Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (4) : 358-365    https://doi.org/10.1007/s11706-017-0398-4
RESEARCH ARTICLE
Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies
Jun WU1, Chentian SHI1, Yupeng ZHANG2,3(), Qiang FU1,4, Chunxu PAN1,4()
1. School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China
2. College of Electronic Science and Technology, Shenzhen University, Shenzhen 518000, China
3. Department of Materials Science and Engineering, Monash University, Victoria 3800, Australia
4. Center for Electron Microscopy, Wuhan University, Wuhan 430072, China
 Download: PDF(324 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Anatase TiO2 with a variant percentage of exposed (001) facets was prepared under hydrothermal processes by adjusting the volume of HF, and the photocatalytic mechanism was studied from atomic-molecular scale by HRTEM and Raman spectroscopy. It was revealed that: 1) From HRTEM observations, the surface of original TiO2 with exposed (001) facets was clean without impurity, and the crystal lattice was clear and completed; however, when mixed with methylene blue (MB) solution, there were many 1 nm molecular absorbed at the surface of TiO2; after the photocatalytic experiment, MB molecules disappeared and the TiO2 lattice image became fuzzy. 2) The broken path of the MB chemical bond was obtained by Raman spectroscopy, i.e., after the irradiation of the light, the vibrational mode of C−N−C disappeared due to the chemical bond breakage, and the groups containing C−N bond and carbon rings were gradually decomposed. Accordingly, we propose that the driving force for breaking the chemical bond and the disappearance of groups is from the surface lattice distortion of TiO2 during photocatalyzation.

Keywords TiO2      exposed (001) facets      HRTEM      Raman spectroscopy      photocatalytic degradation mechanism     
Corresponding Author(s): Yupeng ZHANG,Chunxu PAN   
Online First Date: 31 October 2017    Issue Date: 29 November 2017
 Cite this article:   
Jun WU,Chentian SHI,Yupeng ZHANG, et al. Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies[J]. Front. Mater. Sci., 2017, 11(4): 358-365.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0398-4
https://academic.hep.com.cn/foms/EN/Y2017/V11/I4/358
Fig.1  XRD patterns of the samples: (a) TF3, TF4, TF5, TF6, TF7 and TF8; (b) TF3-600, TF4-600, TF5-600, TF6-600, TF7-600 and TF8-600.
Fig.2  Raman spectra of the samples: (a) TF3, TF4, TF5, TF6, TF7 and TF8; (b) TF3-600, TF4-600, TF5-600, TF6-600, TF7-600 and TF8-600.
Fig.3  Sample TF3: (a) SEM image; (b) Raman spectrum.
Fig.4  Sample TF3-600: (a) SEM image; (b) Raman spectrum.
Fig.5  Images of samples: (a) TEM image of TF3; (b) HRTEM image of TF3; (c) HRTEM image of TMB0; (d) HRTEM image of TMB1.
Fig.6  Methylene blue: (a) molecule model and structure; (b) Raman spectrum.
Fig.7  Raman spectra of the samples TF3, TMB0 and TMB1.
1 Fujishima A, Honda  K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
https://doi.org/10.1038/238037a0 pmid: 12635268
2 Nishiyama N, Fujiwara  Y, Adachi K , et al.. Preparation of porous metal-ion-doped titanium dioxide and the photocatalytic degradation of 4-chlorophenol under visible light irradiation. Applied Catalysis B: Environmental, 2015, 176–177: 347–353
https://doi.org/10.1016/j.apcatb.2015.04.015
3 Obata K, Kishishita  K, Okemoto A , et al.. Photocatalytic decomposition of NH3 over TiO2 catalysts doped with Fe. Applied Catalysis B: Environmental, 2014, 160–161: 200–203
https://doi.org/10.1016/j.apcatb.2014.05.033
4 Choi J, Park  H, Hoffmann M R . Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. The Journal of Physical Chemistry C, 2010, 114(2): 783–792
https://doi.org/10.1021/jp908088x
5 Qi D, Xing  M, Zhang J . Hydrophobic carbon-doped TiO2/MCF-F composite as a high performance photocatalyst. The Journal of Physical Chemistry C, 2014, 118(14): 7329–7336
https://doi.org/10.1021/jp4123979
6 Chen X, Lou  Y, Samia A C S , et al.. Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder. Advanced Functional Materials, 2005, 15(1): 41–49
https://doi.org/10.1002/adfm.200400184
7 Li D, Jiang  X, Zhang Y , et al.. A novel route to ZnO/TiO2 heterojunction composite fibers. Journal of Materials Research, 2013, 28(3): 507–512
https://doi.org/10.1557/jmr.2012.282
8 Luo C, Li  D, Wu W , et al.. Preparation of porous micro–nano-structure NiO/ZnO heterojunction and its photocatalytic property. RSC Advances, 2014, 4(6): 3090–3095
https://doi.org/10.1039/C3RA44670K
9 Luo C, Li  D, Wu W , et al.. Preparation of 3D reticulated ZnO/CNF/NiO heteroarchitecture for high-performance photocatalysis. Applied Catalysis B: Environmental, 2015, 166–167: 217–223
https://doi.org/10.1016/j.apcatb.2014.11.030
10 Lu Q, Lu  Z, Lu Y , et al.. Photocatalytic synthesis and photovoltaic application of Ag–TiO2 nanorod composites. Nano Letters, 2013, 13(11): 5698–5702
https://doi.org/10.1021/nl403430x pmid: 24164212
11 Wu J, Luo  C, Li D , et al.. Preparation of Au nanoparticle-decorated ZnO/NiO heterostructure via nonsolvent method for high-performance photocatalysis. Journal of Materials Science, 2017, 52(3): 1285–1295
https://doi.org/10.1007/s10853-016-0424-4
12 Pan X, Xu  Y J. Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light. The Journal of Physical Chemistry C, 2013, 117(35): 17996–18005
https://doi.org/10.1021/jp4064802
13 Yarahmadi A, Sharifnia  S. Dye photosensitization of ZnO with metallophthalocyanines (Co, Ni and Cu) in photocatalytic conversion of greenhouse gases. Dyes and Pigments, 2014, 107(13): 140–145
https://doi.org/10.1016/j.dyepig.2014.03.035
14 He Y, Tilocca  A, Dulub O , et al.. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nature Materials, 2009, 8(7): 585–589
https://doi.org/10.1038/nmat2466 pmid: 19465917
15 Bikondoa O, Pang  C L, Ithnin  R, et al.. Direct visualization of defect-mediated dissociation of water on TiO2 (110). Nature Materials, 2006, 5(3): 189–192
https://doi.org/10.1038/nmat1592
16 Du Y, Deskins  N A, Zhang  Z, et al.. Two pathways for water interaction with oxygen adatoms on TiO2(110). Physical Review Letters, 2009, 102(9): 096102
https://doi.org/10.1103/PhysRevLett.102.096102 pmid: 19392536
17 Ekström G N ,  McQuillan A J . In situ infrared spectroscopy of glyoxylic acid adsorption and photocatalysis on TiO2 in aqueous solution. The Journal of Physical Chemistry B, 1999, 103(48): 10562–10565
https://doi.org/10.1021/jp993063g
18 El-Maazawi M, Finken  A N, Nair  A B, et al.. Adsorption and photocatalytic oxidation of acetone on TiO2: An in situ transmission FT-IR study. Journal of Catalysis, 2000, 191(1): 138–146
https://doi.org/10.1006/jcat.1999.2794
19 Sato S, Ueda  K, Kawasaki Y , et al.. In situ IR observation of surface species during the photocatalytic decomposition of acetic acid over TiO2 films. The Journal of Physical Chemistry B, 2002, 106(35): 9054–9058
https://doi.org/10.1021/jp013533i
20 Kang M, Lee  J H, Lee  S H, et al.. Preparation of TiO2 film by the MOCVD method and analysis for decomposition of trichloro-ethylene using in situ FT-IR spectroscopy. Journal of Molecular Catalysis A: Chemical, 2003, 193(1–2): 273–283
https://doi.org/10.1016/S1381-1169(02)00474-0
21 Yu Z, Chuang  S. In situ IR study of adsorbed species and photogenerated electrons during photocatalytic oxidation of ethanol on TiO2. Journal of Catalysis, 2007, 246(1): 118–126
https://doi.org/10.1016/j.jcat.2006.11.022
22 Almeida A R, Moulijn  J A, Mul  G. In situ ATR-FTIR study on the selective photo-oxidation of cyclohexane over anatase TiO2. The Journal of Physical Chemistry C, 2008, 112(5): 1552–1561
https://doi.org/10.1021/jp077143t
23 Ho C, Shieh  C, Tseng C , et al.. Decomposition pathways of glycolic acid on titanium dioxide. Journal of Catalysis, 2009, 261(2): 150–157
https://doi.org/10.1016/j.jcat.2008.11.008
24 Tseng C L, Chen  Y K, Wang  S H, et al.. 2-Ethanolamine on TiO2 investigated by in situ infrared spectroscopy. Adsorption, photochemistry, and its interaction with CO2. The Journal of Physical Chemistry C, 2010, 114(27): 11835–11843
https://doi.org/10.1021/jp9117166
25 Imanishi A, Okamura  T, Ohashi N , et al.. Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: dependence on solution pH. Journal of the American Chemical Society, 2007, 129(37): 11569–11578
https://doi.org/10.1021/ja073206+ pmid: 17722924
26 Fleming G J, Idriss  H. Probing the reaction pathways of DL-proline on TiO2 (001) single crystal surfaces. Langmuir, 2004, 20(18): 7540–7546
https://doi.org/10.1021/la049492+ pmid: 15323500
27 Cao Y, Yi  L, Huang L , et al.. Mechanism and pathways of chlorfenapyr photocatalytic degradation in aqueous suspension of TiO2. Environmental Science & Technology, 2006, 40(10): 3373–3377
https://doi.org/10.1021/es052073u pmid: 16749708
28 Zhang J, Zhang  Y, Lei Y , et al.. Photocatalytic and degradation mechanisms of anatase TiO2: A HRTEM study. Catalysis Science & Technology, 2011, 1(2): 273–278
https://doi.org/10.1039/c0cy00051e
29 Tian F, Zhang  Y, Zhang J , et al.. Raman spectroscopy: A new approach to measure the percentage of anatase TiO2 exposed (001) facets. The Journal of Physical Chemistry C, 2012, 116(13): 7515–7519
https://doi.org/10.1021/jp301256h
30 Yang H G, Sun  C H, Qiao  S Z, et al.. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453(7195): 638–641
https://doi.org/10.1038/nature06964 pmid: 18509440
31 Liu P, Wang  Y, Zhang H , et al.. Vapor-phase hydrothermal transformation of HTiOF3 intermediates into {001} faceted anatase single-crystalline nanosheets. Small, 2012, 8(23): 3664–3673
https://doi.org/10.1002/smll.201200971 pmid: 22903795
32 Bersani D, Lottici  P P, Ding  X Z. Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Applied Physics Letters, 1998, 72(1): 73–75
https://doi.org/10.1063/1.120648
[1] Qizhi TIAN, Yajun JI, Yiyi QIAN, Abulikemu ABULIZI. Synthesis of defect-rich hierarchical sponge-like TiO2 nanoparticles and their improved photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 286-295.
[2] Yuming CHEN, Wenhao TANG, Jingru MA, Ben GE, Xiangliang WANG, Yufen WANG, Pengfei REN, Ruiping LIU. Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium--sulfur batteries[J]. Front. Mater. Sci., 2020, 14(3): 266-274.
[3] Zhiyu ZHANG, Lixia HU, Hui ZHANG, Liping YU, Yunxiao LIANG. Large-sized nano-TiO2/SiO2 mesoporous nanofilm-constructed macroporous photocatalysts with excellent photocatalytic performance[J]. Front. Mater. Sci., 2020, 14(2): 163-176.
[4] Pengfei ZHU, Zhihao REN, Ruoxu WANG, Ming DUAN, Lisi XIE, Jing XU, Yujing TIAN. Preparation and visible photocatalytic dye degradation of Mn-TiO2/sepiolite photocatalysts[J]. Front. Mater. Sci., 2020, 14(1): 33-42.
[5] Zhihong JING, Xiue LIU, Yan DU, Yuanchun HE, Tingjiang YAN, Wenliang WANG, Wenjuan LI. Synthesis, characterization, antibacterial and photocatalytic performance of Ag/AgI/TiO2 hollow sphere composites[J]. Front. Mater. Sci., 2020, 14(1): 1-13.
[6] Elias ASSAYEHEGN, Ananthakumar SOLAIAPPAN, Yonas CHEBUDIE, Esayas ALEMAYEHU. Influence of temperature on preparing mesoporous mixed phase N/TiO2 nanocomposite with enhanced solar light photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 352-366.
[7] Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
[8] Pengcheng WU, Chang LIU, Yan LUO, Keliang WU, Jianning WU, Xuhong GUO, Juan HOU, Zhiyong LIU. A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance[J]. Front. Mater. Sci., 2019, 13(1): 43-53.
[9] Zhongchi WANG, Gongsheng SONG, Jianle XU, Qiang FU, Chunxu PAN. Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis[J]. Front. Mater. Sci., 2018, 12(4): 379-391.
[10] Ruirui LIU, Zhijiang JI, Jing WANG, Jinjun ZHANG. Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue[J]. Front. Mater. Sci., 2018, 12(3): 292-303.
[11] Stavros KATSIAOUNIS, Christina TIFLIDIS, Christina TSEKOURA, Emmanuel TOPOGLIDIS. Electrochemical and spectroelectrochemical characterization of different mesoporous TiO2 film electrodes for the immobilization of Cytochrome c[J]. Front. Mater. Sci., 2018, 12(1): 64-73.
[12] Shenglian YAO, Xujia FENG, Wenhao LI, Lu-Ning WANG, Xiumei WANG. Regulation of RAW 264.7 macrophages behavior on anodic TiO2 nanotubular arrays[J]. Front. Mater. Sci., 2017, 11(4): 318-327.
[13] Cong ZHAO, Da-chuan ZHU, Xiao-yao CHENG, Shi-xiu CAO. Highly ordered Ag--TiO2 nanocomposited arrays with high visible-light photocatalytic activity[J]. Front. Mater. Sci., 2017, 11(3): 241-249.
[14] Alberto ESTRELLA GONZÁLEZ, Maximiliano ASOMOZA, Ulises ARELLANO, Sandra CIPAGAUTA DíAZ, Silvia SOLÍS. Preparation and characterization of phosphate-modified mesoporous TiO2 incorporated in a silica matrix and their photocatalytic properties in the photodegradation of Congo red[J]. Front. Mater. Sci., 2017, 11(3): 250-261.
[15] Bao YANG,Hong ZHANG,Jia GUO,Ya LIU,Zhicheng LI. Electrical properties and thermal sensitivity of Ti/Y modified CuO-based ceramic thermistors[J]. Front. Mater. Sci., 2016, 10(4): 413-421.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed