov, : Infrared and terahertz studies of phase transitions in the CH3NH3PbBr3 perovskite. Phys. Rev. B 107 (17), 174113 (2023)
https://doi.org/10.1103/PhysRevB.107.174113
36 S.R. Konda, , Y. Lin, , R.A. Rajan, , W. Yu, , W. Li, : Measurement of optical properties of CH3NH3PbX3 (X= Br, I) single crystals using terahertz time-domain spectroscopy. Materials (Basel) 16 (2), 610 (2023)
https://doi.org/10.3390/ma16020610
37 I. Maeng, , Y.M. Lee, , M.C. Jung, : THz-wave absorption properties of organic-inorganic hybrid perovskite materials: a new candidate for THz sensors. Small Sci. 4 (3), 2300186 (2024)
https://doi.org/10.1002/smsc.202300186
38 C. La-o-vorakiat, , H. Xia, , J. Kadro, , T. Salim, , D. Zhao, , T. Ahmed, , Y.M. Lam, , J.X. Zhu, , R.A. Marcus, , M.E. Michel-Beyerle, , E.E.M. Chia, : Phonon mode transformation across the orthohombic-tetragonal phase transition in a lead iodide perovskite CH3NH3PbI3: a terahertz time-domain spectroscopy approach. J. Phys. Chem. Lett. 7 (1), 1- 6 (2016)
https://doi.org/10.1021/acs.jpclett.5b02223
39 M. Sendner, , P.K. Nayak, , D.A. Egger, , S. Beck, , C. Müller, , B. Epding, , W. Kowalsky, , L. Kronik, , H.J. Snaith, , A. Pucci, , R. Lovrinčić, : Optical phonons in methylammonium lead halide perovskites and implications for charge transport. Mater. Horiz. 3 (6), 613- 620 (2016)
https://doi.org/10.1039/C6MH00275G
40 X. Guo, , C. McCleese, , C. Kolodziej, , A.C. Samia, , Y. Zhao, , C. Burda, : Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite. Dalton Trans. 45 (9), 3806- 3813 (2016)
https://doi.org/10.1039/C5DT04420K
41 S.M. Jassim, , N.A. Bakr, , F.I. Mustafa, : Synthesis and characterization of MAPbI3 thin film and its application in C-Si/perovskite tandem solar cell. J. Mater. Sci. Mater. Electron. 31 (19), 16199- 16207 (2020)
https://doi.org/10.1007/s10854-020-04084-1
42 J. Ding, , S. Du, , Y. Zhao, , X. Zhang, , Z. Zuo, , H. Cui, , X. Zhan, , Y. Gu, , H. Sun, : High quality inorganic-organic perovskite CH3NH3PbI3 single crystals for photo detector applications. J. Mater. Sci. 52 (1), 276- 284 (2017)
https://doi.org/10.1007/s10853-016-0329-2
43 Y. Liu, , X. Ren, , J. Zhang, , Z. Yang, , D. Yang, , F. Yu, , J. Sun, , C. Zhao, , Z. Yao, , B. Wang, , Q. Wei, , F. Xiao, , H. Fan, , H. Deng, , L. Deng, , S.F. Liu, : 120 mm single-crystalline perovskite and wafers: towards viable applications. Sci. China Chem. 60 (10), 1367- 1376 (2017)
https://doi.org/10.1007/s11426-017-9081-3
44 C. Ma, , B. Kim, , S.W. Kim, , N.G. Park, : Dynamic halide perovskite heterojunction generates direct current. Environ. Sci. Technol. 14, 374- 381 (2021)
https://doi.org/10.1039/D0EE03487H
45 T.A. Hameed, , S.M. Yakout, , M.A. Wahba, , W. Sharmoukh, : Vanadium-doped CuO: insight into structural, optical, electrical, terahertz, and full-spectrum photocatalytic properties. Opt. Mater. 133, 113029 (2022)
https://doi.org/10.1016/j.optmat.2022.113029
46 T.A. Hameed, , F. Mohamed, , S.L. Abd-El-Messieh, , A.A. Ward, : Methylammonium lead iodide/poly (methyl methacrylate) nanocomposite films for photocatalytic applications. Mater. Chem. Phys. 293, 126811 (2023)
https://doi.org/10.1016/j.matchemphys.2022.126811
47 C. La-o-vorakiat, , L. Cheng, , T. Salim, , R.A. Marcus, , M.E. Michel-Beyerle, , Y.M. Lam, , E.E.M. Chia, : Phonon features in terahertz photoconductivity spectra due to data analysis artifact: a case study on organometallic halide perovskites. Appl. Phys. Lett. 110 (12), 123901 (2017)
https://doi.org/10.1063/1.4978688
48 A.V.E. Andrianov, , A.N. Aleshin, , L.B. Matyushkin, : Terahertz vibrational modes in CH3NH3PbI3 and CsPbI3 perovskite films. JETP Lett. 109 (1), 28- 32 (2019)
https://doi.org/10.1134/S0021364019010053
49 Y. Han, , S. Meyer, , Y. Dkhissi, , K. Weber, , J.M. Pringle, , U. Bach, , L. Spiccia, , Y.B. Cheng, : Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A Mater. Energy Sustain. 3 (15), 8139- 8147 (2015)
https://doi.org/10.1039/C5TA00358J
50 E. Smecca, , Y. Numata, , I. Deretzis, , G. Pellegrino, , S. Boninelli, , T. Miyasaka, , A.L. Magna, , A. Alberti, : Stability of solution-processed MAPbI3 and FAPbI3 layers. Phys. Chem. Chem. Phys. 18 (19), 13413- 13422 (2016)
https://doi.org/10.1039/C6CP00721J
51 L. Su, , M. Méndez, , J. Jiménez-López, , M. Zhu, , Y. Xiao, , E.J.P. Gil, : Analysis of the oxygen passivation effects on MAPbI3 and MAPbBr3 in fresh and aged solar cells by the transient photovoltage technique. ChemPlusChem 86 (9), 1316- 1321 (2021)
https://doi.org/10.1002/cplu.202100204
52 G. Abdelmageed, , C. Mackeen, , K. Hellier, , L. Jewell, , L. Seymour, , M. Tingwald, , F. Bridges, , J.Z. Zhang, , S. Carter, : Effect of temperature on light induced degradation in methylammonium lead iodide perovskite thin films and solar cells. Sol. Energ. Mat. Sol. C. 174, 566- 571 (2018)
https://doi.org/10.1016/j.solmat.2017.09.053
53 K. Ishioka, , T. Tadano, , M. Yanagida, , Y. Shirai, , K. Miyano, : Anharmonic organic cation vibrations in the hybrid lead halide perovskite CH3NH3PbI3. Phys. Rev. Mater. 5 (10), 105402 (2021)
https://doi.org/10.1103/PhysRevMaterials.5.105402
54 F. Brivio, , J.M. Frost, , J.M. Skelton, , A.J. Jackson, , O.J. Weber, , M.T. Weller, , A.R. Goni, , A.M.A. Leguy, , P.R.F. Barnes, , A. Walsh, : Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B Condens. Matter Mater. Phys. 92 (14), 144308 (2015)
https://doi.org/10.1103/PhysRevB.92.144308
[1] Yitong Lin, Yu Zhong, Yangpeng Lin, Jiawei Lin, Lei Pang, Zhilong Zhang, Yi Zhao, Xiao-Ying Huang, Ke-Zhao Du. White light emission in 0D halide perovskite [(CH3)3S]2SnCl6·H2O crystals through variation of doping ns2 ions[J]. Front. Optoelectron., 2024, 17(1): 6-.
[2] Wenbo Jia, Yi Jing, Han Zhang, Baoyan Tian, Huabo Huang, Changlei Wang, Ligang Xu. Suppression of deep-level traps via semicarbazide hydrochloride additives for high-performance tin-based perovskite solar cells[J]. Front. Optoelectron., 2023, 16(4): 47-.
[3] Max Karlsson, Jiajun Qin, Kaifeng Niu, Xiyu Luo, Johanna Rosen, Jonas Björk, Lian Duan, Weidong Xu, Feng Gao. Role of chloride on the instability of blue emitting mixed-halide perovskites[J]. Front. Optoelectron., 2023, 16(4): 37-.
[4] Cheng Wang, Yaoguang Rong, Ti Wang. Inorganic A-site cations improve the performance of band-edge carriers in lead halide perovskites[J]. Front. Optoelectron., 2023, 16(3): 25-.
[5] Shan Zhao, Xinyuan Du, Jincong Pang, Haodi Wu, Zihao Song, Zhiping Zheng, Ling Xu, Jiang Tang, Guangda Niu. Dark current modeling of thick perovskite X-ray detectors[J]. Front. Optoelectron., 2022, 15(4): 43-.
[6] Xianglang Sun, Zonglong Zhu, Zhong’an Li. Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells[J]. Front. Optoelectron., 2022, 15(4): 46-.
[7] Wentao Fan, Qiyuan Gao, Xinyi Mei, Donglin Jia, Jingxuan Chen, Junming Qiu, Qisen Zhou, Xiaoliang Zhang. Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells[J]. Front. Optoelectron., 2022, 15(3): 39-.
[8] Longbo YANG, Jincong PANG, Zhifang TAN, Qi XIAO, Tong JIN, Jiajun LUO, Guangda NIU, Jiang TANG. Oxide perovskite Ba2AgIO6 wafers for X-ray detection[J]. Front. Optoelectron., 2021, 14(4): 473-481.
[9] Pengfei FU, Sanlue HU, Jiang TANG, Zewen XIAO. Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites[J]. Front. Optoelectron., 2021, 14(2): 252-259.
[10] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[11] Peipei DU, Liang GAO, Jiang TANG. Focus on performance of perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 235-245.
[12] Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI, Hongwei HAN. Influence of precursor concentration on printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 256-264.
[13] Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 272-281.
[14] Chuanzhong YAN, Kebin LIN, Jianxun LU, Zhanhua WEI. Composition engineering to obtain efficient hybrid perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 282-290.
[15] Yan ZHU, Yining MU, Fanqi TANG, Peng DU, Hang REN. A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam[J]. Front. Optoelectron., 2020, 13(3): 291-302.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed