Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2020, Vol. 14 Issue (3) : 266-274    https://doi.org/10.1007/s11706-020-0509-5
RESEARCH ARTICLE
Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium--sulfur batteries
Yuming CHEN1, Wenhao TANG1, Jingru MA1, Ben GE1, Xiangliang WANG1, Yufen WANG2(), Pengfei REN1, Ruiping LIU1()
1. Department of Materials Science and Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
2. Energy & Materials Engineering Center, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
 Download: PDF(1574 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lithium–sulfur batteries are considered to be one of the strong competitors to replace lithium-ion batteries due to their large energy density. However, the dissolution of discharge intermediate products to the electrolyte, the volume change and poor electric conductivity of sulfur greatly limit their further commercialization. Herein, we proposed a self-supporting cathode of nickel-decorated TiO2 nanotube arrays (TiO2 NTs@Ni) prepared by an anodization and electrodeposition method. The TiO2 NTs with large specific surface area provide abundant reaction space and fast transmission channels for ions and electrons. Moreover, the introduction of nickel can enhance the electric conductivity and the polysulfide adsorption ability of the cathode. As a result, the TiO2 NTs@Ni–S electrode exhibits significant improvement in cycling and rate performance over TiO2 NTs, and the discharge capacity of the cathode maintains 719 mA·h·g−1 after 100 cycles at 0.1 C.

Keywords lithium--sulfur battery      TiO2      self-supporting      polysulfide intermediate     
Corresponding Author(s): Yufen WANG,Ruiping LIU   
Online First Date: 19 June 2020    Issue Date: 10 September 2020
 Cite this article:   
Yuming CHEN,Wenhao TANG,Jingru MA, et al. Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium--sulfur batteries[J]. Front. Mater. Sci., 2020, 14(3): 266-274.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-020-0509-5
https://academic.hep.com.cn/foms/EN/Y2020/V14/I3/266
Fig.1  Synthesis process of TiO2 NTs@Ni–S composites.
Fig.2  SEM image of nanowires on the TiO2 NTs surface.
Fig.3  (a)(b) SEM images of TiO2 NTs. (c) SEM image of TiO2 NTs@Ni. (d) SEM image of the cross-section of TiO2 NTs.
Fig.4  (a) SEM image of S coating on TiO2 NTs@Ni. (b)(c)(d)(e) Elemental mapping images of TiO2 NTs@Ni–S.
Fig.5  (a) XRD patterns of TiO2 NTs and TiO2 NTs@Ni. (b)(c)(d) XPS spectra of the pristine TiO2 NTs@Ni and TiO2 NTs@Ni soaked in Li2S6 solution: Ti 2p spectra of TiO2 NTs and TiO2 NTs/Li2S6; Ni 2p3/2 spectra of TiO2 NTs@Ni and TiO2 NTs@Ni/Li2S6; S 2p spectrum of TiO2 NTs@Ni/Li2S6.
Fig.6  The electrochemical performance of Li–S batteries assembled with TiO2 NTs–S or TiO2 NTs@Ni–S as the cathode material: (a) CV curves; (b) discharge–charge profiles at 0.1 C for 100 cycles; (c)(d) rate performance; (e)(f) cyclic performance at 0.1 C for 100 cycles at the mass loadings of 1.6 and 2.4 mg·cm−2.
Fig.7  Adsorption configurations of (a) Li2S4 on the anatase TiO2 surface, (b) Li2S4 on the TiO2@Ni surface, (c) Li2S6 on the anatase TiO2 surface, and (d) Li2S6 on the TiO2@Ni surface.
1 L L Wang, Y S Ye, N Chen, et al.. Development and challenges of functional electrolytes for high-performance lithium–sulfur batteries. Advanced Functional Materials, 2018, 28(38): 1800919
https://doi.org/10.1002/adfm.201800919
2 H J Peng, T Z Hou, Q Zhang, et al.. Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium–sulfur batteries: mechanistic insight into capacity degradation. Advanced Materials Interfaces, 2014, 1(7): 1400227
https://doi.org/10.1002/admi.201400227
3 W Kou, X Li, Y Liu, et al.. Triple-layered carbon–SiO2 composite membrane for high energy density and long cycling Li–S batteries. ACS Nano, 2019, 13(5): 5900–5909
https://doi.org/10.1021/acsnano.9b01703 pmid: 30990658
4 W Chen, T Qian, J Xiong, et al.. A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries. Advanced Materials, 2017, 29(12): 1605160
https://doi.org/10.1002/adma.201605160 pmid: 28165170
5 Z Guo, H Nie, Z Yang, et al.. 3D CNTs/graphene–S–Al3Ni2 cathodes for high-sulfur-loading and long-life lithium–sulfur batteries. Advanced Science, 2018, 5(7): 1800026
https://doi.org/10.1002/advs.201800026 pmid: 30027035
6 D Liu, C Zhang, G Zhou, et al.. Catalytic effects in lithium–sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Advanced Science, 2018, 5(1): 1700270
https://doi.org/10.1002/advs.201700270 pmid: 29375960
7 M R Busche, P Adelhelm, H Sommer, et al.. Systematical electrochemical study on the parasitic shuttle-effect in lithium–sulfur-cells at different temperatures and different rates. Journal of Power Sources, 2014, 259: 289–299
https://doi.org/10.1016/j.jpowsour.2014.02.075
8 Y Zhai, Y Dou, D Zhao, et al.. Carbon materials for chemical capacitive energy storage. Advanced Materials, 2011, 23(42): 4828–4850
https://doi.org/10.1002/adma.201100984 pmid: 21953940
9 F Wu, J T Lee, E Zhao, et al.. Graphene–Li2S–carbon nanocomposite for lithium–sulfur batteries. ACS Nano, 2016, 10(1): 1333–1340
https://doi.org/10.1021/acsnano.5b06716 pmid: 26647225
10 G Chen, W Zhong, Y Li, et al.. Rational design of TiO–TiO2 heterostructure/polypyrrole as a multifunctional sulfur host for advanced lithium–sulfur batteries. ACS Applied Materials & Interfaces, 2019, 11(5): 5055–5063
https://doi.org/10.1021/acsami.8b19501 pmid: 30656928
11 L Jiao, C Zhang, C N Geng, et al.. Capture and catalytic conversion of polysulfides by in situ built TiO2–MXene heterostructures for lithium–sulfur batteries. Advanced Energy Materials, 2019, 9(19): 1900219
https://doi.org/10.1002/aenm.201900219
12 Y K Wang, R F Zhang, J Chen, et al.. Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering. Advanced Energy Materials, 2019, 9(24): 1900953
https://doi.org/10.1002/aenm.201900953
13 L P Zhang, Y F Wang, S Q Gou, et al.. All inorganic frameworks of tin dioxide shell as cathode material for lithium sulfur batteries with improved cycle performance. The Journal of Physical Chemistry C, 2015, 119(52): 28721–28727
https://doi.org/10.1021/acs.jpcc.5b08934
14 X Liang, L F Nazar. In situreactive assembly of scalable core–shell sulfur–MnO2 composite cathodes. ACS Nano, 2016, 10(4): 4192–4198
https://doi.org/10.1021/acsnano.5b07458 pmid: 26910648
15 S H Chung, A Manthiram. A Li2S–TiS2-electrolyte composite for stable Li2S-based lithium–sulfur batteries. Advanced Energy Materials, 2019, 9(30): 1901397
https://doi.org/10.1002/aenm.201901397
16 M Chen, W Xu, S Jamil, et al.. Multifunctional heterostructures for polysulfide suppression in high-performance lithium–sulfur cathode. Small, 2018, 14(49): e1803134
https://doi.org/10.1002/smll.201803134 pmid: 30358110
17 Z Q Cui, J Yao, T Mei, et al.. Strong lithium polysulfides chemical trapping of TiC–TiO2/S composite for long-cycle lithium–sulfur batteries. Electrochimica Acta, 2019, 298: 43–51
https://doi.org/10.1016/j.electacta.2018.12.075
18 X Liang, A Garsuch, L F Nazar. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angewandte Chemie International Edition, 2015, 54(13): 3907–3911
https://doi.org/10.1002/anie.201410174 pmid: 25650042
19 Y Liao, J Xiang, L Yuan, et al.. Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium–sulfur batteries. ACS Applied Materials & Interfaces, 2018, 10(44): 37955–37962
https://doi.org/10.1021/acsami.8b11118 pmid: 30360064
20 D R Deng, F Xue, Y J Jia, et al.. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries. ACS Nano, 2017, 11(6): 6031–6039
https://doi.org/10.1021/acsnano.7b01945 pmid: 28570815
21 H Rasoulnezhad, G Hosseinzadeh, R Hosseinzadeh, et al.. Preparation of transparent nanostructured N-doped TiO2 thin films by combination of sonochemical and CVD methods with visible light photocatalytic activity. Journal of Advanced Ceramics, 2018, 7(3): 185–196
https://doi.org/10.1007/s40145-018-0270-8
22 C L Zhao, Y X Wu, H L Liang, et al.. N-doped graphene and TiO2 supported manganese and cerium oxides on low-temperature selective catalytic reduction of NOx with NH3. Journal of Advanced Ceramics, 2018, 7(3): 197–206
https://doi.org/10.1007/s40145-018-0271-7
23 H Y Shao, W K Wang, H Zhang, et al.. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium–sulfur battery. Journal of Power Sources, 2018, 378: 537–545
https://doi.org/10.1016/j.jpowsour.2017.12.067
24 C Zha, D Wu, T Zhang, et al.. A facile and effective sulfur loading method: Direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium–sulfur battery. Energy Storage Materials, 2019, 17: 118–125
https://doi.org/10.1016/j.ensm.2018.11.020
25 Z W Seh, W Li, J J Cha, et al.. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Communications, 2013, 4(1): 1331
https://doi.org/10.1038/ncomms2327 pmid: 23299881
26 Q Pang, X Liang, C Y Kwok, et al.. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 2016, 1(9): 16132
https://doi.org/10.1038/nenergy.2016.132
27 Y Zhao, W Zhu, G Z Chen, et al.. Polypyrrole/TiO2 nanotube arrays with coaxial heterogeneous structure as sulfur hosts for lithium sulfur batteries. Journal of Power Sources, 2016, 327: 447–456
https://doi.org/10.1016/j.jpowsour.2016.07.082
28 J Su, L Zhu, P Geng, et al.. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light. Journal of Hazardous Materials, 2016, 316: 159–168
https://doi.org/10.1016/j.jhazmat.2016.05.004 pmid: 27232727
29 Y H Zhang, Y N Yang, P Xiao, et al.. Preparation of Ni nanoparticle–TiO2 nanotube composite by pulse electrodeposition. Materials Letters, 2009, 63(28): 2429–2431
https://doi.org/10.1016/j.matlet.2009.08.019
30 Z Liang, G Zheng, W Li, et al.. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano, 2014, 8(5): 5249–5256
https://doi.org/10.1021/nn501308m pmid: 24766547
31 J P Perdew, A Ruzsinszky, G I Csonka, et al.. Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 2008, 100(13): 136406
https://doi.org/10.1103/PhysRevLett.100.136406 pmid: 18517979
32 J H Lim, J Choi. Titanium oxide nanowires originating from anodically grown nanotubes: the bamboo-splitting model. Small, 2007, 3(9): 1504–1507
https://doi.org/10.1002/smll.200700114 pmid: 17647256
33 H Z Wang, X L Kou, L Zhang, et al.. Size-controlled synthesis, microstructure and magnetic properties of Ni nanoparticles. Materials Research Bulletin, 2008, 43(12): 3529–3536
https://doi.org/10.1016/j.materresbull.2008.01.012
34 J Ni, S Fu, C Wu, et al.. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Advanced Materials, 2016, 28(11): 2259–2265
https://doi.org/10.1002/adma.201504412 pmid: 26789864
35 C C Li, X B Liu, L Zhu, et al.. Conductive and polar titanium boride as a sulfur host for advanced lithium–sulfur batteries. Chemistry of Materials, 2018, 30(20): 6969–6977
https://doi.org/10.1021/acs.chemmater.8b01352
36 Y M Li, X Han, T F Yi, et al.. Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. Journal of Energy Chemistry, 2019, 31: 54–78
https://doi.org/10.1016/j.jechem.2018.05.010
37 L P Wang, J Y Zhang, Y Gao, et al.. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution. Scripta Materialia, 2006, 55(7): 657–660
https://doi.org/10.1016/j.scriptamat.2006.04.009
38 Y T Liu, D D Han, L Wang, et al.. NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium–sulfur battery. Advanced Energy Materials, 2019, 9(11): 1803477
https://doi.org/10.1002/aenm.201803477
39 X N Shang, T F Qin, P Q Guo, et al.. A novel strategy for the selection of polysulfide adsorbents toward high-performance lithium–sulfur batteries. Advanced Materials Interfaces, 2019, 6: 1900393
https://doi.org/10.1002/admi.201900393
40 R Xu, J Lu, K Amine. Progress in mechanistic understanding and characterization techniques of Li–S batteries. Advanced Energy Materials, 2015, 5(16): 1500408
https://doi.org/10.1002/aenm.201500408
41 J Y Liao, D Higgins, G Lui, et al.. Multifunctional TiO2–C/MnO2 core–double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Letters, 2013, 13(11): 5467–5473
https://doi.org/10.1021/nl4030159 pmid: 24079359
[1] Qizhi TIAN, Yajun JI, Yiyi QIAN, Abulikemu ABULIZI. Synthesis of defect-rich hierarchical sponge-like TiO2 nanoparticles and their improved photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 286-295.
[2] Zhiyu ZHANG, Lixia HU, Hui ZHANG, Liping YU, Yunxiao LIANG. Large-sized nano-TiO2/SiO2 mesoporous nanofilm-constructed macroporous photocatalysts with excellent photocatalytic performance[J]. Front. Mater. Sci., 2020, 14(2): 163-176.
[3] Pengfei ZHU, Zhihao REN, Ruoxu WANG, Ming DUAN, Lisi XIE, Jing XU, Yujing TIAN. Preparation and visible photocatalytic dye degradation of Mn-TiO2/sepiolite photocatalysts[J]. Front. Mater. Sci., 2020, 14(1): 33-42.
[4] Zhihong JING, Xiue LIU, Yan DU, Yuanchun HE, Tingjiang YAN, Wenliang WANG, Wenjuan LI. Synthesis, characterization, antibacterial and photocatalytic performance of Ag/AgI/TiO2 hollow sphere composites[J]. Front. Mater. Sci., 2020, 14(1): 1-13.
[5] Elias ASSAYEHEGN, Ananthakumar SOLAIAPPAN, Yonas CHEBUDIE, Esayas ALEMAYEHU. Influence of temperature on preparing mesoporous mixed phase N/TiO2 nanocomposite with enhanced solar light photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 352-366.
[6] Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
[7] Pengcheng WU, Chang LIU, Yan LUO, Keliang WU, Jianning WU, Xuhong GUO, Juan HOU, Zhiyong LIU. A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance[J]. Front. Mater. Sci., 2019, 13(1): 43-53.
[8] Zhongchi WANG, Gongsheng SONG, Jianle XU, Qiang FU, Chunxu PAN. Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis[J]. Front. Mater. Sci., 2018, 12(4): 379-391.
[9] Ruirui LIU, Zhijiang JI, Jing WANG, Jinjun ZHANG. Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue[J]. Front. Mater. Sci., 2018, 12(3): 292-303.
[10] Stavros KATSIAOUNIS, Christina TIFLIDIS, Christina TSEKOURA, Emmanuel TOPOGLIDIS. Electrochemical and spectroelectrochemical characterization of different mesoporous TiO2 film electrodes for the immobilization of Cytochrome c[J]. Front. Mater. Sci., 2018, 12(1): 64-73.
[11] Jun WU, Chentian SHI, Yupeng ZHANG, Qiang FU, Chunxu PAN. Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies[J]. Front. Mater. Sci., 2017, 11(4): 358-365.
[12] Shenglian YAO, Xujia FENG, Wenhao LI, Lu-Ning WANG, Xiumei WANG. Regulation of RAW 264.7 macrophages behavior on anodic TiO2 nanotubular arrays[J]. Front. Mater. Sci., 2017, 11(4): 318-327.
[13] Cong ZHAO, Da-chuan ZHU, Xiao-yao CHENG, Shi-xiu CAO. Highly ordered Ag--TiO2 nanocomposited arrays with high visible-light photocatalytic activity[J]. Front. Mater. Sci., 2017, 11(3): 241-249.
[14] Alberto ESTRELLA GONZÁLEZ, Maximiliano ASOMOZA, Ulises ARELLANO, Sandra CIPAGAUTA DíAZ, Silvia SOLÍS. Preparation and characterization of phosphate-modified mesoporous TiO2 incorporated in a silica matrix and their photocatalytic properties in the photodegradation of Congo red[J]. Front. Mater. Sci., 2017, 11(3): 250-261.
[15] Bao YANG,Hong ZHANG,Jia GUO,Ya LIU,Zhicheng LI. Electrical properties and thermal sensitivity of Ti/Y modified CuO-based ceramic thermistors[J]. Front. Mater. Sci., 2016, 10(4): 413-421.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed