Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2021, Vol. 15 Issue (3) : 416-430    https://doi.org/10.1007/s11706-021-0559-3
RESEARCH ARTICLE
Formaldehyde vapour sensing property of electrospun NiO nanograins
Roopa Kishore KAMPARA, Sonia T., Balamurugan D., Jeyaprakash B. G.()
Functional Nanomaterials Lab/School of Electrical & Electronics Engineering, SASTRA Deemed to be University, Thanjavur, Tamil Nadu 613401, India
 Download: PDF(3517 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Beads free polyvinyl alcohol (PVA)/NiO nanofibers with an average diameter of 400 nm were successfully prepared through the electrospinning method. NiO nanograins were formed along the axis of the nanofiber due to the calcination of as-spun fibers for 24 h at 450 °C and their presence was confirmed by FESEM. NiO nanograins were characterized by XRD, XPS and FTIR. The characterization results showed the presence of NiO in nanograins and its polycrystalline nature with ionic states. The sensing studies of NiO nanograins were performed towards the pulmonary disease breath markers and they showed better response towards formaldehyde vapour at 350 °C. Calcined NiO grains showed a good response towards the 11–1145 ppm of formaldehyde vapour at the operating temperature of 350 °C. NiO nanograins also showed quick response time (37 s) and recovery time (14 s) towards 46 ppm of formaldehyde. A sensing mechanism was proposed for the formaldehyde vapour interaction at 350 °C with NiO nanograins.

Keywords electrospinning      nanofibers      nanograins      PVA      vapour sensor      NiO      formaldehyde     
Corresponding Author(s): Jeyaprakash B. G.   
Online First Date: 19 July 2021    Issue Date: 24 September 2021
 Cite this article:   
Roopa Kishore KAMPARA,Sonia T.,Balamurugan D., et al. Formaldehyde vapour sensing property of electrospun NiO nanograins[J]. Front. Mater. Sci., 2021, 15(3): 416-430.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-021-0559-3
https://academic.hep.com.cn/foms/EN/Y2021/V15/I3/416
Fig.1  (a) 20 mL of PVA/nickel acetate precursor solution, (b) as spun sample, (c) vacuum annealed at 50 °C sample, and (d) calcined at 450 °C sample.
Fig.2  FESEM images of samples and corresponding diameter distributions: (a)(b) PVA/NiO nanofibers vacuum annealed at 85 °C; (c)(d) PVA/NiO nanofibers calcined at 450 °C; (e)(f) NiO nanograins formed after calcination.
Fig.3  XRD pattern of the NiO nanograins.
Fig.4  TGA curves of (a) as spun PVA/NiO nanofibers and (b) calcined NiO nanograins.
Fig.5  (a)(b)(c)(d)(e)(f) HRTEM images of NiO nanograins after calcination at 450 °C for 24 h (from low to high magnifications). (g) NiO nanograins lattice fringes and (h) SAED pattern of NiO nanograin.
Fig.6  XPS spectra: (a) NiO nanograins; (b) Ni 2p core spectrum; (c) O 1s and (d) deconvoluted peaks; (e) C 1s carbon peak.
Fig.7  FTIR spectra of calcined NiO nanograins.
Fig.8  Potential divider circuit to study the NiO nanograins sensing response.
Fig.9  Vapour sensing response of NiO nanograins in air, ethyl acetate, methanol, acetone, formaldehyde, and xylene.
Fig.10  (a) Transient response of NiO nanograins at 350 °C towards formaldehyde vapour for different concentrations. (b) NiO nanograins saturated response towards formaldehyde vapour concentration. (c) Response and recovery time at 350 °C for various concentrations of formaldehyde.
Fig.11  NiO nanograins sensing response towards 46 ppm of formaldehyde at 350 °C for 5 cycles.
Materials Preparation method Morphology Operating temperature/°C Detection range/ppm Concentration
/ppm
Response time/s Recovery time/s Ref.
SnO2 VLS method nanowires 270 2–20 10 90 150 [66]
VG/SnO2 MW-PECVD nanoparticles RT 0.3–5 5 46 95 [67]
NiO-SnO2 electrospinning nanofibers 200 0.08–10 10 50 80 [68]
Au-SnO2 sol-gel nanoparticles RT 20–50 50 80 62 [69]
Ag-In2O3 nanocasting nanorods 300 1–85 85 135 160 [70]
Au-ZnO sol-gel nanoparticles RT 0.5–5 5 138 104 [71]
Pt-NiO facile SCS nanoparticles 200 50–2000 1000 54 86 [72]
Ga-ZnO co-precipitation method nanoparticles 400 32–205 205 30 210 [73]
TiO2 hydrothermal microspheres RT 1–5 3 40 50 [17]
PdAu/SnO2 hydro-solvthermal 3D nanosheets 110 1–100 100 68 32 [74]
CuO polyol process nanocubes 350 0.05–3 0.8 37 74 [75]
GO/SnO2 electrospinning nanofibers 120 0.5–10 0.5 66 10 [76]
SnO2 hydrothermal nanosheets 200 1–500 200 30 57 [77]
In2O3 two-step route consisting of ammonolysis and re-oxidation process truncated octahedron string 420 5–100 100 48 58 [78]
rGO/TiO2 thermal treatment microsheets RT 0.1–0.5 0.5 65 112 [79]
Ag-LaFeO3 MIT nanoparticles 125 0.1–20 2 90 80 [80]
SnO2 ultrasonic shaking and following calcination porous hierarchical structure 200 0.1–80 10 50 350 [81]
Ag-LaFeO3 sol-gel, hydrothermal fibers, spheres and cages 82 0.5–15 1 35 51 [82]
CuO/SnO2 ALD nanowires 250 1.5–50 6 52 80 [83]
NiO electrospinning nanograins 350 11–1145 46 37 14 this work
Tab.1  Comparison of formaldehyde sensing characteristics of present work with literature [17,6683]
Fig.12  Schematic representation of NiO nanograins with all possible arrangements: (a) in close contact; (b) point contact with small necks; (c) larger necks formation; (d) grain control model with the larger accumulation layer.
Fig.13  Band diagram between two NiO nanograins with chemisorbed oxygen species and towards formaldehyde vapour at 350 °C.
1 T Das, S Das, M Karmakar, et al.. Novel barium hexaferrite based highly selective and stable trace ammonia sensor for detection of renal disease by exhaled breath analysis. Sensors and Actuators B: Chemical, 2020, 325: 128765
https://doi.org/10.1016/j.snb.2020.128765
2 D Hashoul, H Haick. Sensors for detecting pulmonary diseases from exhaled breath. European Respiratory Review, 2019, 28(152): 190011
https://doi.org/10.1183/16000617.0011-2019 pmid: 31243097
3 R Kalidoss, S Umapathy. A comparison of online and offline measurement of exhaled breath for diabetes pre-screening by graphene-based sensor; From powder processing to clinical monitoring prototype. Journal of Breath Research, 2019, 13(3): 036008
https://doi.org/10.1088/1752-7163/ab09ae pmid: 30794992
4 F S Cikach Jr, R A Dweik. Cardiovascular biomarkers in exhaled breath. Progress in Cardiovascular Diseases, 2012, 55(1): 34–43
https://doi.org/10.1016/j.pcad.2012.05.005 pmid: 22824108
5 M J Thun, S J Henley, D Burns, et al.. Lung cancer death rates in lifelong nonsmokers. Journal of the National Cancer Institute, 2006, 98(10): 691–699
https://doi.org/10.1093/jnci/djj187 pmid: 16705123
6 M D Tadlock, K Chouliaras, M Kennedy, et al.. The origin of fatal pulmonary emboli: A postmortem analysis of 500 deaths from pulmonary embolism in trauma, surgical, and medical patients. American Journal of Surgery, 2015, 209(6): 959–968
https://doi.org/10.1016/j.amjsurg.2014.09.027 pmid: 25669120
7 M Plescia, S J Henley, A Pate, et al.. Lung cancer deaths among American Indians and Alaska Natives, 1990–2009. American Journal of Public Health, 2014, 104(S3): S388–S395
https://doi.org/10.2105/AJPH.2013.301609 pmid: 24754613
8 B Leistikow. Lung cancer rates as an index of tobacco smoke exposures: validation against black male similar to non-lung cancer death rates, 1969–2000. Preventive Medicine, 2004, 38(5): 511–515
https://doi.org/10.1016/j.ypmed.2003.11.025 pmid: 15066352
9 K Kwak, D Paek, J T Park. Occupational exposure to formaldehyde and risk of lung cancer: A systematic review and meta-analysis. American Journal of Industrial Medicine, 2020, 63(4): 312–327
https://doi.org/10.1002/ajim.23093 pmid: 32003024
10 T D Sterling, J J Weinkam. Mortality from respiratory cancers (including lung cancer) among workers employed in formaldehyde industries. American Journal of Industrial Medicine, 1994, 25(4): 593–602, discussion 603–606
https://doi.org/10.1002/ajim.4700250413 pmid: 8010300
11 B V Stadei, G L Rubin, P A Wingo, et al. Oral contraceptives and breast cancer in young women. The Lancet, 1986, 327(8478): 436
12 A Mahboubi, A Koushik, J Siemiatycki, et al.. Assessment of the effect of occupational exposure to formaldehyde on the risk of lung cancer in two Canadian population-based case-control studies. Scandinavian Journal of Work, Environment & Health, 2013, 39(4): 401–410
https://doi.org/10.5271/sjweh.3344 pmid: 23329145
13 R Pandeeswari, B G Jeyaprakash. CeO2 thin film as a low-temperature formaldehyde sensor in mixed vapour environment. Bulletin of Materials Science, 2014, 37(6): 1293–1299
https://doi.org/10.1007/s12034-014-0074-6
14 D Shi, L Wei, J Wang, et al.. Solid organic acid tetrafluorohydroquinone functionalized single-walled carbon nanotube chemiresistive sensors for highly sensitive and selective formaldehyde detection. Sensors and Actuators B: Chemical, 2013, 177: 370–375
https://doi.org/10.1016/j.snb.2012.11.022
15 Y Li, N Chen, D Deng, et al.. Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sensors and Actuators B: Chemical, 2017, 238: 264–273
https://doi.org/10.1016/j.snb.2016.07.051
16 Z W Chen, Y Y Hong, Z D Lin, et al.. Enhanced formaldehyde gas sensing properties of ZnO nanosheets modified with graphene. Electronic Materials Letters, 2017, 13(3): 270–276
https://doi.org/10.1007/s13391-017-6245-z
17 X Li, X Li, J Wang, et al.. Highly sensitive and selective roomerature formaldehyde sensors using hollow TiO2 microspheres. Sensors and Actuators B: Chemical, 2015, 219: 158–163
https://doi.org/10.1016/j.snb.2015.05.031
18 S B Upadhyay, R K Mishra, P P Sahay. Cr-doped WO3 nanosheets: Structural, optical and formaldehyde sensing properties. Ceramics International, 2016, 42(14): 15301–15310
https://doi.org/10.1016/j.ceramint.2016.06.170
19 Z Li. Supersensitive and superselective formaldehyde gas sensor based on NiO nanowires. Vacuum, 2017, 143: 50–53
https://doi.org/10.1016/j.vacuum.2017.05.038
20 X Fu, P Yang, X Xiao, et al.. Ultra-fast and highly selective room-temperature formaldehyde gas sensing of Pt-decorated MoO3 nanobelts. Journal of Alloys and Compounds, 2019, 797: 666–675
https://doi.org/10.1016/j.jallcom.2019.05.145
21 Y Zhang, B Jiang, M Yuan, et al.. Formaldehyde-sensing properties of LaFeO3 particles synthesized by citrate sol-gel method. Journal of Sol-Gel Science and Technology, 2016, 79(1): 167–175
https://doi.org/10.1007/s10971-016-4025-0
22 E Turgut, Ö Çoban, S Sarıtaş, et al.. Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors. Applied Surface Science, 2018, 435: 880–885
https://doi.org/10.1016/j.apsusc.2017.11.133
23 V D Silva, T A Simões, J P F Grilo, et al.. Impact of the NiO nanostructure morphology on the oxygen evolution reaction catalysis. Journal of Materials Science, 2020, 55(15): 6648–6659
https://doi.org/10.1007/s10853-020-04481-1
24 K R Lee, C J Tseng, S C Jang, et al.. Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid. International Journal of Hydrogen Energy, 2019, 44(42): 23784–23792
https://doi.org/10.1016/j.ijhydene.2019.07.097
25 M Mirzaee, C Dehghanian. Pulsed electrodeposition of reduced graphene oxide on Ni–NiO foam electrode for high-performance supercapacitor. International Journal of Hydrogen Energy, 2018, 43(27): 12233–12250
https://doi.org/10.1016/j.ijhydene.2018.04.173
26 K K Purushothaman, G Muralidharan. Enhanced electrochromic performance of nanoporous NiO films. Materials Science in Semiconductor Processing, 2011, 14(1): 78–83
https://doi.org/10.1016/j.mssp.2011.01.014
27 M Krunks, J Soon, T Unt, et al.. Deposition of p-type NiO films by chemical spray pyrolysis. Vacuum, 2014, 107: 242–246
https://doi.org/10.1016/j.vacuum.2014.02.013
28 Q Wu, Z Hu, Y Liu. A novel electrode material of NiO prepared by facile hydrothermal method for electrochemical capacitor application. Journal of Materials Engineering and Performance, 2013, 22(8): 2398–2402
https://doi.org/10.1007/s11665-013-0518-y
29 M Liu, Y Wang, P Li, et al.. Preparation and characterization of multilayer NiO nano-products via electrospinning. Applied Surface Science, 2013, 284: 453–458
https://doi.org/10.1016/j.apsusc.2013.07.118
30 H Chai, X Chen, D Jia, et al.. Flower-like NiO structures: Controlled hydrothermal synthesis and electrochemical characteristic. Materials Research Bulletin, 2012, 47(12): 3947–3951
https://doi.org/10.1016/j.materresbull.2012.08.033
31 X Zhu, J Ma, Y Wang, et al.. Fabrication of indium sulfide nanofibers via a hydrothermal method assisted by AAO template. Materials Research Bulletin, 2006, 41(8): 1584–1588
https://doi.org/10.1016/j.materresbull.2005.12.016
32 F A Sheikh, M A Zargar, A H Tamboli, et al.. A super hydrophilic modification of poly(vinylidene fluoride) (PVDF) nanofibers: By in situ hydrothermal approach. Applied Surface Science, 2016, 385: 417–425
https://doi.org/10.1016/j.apsusc.2016.05.111
33 X Wang, X Chen, D Luo, et al.. Electrodeposition of ZnO on carbon nanofiber buckypaper. Journal of Solid State Electrochemistry, 2014, 18(6): 1773–1777
https://doi.org/10.1007/s10008-014-2404-4
34 C Zhang, J Cai, C Liang, et al.. Scalable fabrication of metallic nanofiber network via templated electrodeposition for flexible electronics. Advanced Functional Materials, 2019, 29(35): 1903123
https://doi.org/10.1002/adfm.201903123
35 X F Liu, J Zhang, J J Liu, et al.. Bifunctional CuS composite nanofibers via in situ electrospinning for outdoor rapid hemostasis and simultaneous ablating superbug. Chemical Engineering Journal, 2020, 401: 126096
https://doi.org/10.1016/j.cej.2020.126096
36 M Chen, Y Zhang, X Chen, et al.. Polymer melt differential electrospinning from a linear slot spinneret. Journal of Applied Polymer Science, 2020, 137(31): 48922
https://doi.org/10.1002/app.48922
37 M Tebyetekerwa, Z Xu, S Yang, et al.. Electrospun nanofibers-based face masks. Advanced Fiber Materials, 2020, 2(3): 161–166
https://doi.org/10.1007/s42765-020-00049-5
38 Z Liu, S Ramakrishna, X Liu. Electrospinning and emerging healthcare and medicine possibilities. APL Bioengineering, 2020, 4(3): 030901
https://doi.org/10.1063/5.0012309 pmid: 32695956
39 D H Reneker, A L Yarin. Electrospinning jets and polymer nanofibers. Polymer, 2008, 49(10): 2387–2425
https://doi.org/10.1016/j.polymer.2008.02.002
40 S Agarwal, J H Wendorff, A Greiner. Use of electrospinning technique for biomedical applications. Polymer, 2008, 49(26): 5603–5621
https://doi.org/10.1016/j.polymer.2008.09.014
41 W E Teo, S Ramakrishna. A review on electrospinning design and nanofibre assemblies. Nanotechnology, 2006, 17(14): R89–R106
https://doi.org/10.1088/0957-4484/17/14/R01 pmid: 19661572
42 Z M Huang, Y Z Zhang, M Kotaki, et al.. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003, 63(15): 2223–2253
https://doi.org/10.1016/S0266-3538(03)00178-7
43 D K Kim, M Hwang, J P F Lagerwall. Liquid crystal functionalization of electrospun polymer fibers. Journal of Polymer Science Part B: Polymer Physics, 2013, 51: 855–867
https://doi.org/10.1002/adma.200400719
44 D Li, Y Xia. Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials, 2004, 16(14): 1151–1170
https://doi.org/10.1002/adma.200400719
45 C Feng, Z Jiang, B Chen, et al.. Aluminum-doped NiO nanofibers as chemical sensors for selective and sensitive methanol detection. Analytical Methods, 2019, 11(5): 575–581
https://doi.org/10.1039/C8AY02460J
46 C Feng, X Kou, B Chen, et al.. One-pot synthesis of In doped NiO nanofibers and their gas sensing properties. Sensors and Actuators B: Chemical, 2017, 253: 584–591
https://doi.org/10.1016/j.snb.2017.06.115
47 H Gao, D Wei, P Lin, et al.. The design of excellent xylene gas sensor using Sn-doped NiO hierarchical nanostructure. Sensors and Actuators B: Chemical, 2017, 253: 1152–1162
https://doi.org/10.1016/j.snb.2017.06.177
48 C Y Lee, C M Chiang, Y H Wang, et al.. A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection. Sensors and Actuators B: Chemical, 2007, 122(2): 503–510
https://doi.org/10.1016/j.snb.2006.06.018
49 A N A Anasthasiya, K R Kishore, P K Rai, et al.. Highly sensitive graphene oxide functionalized ZnO nanowires for ammonia vapour detection at ambient temperature. Sensors and Actuators B: Chemical, 2018, 255: 1064–1071
https://doi.org/10.1016/j.snb.2017.08.148
50 F Paquin, J Rivnay, A Salleo, et al.. Multi-phase microstructures drive exciton dissociation in neat semicrystalline polymeric semiconductors. Journal of Materials Chemistry C, 2015, 3(41): 10715–10722
https://doi.org/10.1039/C5TC02043C
51 N Srivastava, P C Srivastava. Realizing NiO nanocrystals from a simple chemical method. Bulletin of Materials Science, 2010, 33(6): 653–656
https://doi.org/10.1007/s12034-011-0142-0
52 J Zhao, Z Li, H Li, et al.. Electrochemical properties of nickel oxide nanofibers fabricated by electrospinning and annealing. Journal of Nanoscience and Nanotechnology, 2016, 16(7): 7273–7277
https://doi.org/10.1166/jnn.2016.11350
53 Z Yang, H Peng, W Wang, et al.. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 2010, 116(5): 2658–2667
https://doi.org/10.1002/app.31787
54 N Jayababu, M Poloju, J Shruthi, et al.. Synthesis of ZnO/NiO nanocomposites for the rapid detection of ammonia at room temperature. Materials Science in Semiconductor Processing, 2019, 102: 104591
https://doi.org/10.1016/j.mssp.2019.104591
55 M A Peck, M A Langell. Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chemistry of Materials, 2012, 24(23): 4483–4490
https://doi.org/10.1021/cm300739y
56 M Kaur, B K Dadhich, R Singh, et al.. RF sputtered SnO2:NiO thin films as sub-ppm H2S sensor operable at room temperature. Sensors and Actuators B: Chemical, 2017, 242: 389–403
https://doi.org/10.1016/j.snb.2016.11.054
57 Y Zhang. Thermal oxidation fabrication of NiO film for optoelectronic devices. Applied Surface Science, 2015, 344: 33–37
https://doi.org/10.1016/j.apsusc.2015.03.099
58 G Greczynski, L Hultman. Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: Resolving the myth of apparent constant binding energy of the C 1s peak. Applied Surface Science, 2018, 451: 99–103
https://doi.org/10.1016/j.apsusc.2018.04.226
59 H Piao, N S McIntyre . Adventitious carbon growth on aluminium and gold–aluminium alloy surfaces. Surface and Interface Analysis, 2002, 33(7): 591–594
https://doi.org/10.1002/sia.1425
60 J Cardenas, S Sjöberg. Investigation of the titaniumdioxide-aqueous solution interface using XPS and cryogenics. Surface Science, 2003, 532: 1104–1108
https://doi.org/10.1016/S0039-6028(03)00163-8
61 G Bharathy, P Raji. Room temperature ferromagnetic behavior of Mn doped NiO nanoparticles: a suitable electrode material for supercapacitors. Journal of Materials Science Materials in Electronics, 2017, 28(23): 17889–17895
https://doi.org/10.1007/s10854-017-7730-8
62 M Pirmoradi, S Hashemian, M R Shayesteh. Kinetics and thermodynamics of cyanide removal by ZnO@NiO nanocrystals. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1394–1403
https://doi.org/10.1016/S1003-6326(17)60160-2
63 P Karpagavinayagam, A Emi Princess Prasanna, C Vedhi. Eco-friendly synthesis of nickel oxide nanoparticles using Avicennia Marina leaf extract: Morphological characterization and electrochemical application. Materials Today: Proceedings, 2020 (in press)
https://doi.org/10.1016/j.matpr.2020.04.183
64 R Vahini, P S Kumar, S Karuthapandian. Bandgap-tailored NiO nanospheres: An efficient photocatalyst for the degradation of crystal violet dye solution. Applied Physics A: Materials Science & Processing, 2016, 122(8): 744
https://doi.org/10.1007/s00339-016-0277-3
65 S Seema, M V N A Prasad. Dielectric spectroscopy of nanostructured polypyrrole–NiO composites. Journal of Polymers, 2014, 950304 (5 pages)
https://doi.org/10.1155/2014/950304
66 I Castro-Hurtado, J Herrán, G Ga Mandayo, et al.. SnO2-nanowires grown by catalytic oxidation of tin sputtered thin films for formaldehyde detection. Thin Solid Films, 2012, 520(14): 4792–4796
https://doi.org/10.1016/j.tsf.2011.10.140
67 Z Bo, M Yuan, S Mao, et al.. Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sensors and Actuators B: Chemical, 2018, 256: 1011–1020
https://doi.org/10.1016/j.snb.2017.10.043
68 Y Zheng, J Wang, P Yao. Formaldehyde sensing properties of electrospun NiO-doped SnO2 nanofibers. Sensors and Actuators B: Chemical, 2011, 156(2): 723–730
https://doi.org/10.1016/j.snb.2011.02.026
69 F C Chung, R J Wu, F C Cheng. Fabrication of a Au@SnO2 core–shell structure for gaseous formaldehyde sensing at room temperature. Sensors and Actuators B: Chemical, 2014, 190: 1–7
https://doi.org/10.1016/j.snb.2013.08.037
70 X Lai, P Li, T Yang, et al.. Ordered array of Ag-In2O3 composite nanorods with enhanced gas-sensing properties. Scripta Materialia, 2012, 67(3): 293–296
https://doi.org/10.1016/j.scriptamat.2012.05.008
71 F C Chung, Z Zhu, P Y Luo, et al.. Au@ZnO core–shell structure for gaseous formaldehyde sensing at room temperature. Sensors and Actuators B: Chemical, 2014, 199: 314–319
https://doi.org/10.1016/j.snb.2014.04.004
72 C Dong, Q Li, G Chen, et al.. Enhanced formaldehyde sensing performance of 3D hierarchical porous structure Pt-functionalized NiO via a facile solution combustion synthesis. Sensors and Actuators B: Chemical, 2015, 220: 171–179
https://doi.org/10.1016/j.snb.2015.05.056
73 N Han, Y Tian, X Wu, et al.. Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sensors and Actuators B: Chemical, 2009, 138(1): 228–235
https://doi.org/10.1016/j.snb.2009.01.054
74 G Li, Z Cheng, Q Xiang, et al.. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sensors and Actuators B: Chemical, 2019, 283: 590–601
https://doi.org/10.1016/j.snb.2018.09.117
75 H J Park, N J Choi, H Kang, et al.. A ppb-level formaldehyde gas sensor based on CuO nanocubes prepared using a polyol process. Sensors and Actuators B: Chemical, 2014, 203: 282–288
https://doi.org/10.1016/j.snb.2014.06.118
76 D Wang, M Zhang, Z Chen, et al.. Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide. Sensors and Actuators B: Chemical, 2017, 250: 533–542
https://doi.org/10.1016/j.snb.2017.04.164
77 R Xu, L X Zhang, M W Li, et al.. Ultrathin SnO2 nanosheets with dominant high-energy {0 0 1} facets for low temperature formaldehyde gas sensor. Sensors and Actuators B: Chemical, 2019, 289: 186–194
https://doi.org/10.1016/j.snb.2019.03.012
78 W Yang, P Wan, X Zhou, et al.. Self-assembled In2O3 truncated octahedron string and its sensing properties for formaldehyde. Sensors and Actuators B: Chemical, 2014, 201: 228–233
https://doi.org/10.1016/j.snb.2014.05.003
79 Z Ye, H Tai, T Xie, et al.. Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide. Sensors and Actuators B: Chemical, 2016, 223: 149–156
https://doi.org/10.1016/j.snb.2015.09.102
80 Y Zhang, Q Liu, J Zhang, et al.. A highly sensitive and selective formaldehyde gas sensor using a molecular imprinting technique based on Ag-LaFeO3. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2014, 2(47): 10067–10072
https://doi.org/10.1039/C4TC01972E
81 C Zhang, J Wang, R Hu, et al.. Synthesis and gas sensing properties of porous hierarchical SnO2 by grapefruit exocarp biotemplate. Sensors and Actuators B: Chemical, 2016, 222: 1134–1143
https://doi.org/10.1016/j.snb.2015.08.016
82 Y Zhang, J Zhang, J Zhao, et al.. Ag-LaFeO3 fibers, spheres, and cages for ultrasensitive detection of formaldehyde at low operating temperatures. Physical Chemistry Chemical Physics, 2017, 19(10): 6973–6980
https://doi.org/10.1039/C6CP08283A pmid: 28181601
83 L Y Zhu, K Yuan, J G Yang, et al.. Fabrication of heterostructured p-CuO/n-SnO2 core–shell nanowires for enhanced sensitive and selective formaldehyde detection. Sensors and Actuators B: Chemical, 2019, 290: 233–241
https://doi.org/10.1016/j.snb.2019.03.092
84 C L Hsu, K C Chen, T Y Tsai, et al.. Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires. Sensors and Actuators B: Chemical, 2013, 182: 190–196
https://doi.org/10.1016/j.snb.2013.03.002
85 L Song, B Zhao, X Ju, et al.. Comparative study of methanol gas sensing performance for SnO2 nanostructures by changing their morphology. Materials Science in Semiconductor Processing, 2020, 111: 104986
https://doi.org/10.1016/j.mssp.2020.104986
86 J K Rajput, T K Pathak, V Kumar, et al.. CdO:ZnO nanocomposite thin films for oxygen gas sensing at low temperature. Materials Science and Engineering B, 2018, 228: 241–248
https://doi.org/10.1016/j.mseb.2017.12.002
87 H Yu, J Li, Z Li, et al.. Enhanced formaldehyde sensing performance based on Ag@WO3 2D nanocomposite. Powder Technology, 2019, 343: 1–10
https://doi.org/10.1016/j.powtec.2018.11.008
[1] Atta ur Rehman KHAN, Yosry MORSI, Tonghe ZHU, Aftab AHMAD, Xianrui XIE, Fan YU, Xiumei MO. Electrospinning: An emerging technology to construct polymer-based nanofibrous scaffolds for diabetic wound healing[J]. Front. Mater. Sci., 2021, 15(1): 10-35.
[2] Yanlin JIA, Zhiyuan MA, Zhicheng LI, Zhenli HE, Junming SHAO, Hong ZHANG. Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries[J]. Front. Mater. Sci., 2019, 13(4): 367-374.
[3] Pengzhang LI, Chuanjin TIAN, Wei YANG, Wenyan ZHAO, Zhe LÜ. LaNiO3 modified with Ag nanoparticles as an efficient bifunctional electrocatalyst for rechargeable zinc--air batteries[J]. Front. Mater. Sci., 2019, 13(3): 277-287.
[4] Xin PAN, Binbin SUN, Xiumei MO. Electrospun polypyrrole-coated polycaprolactone nanoyarn nerve guidance conduits for nerve tissue engineering[J]. Front. Mater. Sci., 2018, 12(4): 438-446.
[5] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[6] Wanyu ZHAO, Jian LI, Bingbing FAN, Gang SHAO, Hailong WANG, Bozhen SONG, Shengnan WEI, Rui ZHANG. Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth[J]. Front. Mater. Sci., 2017, 11(4): 353-357.
[7] Vahini RAJA, Senthil Kumar PUVANESWARAN, Karuthapandian SWAMINATHAN. Unique and hierarchically structured novel Co3O4/NiO nanosponges with superior photocatalytic activity against organic contaminants[J]. Front. Mater. Sci., 2017, 11(4): 375-384.
[8] Kepi CHEN,Yanlin JIAO. Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics[J]. Front. Mater. Sci., 2017, 11(1): 59-65.
[9] Juan WANG,Binbin SUN,Muhammad Aqeel BHUTTO,Tonghe ZHU,Kui YU,Jiayu BAO,Yosry MORSI,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Xiumei MO. Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering[J]. Front. Mater. Sci., 2017, 11(1): 22-32.
[10] Yajing ZHAO,Yan CHEN,Kepi CHEN. Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping[J]. Front. Mater. Sci., 2016, 10(4): 422-427.
[11] Xuran GUO,Kaile ZHANG,Mohamed EL-AASSAR,Nanping WANG,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Qiang FU,Xiumei MO. The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty[J]. Front. Mater. Sci., 2016, 10(4): 346-357.
[12] Junfeng ZHOU,Liang CHENG,Xiaodan SUN,Xiumei WANG,Shouhong JIN,Junxiang LI,Qiong WU. Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation[J]. Front. Mater. Sci., 2016, 10(3): 260-269.
[13] Qilin WEI,Feiyang XU,Xingjian XU,Xue GENG,Lin YE,Aiying ZHANG,Zengguo FENG. The multifunctional wound dressing with core–shell structured fibers prepared by coaxial electrospinning[J]. Front. Mater. Sci., 2016, 10(2): 113-121.
[14] Jianchao ZHAN,Yosry MORSI,Hany EI-HAMSHARY,Salem S. AL-DEYAB,Xiumei MO. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers[J]. Front. Mater. Sci., 2016, 10(1): 90-100.
[15] Tao SONG,Zhi-Ye QIU,Fu-Zhai CUI. Biomaterials for reconstruction of cranial defects[J]. Front. Mater. Sci., 2015, 9(4): 346-354.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed