Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    0, Vol. Issue () : 342-357    https://doi.org/10.1007/s11706-011-0151-3
REVIEW ARTICLE
Nanocomposites and bone regeneration
Roshan JAMES1,2,3, Meng DENG1,2,3, Cato T. LAURENCIN1,2,3,4, Sangamesh G. KUMBAR1,2,3,4()
1. Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; 2. New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT 06030, USA; 3. Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; 4. Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
 Download: PDF(748 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

Keywords bone graft substitute      nanocomposite      hydroxyapatite      collagen      nanofiber      biomimetic      nanobiomaterial      osteogenic      segmental defect      tibia defect     
Corresponding Author(s): KUMBAR Sangamesh G.,Email:kumbar@uchc.edu   
Issue Date: 05 December 2011
 Cite this article:   
Roshan JAMES,Meng DENG,Cato T. LAURENCIN, et al. Nanocomposites and bone regeneration[J]. Front Mater Sci, 0, (): 342-357.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-011-0151-3
https://academic.hep.com.cn/foms/EN/Y0/V/I/342
Fig.1  Hierarchical structural organization of bone where the macrostructure is composed of cortical and cancellous bone, which is composed of osteons with Haversian systems and lamellae. This microstructure is composed of collagen fibers made up of nano-diameter collagen fibrils. The smallest structural unit in bone is bone mineral crystals, collagen molecules, and non-collagenous proteins. (Reproduced with permission from Ref. [], Copyright 1998 Elsevier Ltd.)
PropertiesMeasurements
Cortical boneCancellous bone
Young’s modulus /GPa14-200.05-0.5
Tensile strength /MPa50-15010-20
Compressive strength /MPa170-1937-10
Fracture toughness /(MPa·m1/2)2-120.1
Strain to failure1-35-7
Density /(g·cm-3)18-220.1-1.0
Apparent density /(g·cm-3)1.8-2.00.1-1.0
Surface/bone volume /(mm2·mm-3)2.520
Total bone volume /mm31.4β×β1060.35β×β106
Total internal surface3.5β×β1067.0β×β106
Tab.1  Bone biomechanical properties (Reproduced with permission from Ref. [], Copyright 2005 Elsevier Ltd.)
Inorganic phaseContent /wt.%Organic phaseContent /wt.%
hydroxyapatite~60collagen~20
carbonate~4water~9
citrate~0.9non-collagenous proteins (osteocalcin, osteonectin, osteopontin, thrombospondin, morphogenetic proteins, sialoprotein, serum proteins)~3
sodium~0.7--
magnesium~0.5--
other traces: Cl-, F-, K+, Sr2+, Pb2+, Zn2+, Cu2+, Fe2+-other traces: polysaccharides, lipids, cytokines-
--primary bone cells: osteoblasts, osteocytes, osteoclasts.-
Tab.2  Composition of bone (Reproduced with permission from Ref. [], Copyright 2005 Elsevier Ltd.)
Fig.2  SEM image of nHAC/PLA composite scaffold with micron sized (100-300 μm) interconnected pores with a pore wall thickness of 15-30 μm. (Reproduced with permission from Ref. [], Copyright 2004 John Wiley and Sons)
Fig.3  Representative computer radiographs (CR) of rabbit radius defects implanted with the porous scaffolds of BMP-2/g-HA/PLAGA (a-1, a-2, a-3 and a-4), g-HA/PLAGA (b-1, b-2, b-3 and b-4), HA/PLAGA (c-1, c-2, c-3 and c-4), and PLAGA (d-1, d-2, d-3 and d-4) at 0, 2, 4 and 8 weeks post-surgery. There were more mineral deposit and new bone formation in the groups of BMP-2/g-HA/PLAGA, g-HA/PLAGA, HA/PLAGA than that in the group of PLAGA. (Reproduced with permission from Ref. [], Copyright 2008 Elsevier Ltd.)
Fig.4  Micro-computed tomography: Two examples of the μCT of the entire cranial bone are shown. Defect margins and treatment modalities are indicated. μCT based direct intra-animal comparison of PLAGA- and PLAGA/TCP-treated defects of all nine animals. In all animals, with one exception, the closure of the PLAGA/TCP-treated defects is advanced compared to the PLAGA-treated defect in the same animal. (Reproduced with permission from Ref. [], Copyright 2008 Acta Materialia Inc. and Elsevier Ltd.)
Fig.5  Electrospun nanofibers of poly[bis(-methylphenoxy)phosphazene]: SEM image showing the uniform morphology of nanofibers. SEM image presenting MC3T3-E1 cells covering the nanofiber matrix after 7 days of culture. (Reproduced with permission from Ref. [], Copyright 2004 American Chemical Society)
1 Braddock M, Houston P, Campbell C, . Born again bone: tissue engineering for bone repair. News in Physiological Sciences , 2001, 16(5): 208-213
2 Shors E C. Coralline bone graft substitutes. Orthopedic Clinics of North America , 1999, 30(4): 599-613
3 Webster T J. Nanophase ceramics as improved bone tissue engineering materials. American Ceramic Society Bulletin , 2003, 82(6): 23-28
4 Orthopaedic Biomaterials Market Review.
5 American Academy of Orthopaedic Surgeons. The Evolving Role of Bone-Graft Substitutes. AAOS 77th Annual Meeting, New Orleans, LA, USA , 2010. http://www.aatb.org/aatb/files/ccLibraryFiles/Filename/000000000322/BoneGraftSubstitutes2010.pdf
6 Tomford W W. Overview. In: Laurencin C T, ed. Bone Graft Substitutes. West Conshohocken, PA , USA: ASTM International, 2003
7 Khan Y, Laurencin C T. Fracture repair with ultrasound: clinical and cell-based evaluation. The Journal of Bone and Joint Surgery (American Volume) , 2008, 90(Suppl 1): 138-144
8 Laurencin C, Khan Y, El-Amin S F. Bone graft substitutes. Expert Review of Medical Devices , 2006, 3(1): 49-57
9 Ilan D I, Ladd A L. Bone graft substitutes. Operative Techniques in Plastic and Reconstructive Surgery , 2002, 9(4): 151-160
10 Laurencin C T, Khan Y. Bone graft substitute materials. http://emedicinemedscapecom/article/1230616-overview.
11 Goulet J A, Senunas L E, DeSilva G L, . Autogenous iliac crest bone graft. Complications and functional assessment. Clinical Orthopaedics and Related Research , 1997, 339: 76-81
12 Berrey B H Jr, Lord C F, Gebhardt M C, . Fractures of allografts. Frequency, treatment, and end-results. The Journal of Bone and Joint Surgery (American Volume) , 1990, 72(6): 825-833
13 Ito H, Koefoed M, Tiyapatanaputi P, . Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nature Medicine , 2005, 11(3): 291-297
14 Laurencin C T, Ambrosio A M A, Borden M D, . Tissue engineering: orthopedic applications. Annual Review of Biomedical Engineering , 1999, 1(1): 19-46
15 Langer R, Vacanti J P. Tissue engineering. Science , 1993, 260(5110): 920-926
16 Langer R. Tissue engineering. Molecular Therapy , 2000, 1(1): 12-15
17 Khan Y, Yaszemski M J, Mikos A G, . Tissue engineering of bone: material and matrix considerations. The Journal of Bone and Joint Surgery (American Volume) , 2008, 90(Suppl 1): 36-42
18 Athanasiou K A, Zhu C F, Lanctot D R, . Fundamentals of biomechanics in tissue engineering of bone. Tissue Engineering , 2000, 6(4): 361-381
19 Einhorn T A. The cell and molecular biology of fracture healing. Clinical Orthopaedics and Related Research , 1998, 355(Supplement): S7-S21
20 Schindeler A, McDonald M M, Bokko P, . Bone remodeling during fracture repair: The cellular picture. Seminars in Cell and Developmental Biology , 2008, 19(5): 459-466
21 Nair L S, Laurencin C T. Biodegradable polymers as biomaterials. Progress in Polymer Science , 2007, 32(8-9): 762-798
22 Deng M, Kumbar S G, Lo K W H, . Novel polymer-ceramics for bone repair and regeneration. Recent Patents on Biomedical Engineering , 2011, 4(3) (in press)
23 Deng M, Kumbar S G, Wan Y, . Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications. Soft Matter , 2010, 6(14): 3119-3132
24 Deng M, Nair L S, Nukavarapu S P, . Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering. Biomaterials , 2010, 31(18): 4898-4908
25 Deng M, Nair L S, Nukavarapu S P, . Biomimetic, bioactive etheric polyphosphazene-poly(lactide-co-glycolide) blends for bone tissue engineering. Journal of Biomedical Materials Research Part A , 2010, 92(1): 114-125
26 Deng M, Nair L S, Nukavarapu S P, . Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl phenoxy) phosphazene] and poly(lactic acid-glycolic acid). Biomaterials , 2008, 29(3): 337-349
27 Deng M, Nair L S, Nukavarapu S P, . In situ porous structures: a unique polymer erosion mechanism in biodegradable dipeptide-based polyphosphazene and polyester blends producing matrices for regenerative engineering. Advanced Functional Materials , 2010, 20(17): 2743-2957
28 Kierszenbaum A L. Connective tissue. In: Kierszenbaum A L, ed. Histology and Cell Biology: An Introduction to Pathology. St . Louis: Mosby Inc., 2002, 118-129
29 Jee W S S. Integrated bone tissue physiology: anatomy and physiology. In: Cowin S C, ed. Bone Mechanics Handbook. Boca Raton, FL , USA: CRC Press LLC, 2001
30 Rho J-Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics , 1998, 20(2): 92-102
31 Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Composites Science and Technology , 2005, 65(15-16): 2385-2406
32 Weiner S, Wagner H D. The material bone: structure-mechanical function relations. Annual Review of Materials Science , 1998, 28(1): 271-298
33 Marotti G. A new theory of bone lamellation. Calcified Tissue International , 1993, 53(Suppl 1): S47-S56
34 Bilezikian J P, Raisz L G, Rodan G A. Principles of Bone Biology. San Diego, CA , USA: Academic Press, 1996
35 Wiesmann H P, Meyer U, Plate U, . Aspects of collagen mineralization in hard tissue formation. International Review of Cytology , 2004, 242: 121-156
36 van der Rest M, Garrone R. Collagen family of proteins. The FASEB Journal , 1991, 5(13): 2814-2823
37 Weiner S, Traub W. Bone structure: from angstroms to microns. The FASEB Journal , 1992, 6(3): 879-885
38 Landis W J. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone , 1995, 16(5): 533-544
39 Ziv V, Weiner S. Bone crystal sizes: a comparison of transmission electron microscopic and X-ray diffraction line width broadening techniques. Connective Tissue Research , 1994, 30(3): 165-175
40 Rey C, Miquel J L, Facchini L, . Hydroxyl groups in bone mineral. Bone , 1995, 16(5): 583-586
41 Sommerfeldt D, Rubin C. Biology of bone and how it orchestrates the form and function of the skeleton. European Spine Journal , 2001, 10(Suppl 2): S86-S95
42 Beddington R S, Robertson E J. Axis development and early asymmetry in mammals. Cell , 1999, 96(2): 195-209
43 Aubin J E. Bone stem cells. Journal of Cellular Biochemistry, Supplement , 1998, 72(Suppl 30-31): 73-82
44 Ferrari S L, Traianedes K, Thorne M, . A role for N-cadherin in the development of the differentiated osteoblastic phenotype. Journal of Bone and Mineral Research , 2000, 15(2): 198-208
45 Lecanda F, Towler D A, Ziambaras K, . Gap junctional communication modulates gene expression in osteoblastic cells. Molecular Biology of the Cell , 1998, 9(8): 2249-2258
46 Liu X, Ma P X. Polymeric scaffolds for bone tissue engineering. Annals of Biomedical Engineering , 2004, 32(3): 477-486
47 Li Z, Kong K, Qi W. Osteoclast and its roles in calcium metabolism and bone development and remodeling. Biochemical and Biophysical Research Communications , 2006, 343(2): 345-350
48 Blair H C, Teitelbaum S L, Ghiselli R, . Osteoclastic bone resorption by a polarized vacuolar proton pump. Science , 1989, 245(4920): 855-857
49 Baroli B. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. Journal of Pharmaceutical Sciences , 2009, 98(4): 1317-1375
50 Veerman E C, Suppers R J, Klein C P, . SDS-PAGE analysis of the protein layers adsorbing in vivo and in vitro to bone substituting materials. Biomaterials , 1987, 8(6): 442-448
51 Nojiri C, Okano T, Koyanagi H, . In vivo protein adsorption on polymers: visualization of adsorbed proteins on vascular implants in dogs. Journal of Biomaterials Science, Polymer Edition , 1993, 4(2): 75-88
52 Davies J E. Mechanisms of endosseous integration. The International Journal of Prosthodontics , 1998, 11(5): 391-401
53 Soultanis K, Pyrovolou N, Karamitros A, . Instrumentation loosening and material of implants as predisposal factors for late postoperative infections in operated idiopathic scoliosis. Studies in Health Technology and Informatics , 2006, 123: 559-564
54 Kirkpatrick J S, Venugopalan R, Beck P, . Corrosion on spinal implants. Journal of Spinal Disorders & Techniques , 2005, 18(3): 247-251
55 Laurencin C T, Khan Y, Kofron M, . The ABJS Nicolas Andry Award: Tissue engineering of bone and ligament: a 15-year perspective. Clinical Orthopaedics and Related Research , 2006, 447: 221-236
56 Sung H J, Meredith C, Johnson C, . The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials , 2004, 25(26): 5735-5742
57 Kuboki Y, Takita H, Kobayashi D, . BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. Journal of Biomedical Materials Research , 1998, 39(2): 190-199
58 D’Lima D D, Lemperle S M, Chen P C, . Bone response to implant surface morphology. The Journal of Arthroplasty , 1998, 13(8): 928-934
59 Sul Y-T, Johansson C B, Petronis S, . Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials , 2002, 23(2): 491-501
60 Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clinical Orthopaedics and Related Research , 1981, 157 : 259-278
61 Ducheyne P, de Groot K. In vivo surface activity of a hydroxyapatite alveolar bone substitute. Journal of Biomedical Materials Research , 1981, 15(3): 441-445
62 Webster T J, Ergun C, Doremus R H, . Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials , 2000, 21(17): 1803-1810
63 Lee C H, Singla A, Lee Y. Biomedical applications of collagen. International Journal of Pharmaceutics , 2001, 221(1-2): 1-22
64 Miyata T, Taira T, Noishiki Y. Collagen engineering for biomaterial use. Clinical Materials , 1992, 9(3-4): 139-148
65 Rao K P. Recent developments of collagen-based materials for medical applications and drug delivery systems. Journal of Biomaterials Science, Polymer Edition , 1995, 7(7): 623-645
66 Urist M R, Nilsson O, Rasmussen J, . Bone regeneration under the influence of a bone morphogenetic protein (BMP) beta tricalcium phosphate (TCP) composite in skull trephine defects in dogs. Clinical Orthopaedics and Related Research , 1987, 214: 295-304
67 Urist M R, Peltier L F. Bone: formation by autoinduction. Clinical Orthopaedics and Related Research , 2002, 395: 4-10
68 Sandhu H S, Boden S D. Biologic enhancement of spinal fusion. Orthopedic Clinics of North America , 1998, 29(4): 621-631
69 Wang E A, Rosen V, D’Alessandro J S, . Recombinant human bone morphogenetic protein induces bone formation. Proceedings of the National Academy of Sciences of the United States of America , 1990, 87(6): 2220-2224
70 Bianco P, Riminucci M, Gronthos S, . Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells , 2001, 19(3): 180-192
71 Tiedeman J J, Connolly J F, Strates B S, . Treatment of nonunion by percutaneous injection of bone marrow and demineralized bone matrix. An experimental study in dogs. Clinical Orthopaedics and Related Research , 1991, 268: 294-302
72 Grauer J N, Beiner J M, Kwon B K, . Bone graft alternatives for spinal fusion. BioDrugs , 2003, 17(6): 391-394
73 Chan C K, Kumar T S, Liao S, . Biomimetic nanocomposites for bone graft applications. Nanomedicine , 2006, 1(2): 177-188
74 Christenson E M, Anseth K S, van den Beucken J J J P, . Nanobiomaterial applications in orthopedics. Journal of Orthopaedic Research , 2007, 25(1): 11-22
75 Webster T J, Ahn E S. Nanostructured biomaterials for tissue engineering bone. Advances in Biochemical Engineering/Biotechnology , 2007, 103: 275-308
76 Webster T J, Siegel R W, Bizios R. Osteoblast adhesion on nanophase ceramics. Biomaterials , 1999, 20(13): 1221-1227
77 Webster T J, Ergun C, Doremus R H, . Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials , 2001, 22(11): 1327-1333
78 Liao S S, Cui F Z. In vitro and in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(L-lactide). Tissue Engineering , 2004, 10(1-2): 73-80
79 Liao S S, Cui F Z, Zhang W, . Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. Journal of Biomedical Materials Research Part B: Applied Biomaterials , 2004, 69(2): 158-165
80 Laurencin C T, Attawia M A, Elgendy H E, . Tissue engineered bone-regeneration using degradable polymers: The formation of mineralized matrices. Bone , 1996, 19(1 Suppl): S93-S99
81 Zhang P, Hong Z, Yu T, . In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide). Biomaterials , 2009, 30(1): 58-70
82 Elias K L, Price R L, Webster T J. Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials , 2002, 23(15): 3279-3287
83 Price R L, Waid M C, Haberstroh K M, . Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials , 2003, 24(11): 1877-1887
84 Mistry A S, Mikos A G, Jansen J A. Degradation and biocompatibility of a poly(propylene fumarate)-based/alumoxane nanocomposite for bone tissue engineering. Journal of Biomedical Materials Research Part A , 2007, 83(4): 940-953
85 Horch R A, Shahid N, Mistry A S, . Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Biomacromolecules , 2004, 5(5): 1990-1998
86 Shi X, Hudson J L, Spicer P P, . Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Biomacromolecules , 2006, 7(7): 2237-2242
87 Liu H, Slamovich E B, Webster T J. Increased osteoblast functions on nanophase titania dispersed in poly-lactic-co-glycolic acid composites. Nanotechnology , 2005, 16(7): S601-S608
88 Webster T J, Smith T A. Increased osteoblast function on PLGA composites containing nanophase titania. Journal of Biomedical Materials Research Part A , 2005, 74(4): 677-686
89 Li W J, Laurencin C T, Caterson E J, . Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of Biomedical Materials Research , 2002, 60(4): 613-621
90 Nair L S, Laurencin C T. Nanofibers and nanoparticles for orthopaedic surgery applications. The Journal of Bone and Joint Surgery (American Volume) , 2008, 90(Suppl 1): 128-131
91 Nair L S, Bhattacharyya S, Laurencin C T. Development of novel tissue engineering scaffolds via electrospinning. Expert Opinion on Biological Therapy , 2004, 4(5): 659-668
92 Woo K M, Chen V J, Ma P X. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. Journal of Biomedical Materials Research Part A , 2003, 67(2): 531-537
93 Pelled G, Tai K, Sheyn D, . Structural and nanoindentation studies of stem cell-based tissue-engineered bone. Journal of Biomechanics , 2007, 40(2): 399-411
94 Huang Z-M, Zhang Y-Z, Kotaki M, . A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology , 2003, 63(15): 2223-2253
95 Ma P X, Zhang R. Synthetic nano-scale fibrous extracellular matrix. Journal of Biomedical Materials Research , 1999, 46(1): 60-72
96 Whitesides G M, Grzybowski B. Self-assembly at all scales. Science , 2002, 295(5564): 2418-2421
97 Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review , 1914, 3(2): 69-91
98 Formhals A. Process and apparatus for preparing artificial threads. US Patent, 1975504, 1934
99 Kumbar S G, James R, Nukavarapu S P, . Electrospun nanofiber scaffolds: engineering soft tissues. Biomedical Materials , 2008, 3(3): 034002
100 Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Letters , 2003, 3(8): 1167-1171
101 Patel S, Kurpinski K, Quigley R, . Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Letters , 2007, 7(7): 2122-2128
102 Ma Z, Kotaki M, Inai R, . Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Engineering , 2005, 11(1-2): 101-109
103 Deng M, James R, Laurencin C T, . Nanostructured polymeric scaffolds for orthopaedic regenerative engineering. IEEE Transactions on Nanobioscience , 2011 (in press)
104 Kumbar S G, Nukavarapu S P, James R, . Recent patents on electrospun biomedical nanostructures: an overview. Recent Patents on Biomedical Engineering , 2008, 1(1): 68-78
105 Bhattarai N, Edmondson D, Veiseh O, . Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials , 2005, 26(31): 6176-6184
106 Zhang Y, Venugopal J R, El-Turki A, . Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials , 2008, 29(32): 4314-4322
107 Yang D, Jin Y, Zhou Y, . In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds. Macromolecular Bioscience , 2008, 8(3): 239-246
108 Schneider O D, Weber F, Brunner T J, . In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects. Acta Biomaterialia , 2009, 5(5): 1775-1784
109 Kim H-W, Kim H-E, Knowles J C. Production and potential of bioactive glass nanofibers as a next-generation biomaterial. Advanced Functional Materials , 2006, 16(12): 1529-1535
110 Kim H-W, Song J-H, Kim H-E. Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Advanced Functional Materials , 2005, 15(12): 1988-1994
111 Nair L S, Bhattacharyya S, Bender J D, . Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromolecules , 2004, 5(6): 2212-2220
112 Bhattacharyya S, Kumbar S G, Khan Y M, . Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers: scaffolds for bone tissue engineering. Journal of Biomedical Nanotechnology , 2009, 5(1): 69-75
113 Bhattacharyya S, Nair L S, Singh A, . Electrospinning of poly[bis(ethyl alanato) phosphazene] nanofibers. Journal of Biomedical Nanotechnology , 2006, 2(1): 36-45
114 Conconi M T, Lora S, Menti A M, . In vitro evaluation of poly[bis(ethyl alanato)phosphazene] as a scaffold for bone tissue engineering. Tissue Engineering , 2006, 12(4): 811-819
115 Laurencin C T, Kumbar S G, Deng M, . Nano-structured scaffolds for regenerative engineering. In: Honorary Series in Translational Research in Biomaterials, 2010 AICHE Annual Meeting, Salt Lake City, Utah, USA , 2010
116 Deng M, Kumbar S G, Nair L S, . Biomimetic structures: biological implications of dipeptide-substituted polyphosphazene-polyester blend nanofiber matrices for load-bearing bone regeneration. Advanced Functional Materials , 2011, 21(14): 2641-2651
117 Place E S, Evans N D, Stevens M M. Complexity in biomaterials for tissue engineering. Nature Materials , 2009, 8(6): 457-470
[1] Ziming Liao, Jingxuan Li, Yimeng Su, Fenyan Miao, Xiumei Zhang, Yu Gu, Jingjing Du, Ruiqiang Hang, Yan Wei, Weiyi Chen, Di Huang. Antibacterial hydroxyapatite coatings on titanium dental implants[J]. Front. Mater. Sci., 2023, 17(1): 230628-.
[2] Wenxin WANG, Yang CHEN, Ning WANG, Zhiqiang DU, Martin JENSEN, Zihan AN, Xianfeng LI. Multifunction ZnO/carbon hybrid nanofiber mats for organic dyes treatment via photocatalysis with enhanced solar-driven evaporation[J]. Front. Mater. Sci., 2022, 16(4): 220623-.
[3] Shemeena MULLAKKATTUTHODI, Vijayasree HARIDAS, Sankaran SUGUNAN, Binitha N. NARAYANAN. Z-scheme mechanism for methylene blue degradation over Fe2O3/g-C3N4 nanocomposite prepared via one-pot exfoliation and magnetization of g-C3N4[J]. Front. Mater. Sci., 2022, 16(3): 220612-.
[4] Javier FONSECA. Nanoparticles embedded into glass matrices: glass nanocomposites[J]. Front. Mater. Sci., 2022, 16(3): 220607-.
[5] Dong XIANG, Libing LIU, Xiaoyu CHEN, Yuanpeng WU, Menghan WANG, Jie ZHANG, Chunxia ZHAO, Hui LI, Zhenyu LI, Ping WANG, Yuntao LI. High-performance fiber strain sensor of carbon nanotube/thermoplastic polyurethane@styrene butadiene styrene with a double percolated structure[J]. Front. Mater. Sci., 2022, 16(1): 220586-.
[6] Tingting MA, Zhen LI, Wen LIU, Jiaxu CHEN, Moucui WU, Zhenghua WANG. Microwave hydrothermal synthesis of WO3(H2O)0.333/CdS nanocomposites for efficient visible-light photocatalytic hydrogen evolution[J]. Front. Mater. Sci., 2021, 15(4): 589-600.
[7] Roopa Kishore KAMPARA, Sonia T., Balamurugan D., Jeyaprakash B. G.. Formaldehyde vapour sensing property of electrospun NiO nanograins[J]. Front. Mater. Sci., 2021, 15(3): 416-430.
[8] Atta ur Rehman KHAN, Yosry MORSI, Tonghe ZHU, Aftab AHMAD, Xianrui XIE, Fan YU, Xiumei MO. Electrospinning: An emerging technology to construct polymer-based nanofibrous scaffolds for diabetic wound healing[J]. Front. Mater. Sci., 2021, 15(1): 10-35.
[9] Lei CHANG, Xiangrui LI, Xuhui TANG, He ZHANG, Ding HE, Yujun WANG, Jiayin ZHAO, Jingan LI, Jun WANG, Shijie ZHU, Liguo WANG, Shaokang GUAN. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance[J]. Front. Mater. Sci., 2020, 14(4): 413-425.
[10] Danhua ZHU, Qianjie ZHOU, Aiqin LIANG, Weiqiang ZHOU, Yanan CHANG, Danqin LI, Jing WU, Guo YE, Jingkun XU, Yong REN. Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors[J]. Front. Mater. Sci., 2020, 14(2): 109-119.
[11] Yun ZHAO, Linan YANG, Canliang MA. One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage[J]. Front. Mater. Sci., 2020, 14(2): 145-154.
[12] Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
[13] Yanlin JIA, Zhiyuan MA, Zhicheng LI, Zhenli HE, Junming SHAO, Hong ZHANG. Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries[J]. Front. Mater. Sci., 2019, 13(4): 367-374.
[14] Xiao-Jing JI, Qiang CHENG, Jing WANG, Yan-Bin ZHAO, Zhuang-Zhuang HAN, Fen ZHANG, Shuo-Qi LI, Rong-Chang ZENG, Zhen-Lin WANG. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
[15] Wei LI, Lizhong ZHAO, Zhongwu LIU. Micromagnetic simulation on magnetic properties of Nd2Fe14B/α-Fe nanocomposites with Fe nanowires as the soft phase[J]. Front. Mater. Sci., 2018, 12(4): 348-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed