Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 13601    https://doi.org/10.1007/s11467-022-1209-7
TOPICAL REVIEW
Topological invariants for anomalous Floquet higher-order topological insulators
Biao Huang()
Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(17174 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We review the recent development in constructing higher-order topological band insulators under strong periodic drivings. In particular, we focus on various approaches in formulating the anomalous Floquet topological invariants beyond (quasi-)static band topology, and compare their different physical consequences.

Keywords topological      Floquet      higher-order     
Corresponding Author(s): Biao Huang   
Issue Date: 27 October 2022
 Cite this article:   
Biao Huang. Topological invariants for anomalous Floquet higher-order topological insulators[J]. Front. Phys. , 2023, 18(1): 13601.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1209-7
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/13601
Fig.1  (a) Phase diagram parameterized by dimensionless (γ,λ)(γT/(2?),λT/(2?)). (b) One representative in-gap corner state amplitude in phase ④, with others in different corners. (c, d) Open-boundary spectrum (Lx×Ly=20×20) in different phases. Parameters are 2(γ,λ)=(π4,π2),(π2,π4),(3π4,π2),(π2,3π4) for phases ①?④ respectively. Figures taken from Ref. [52].
Fig.2  Schematic illustration of dynamical polarization. Figure taken from Ref. [52].
Fig.3  Toy scenario showing the need for x^mean(t).
Fig.4  Figures taken from Ref. [52] for the model in Eq. (5). Solid/dashed lines denotes +/? sign for the hopping amplitude so each plaquette carries π-fluxes.
Fig.5  (a) Exemplary first-order dynamical branches νx,μ(ky,t) in phase ④ at t=T/2. Four branches for each ε-gap separate into two doubly degenerate sets ±νx. Other phases/instants t exhibit νx,μ(ky,t) of similar structures. (b) Quadrupolar motions ?νy,μ~(νx)?(t) in a cycle, with the same parameters as in Fig.1 for each phase respectively. Generically the 1/2 crossing needs not to occur at t=T/2 if the chiral symmetry is broken. Figures taken from Ref. [52].
Fig.6  Dynamical singularity when the parameters γ,λ in the model of Fig.4 takes various values in the phase diagram. (a) Parametrization for different values of γ,λ, where the contour across all 4 phases is parametrized by g. (b) The size of π-gap for U(k,t), where we see that the phase transition is associated with destroying or creating a dynamical singularity at t=T. (c) The size of π-gap for the periodized Uε=π(k,t). Due to chiral symmetry for Uε=π, the dynamical singularity always occur at t=T/2. In (b) and (c), the red-color (for vanishing π-gap) marks the instants where dynamical singularities exist.
Fig.7  Representative instant spectrum for three points in Fig.6(c). Each band is doubly degenerate.
Fig.8  The mirror graded winding numbers within the reduced Brillouin zone defined by Mxy(k)=k.
Dynamical polarization Dynamical singularity and crystalline symmetry graded invariant
Topology concerning? Bulk enforced real space boundary High symmetry region in Brillouin zone
How to change invariant? Bulk or edge gap closure Must be bulk gap closure within symmetric Brillouin zone
Tab.1  Comparison between different approaches to characterize anomalous Floquet higher-order topology.
Fig.9  Quasienergy spectrum of the Floquet operator under different boundary conditions. Here (γy,λ)= (π/2)(1,0.25) is fixed. Should γx=γy (green dashed line), it corresponds to phase ③ in Fig.1(a) with π corner modes. Decreasing γx below γx(c)1.2 destroys these corner modes. (a) and (b) clearly show that an edge (rather than bulk) topological phase transition occurs around γx(c) where the edge π-gap closes while the bulk gap remains open.
Fig.10  DP for the extended model. We see that the corner states in Fig.9(c) is characterized by DP across the edge topological phase transition.
Fig.11  Dynamical singularity for the extended model is immediately gapped out when the Mxy is broken by γxγy, although corner states still exist for certain ranges as shown by Fig.9(c).
1 S. Rudner M. , H. Lindner N. , Berg E. , Levin M. . Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X, 2013, 3(3): 031005
https://doi.org/10.1103/PhysRevX.3.031005
2 Roy R. , Harper F. . Periodic table for Floquet topological insulators. Phys. Rev. B, 2017, 96(15): 155118
https://doi.org/10.1103/PhysRevB.96.155118
3 Yao S. , Yan Z. , Wang Z. . Topological invariants of Floquet systems: General formulation, special properties, and Floquet topological defects. Phys. Rev. B, 2017, 96(19): 195303
https://doi.org/10.1103/PhysRevB.96.195303
4 C. Potter A. , Morimoto T. , Vishwanath A. . Classification of interacting topological Floquet phases in one dimension. Phys. Rev. X, 2016, 6(4): 041001
https://doi.org/10.1103/PhysRevX.6.041001
5 C. Po H. , Fidkowski L. , Morimoto T. , C. Potter A. , Vishwanath A. . Chiral Floquet phases of many-body localized bosons. Phys. Rev. X, 2016, 6(4): 041070
https://doi.org/10.1103/PhysRevX.6.041070
6 Morimoto T. , C. Po H. , Vishwanath A. . Floquet topological phases protected by time glide symmetry. Phys. Rev. B, 2017, 95(19): 195155
https://doi.org/10.1103/PhysRevB.95.195155
7 D. Potirniche I. , C. Potter A. , Schleier-Smith M. , Vishwanath A. , Y. Yao N. . Floquet symmetry-protected topological phases in cold-atom systems. Phys. Rev. Lett., 2017, 119(12): 123601
https://doi.org/10.1103/PhysRevLett.119.123601
8 C. Potter A. , Vishwanath A. , Fidkowski L. . Infinite family of three-dimensional Floquet topological paramagnets. Phys. Rev. B, 2018, 97(24): 245106
https://doi.org/10.1103/PhysRevB.97.245106
9 C. Po H. , Fidkowski L. , Vishwanath A. , C. Potter A. . Radical chiral Floquet phases in a periodically driven Kitaev model and beyond. Phys. Rev. B, 2017, 96(24): 245116
https://doi.org/10.1103/PhysRevB.96.245116
10 Fidkowski L. , C. Po H. , C. Potter A. , Vishwanath A. . Interacting invariants for Floquet phases of fermions in two dimensions. Phys. Rev. B, 2019, 99(8): 085115
https://doi.org/10.1103/PhysRevB.99.085115
11 Sacha K. , Zakrzewski J. . Time crystals: A review. Rep. Prog. Phys., 2018, 81(1): 016401
https://doi.org/10.1088/1361-6633/aa8b38
12 Khemani V.Moessner R.L. Sondhi S., A brief history of time crystals, arXiv: 1910.10745 (2019)
13 V. Else D. , Monroe C. , Nayak C. , Y. Yao N. . Discrete time crystals. Annu. Rev. Condens. Matter Phys., 2020, 11(1): 467
https://doi.org/10.1146/annurev-conmatphys-031119-050658
14 Oka T. , Kitamura S. . Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys., 2019, 10(1): 387
https://doi.org/10.1146/annurev-conmatphys-031218-013423
15 Jotzu G. , Messer M. , Desbuquois R. , Lebrat M. , Uehlinger T. , Greif D. , Esslinger T. . Experimental realization of the topological Haldane model with ultracold fermions. Nature, 2014, 515(7526): 237
https://doi.org/10.1038/nature13915
16 Eckardt A. . Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys., 2017, 89(1): 011004
https://doi.org/10.1103/RevModPhys.89.011004
17 Aidelsburger M. , Lohse M. , Schweizer C. , Atala M. , T. Barreiro J. , Nascimbène S. , R. Cooper N. , Bloch I. , Goldman N. . Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys., 2015, 11(2): 162
https://doi.org/10.1038/nphys3171
18 J. Thouless D. . Quantization of particle transport. Phys. Rev. B, 1983, 27(10): 6083
https://doi.org/10.1103/PhysRevB.27.6083
19 Lohse M. , Schweizer C. , Zilberberg O. , Aidelsburger M. , Bloch I. . A thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Nat. Phys., 2016, 12(4): 350
https://doi.org/10.1038/nphys3584
20 Nakajima S. , Tomita T. , Taie S. , Ichinose T. , Ozawa H. , Wang L. , Troyer M. , Takahashi Y. . Topological thouless pumping of ultracold fermions. Nat. Phys., 2016, 12(4): 296
https://doi.org/10.1038/nphys3622
21 Kitagawa T. , Berg E. , Rudner M. , Demler E. . Topological characterization of periodically driven quantum systems. Phys. Rev. B, 2010, 82(23): 235114
https://doi.org/10.1103/PhysRevB.82.235114
22 A. Benalcazar W. , A. Bernevig B. , L. Hughes T. . Quantized electric multipole insulators. Science, 2017, 357(6346): 61
https://doi.org/10.1126/science.aah6442
23 A. Benalcazar W. , A. Bernevig B. , L. Hughes T. . Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B, 2017, 96(24): 245115
https://doi.org/10.1103/PhysRevB.96.245115
24 Noh J. , A. Benalcazar W. , Huang S. , J. Collins M. , P. Chen K. , L. Hughes T. , C. Rechtsman M. . Topological protection of photonic mid-gap defect modes. Nat. Photonics, 2018, 12(7): 408
https://doi.org/10.1038/s41566-018-0179-3
25 Serra-Garcia M. , Peri V. , Süsstrunk R. , R. Bilal O. , Larsen T. , G. Villanueva L. , D. Huber S. . Observation of a phononic quadrupole topological insulator. Nature, 2018, 555(7696): 342
https://doi.org/10.1038/nature25156
26 W. Peterson C. , A. Benalcazar W. , L. Hughes T. , Bahl G. . A quantized microwave quadrupole insulator with topologically protected corner states. Nature, 2018, 555(7696): 346
https://doi.org/10.1038/nature25777
27 Imhof S. , Berger C. , Bayer F. , Brehm J. , Molenkamp L. , Kiessling T. , Schindler F. , L. Ching H. , Greiter M. , Neupert T. , Thomale R. . Topolectrical circuit realization of topological corner modes. Nat. Phys., 2018, 14(9): 925
https://doi.org/10.1038/s41567-018-0246-1
28 Schindler F. , M. Cook A. , G. Vergniory M. , Wang Z. , S. P. Parkin S. , A. Bernevig B. , Neupert T. . Higher-order topological insulators. Sci. Adv., 2018, 4(6): eaat0346
https://doi.org/10.1126/sciadv.aat0346
29 Schindler F. , Wang Z. , G. Vergniory M. , M. Cook A. , Murani A. , Sengupta S. , Y. Kasumov A. , Deblock R. , Jeon S. , Drozdov I. , Bouchiat H. , Guéron S. , Yazdani A. , A. Bernevig B. , Neupert T. . Higher-order topology in bismuth. Nat. Phys., 2018, 14(9): 918
https://doi.org/10.1038/s41567-018-0224-7
30 K. Kunst F. , van Miert G. , J. Bergholtz E. . Lattice models with exactly solvable topological hinge and corner states. Phys. Rev. B, 2018, 97(24): 241405
https://doi.org/10.1103/PhysRevB.97.241405
31 Song Z. , Fang Z. , Fang C. . (d-2)-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett., 2017, 119(24): 246402
https://doi.org/10.1103/PhysRevLett.119.246402
32 Langbehn J. , Peng Y. , Trifunovic L. , von Oppen F. , W. Brouwer P. . Reflection symmetric second-order topological insulators and superconductors. Phys. Rev. Lett., 2017, 119(24): 246401
https://doi.org/10.1103/PhysRevLett.119.246401
33 Trifunovic L. , Brouwer P. . Higher-order bulkboundary correspondence for topological crystalline phases. Phys. Rev. X, 2019, 9(1): 011012
https://doi.org/10.1103/PhysRevX.9.011012
34 Calugaru D.Juricic V.Roy B., Higher order topological phases: A general principle of construction, Phys. Rev. B 99, 041301(R) (2019)
35 Queiroz R. , Stern A. . Splitting the hinge mode of higher-order topological insulators. Phys. Rev. Lett., 2019, 123(3): 036802
https://doi.org/10.1103/PhysRevLett.123.036802
36 Ezawa M. . Topological switch between second-order topological insulators and topological crystalline insulators. Phys. Rev. Lett., 2018, 121(11): 116801
https://doi.org/10.1103/PhysRevLett.121.116801
37 Zhang F. , L. Kane C. , J. Mele E. . Surface state magnetization and chiral edge states on topological insulators. Phys. Rev. Lett., 2013, 110(4): 046404
https://doi.org/10.1103/PhysRevLett.110.046404
38 Seradjeh B. , Weeks C. , Franz M. . Fractionalization in a square-lattice model with time-reversal symmetry. Phys. Rev. B, 2008, 77(3): 033104
https://doi.org/10.1103/PhysRevB.77.033104
39 Lin M. , L. Hughes T. . Topological quadrupolar semimetals. Phys. Rev. B, 2018, 98(24): 241103
https://doi.org/10.1103/PhysRevB.98.241103
40 Ezawa M. . Higher-order topological insulators and semimetalson the breathing kagome and pyrochlore lattices. Phys. Rev. Lett., 2018, 120(2): 026801
https://doi.org/10.1103/PhysRevLett.120.026801
41 Ezawa M. . Magnetic second-order topological insulators and semimetals. Phys. Rev. B, 2018, 97(15): 155305
https://doi.org/10.1103/PhysRevB.97.155305
42 Shapourian H. , Wang Y. , Ryu S. . Topological crystalline superconductivity and second-order topological superconductivity in nodal-loop materials. Phys. Rev. B, 2018, 97(9): 094508
https://doi.org/10.1103/PhysRevB.97.094508
43 Wang Y. , Lin M. , L. Hughes T. . Weak-pairing higher order topological superconductors. Phys. Rev. B, 2018, 98(16): 165144
https://doi.org/10.1103/PhysRevB.98.165144
44 Khalaf E. . Higher-order topological insulators and superconductors protected by inversion symmetry. Phys. Rev. B, 2018, 97(20): 205136
https://doi.org/10.1103/PhysRevB.97.205136
45 Zhu X. . Tunable Majorana corner states in a two-dimensional second-order topological superconductor induced by magnetic fields. Phys. Rev. B, 2018, 97(20): 205134
https://doi.org/10.1103/PhysRevB.97.205134
46 Yan Z. , Song F. , Wang Z. . Majorana corner modes in a high-temperature platform. Phys. Rev. Lett., 2018, 121(9): 096803
https://doi.org/10.1103/PhysRevLett.121.096803
47 Wang Q. , C. Liu C. , M. Lu Y. , Zhang F. . High-temperature Majorana corner states. Phys. Rev. Lett., 2018, 121(18): 186801
https://doi.org/10.1103/PhysRevLett.121.186801
48 Liu T. , J. He J. , Nori F. . Majorana corner states in a two-dimensional magnetic topological insulator on a high-temperature superconductor. Phys. Rev. B, 2018, 98(24): 245413
https://doi.org/10.1103/PhysRevB.98.245413
49 Dwivedi V. , Hickey C. , Eschmann T. , Trebst S. . Majorana corner modes in a second-order Kitaev spin liquid. Phys. Rev. B, 2018, 98(5): 054432
https://doi.org/10.1103/PhysRevB.98.054432
50 You Y. , Devakul T. , J. Burnell F. , Neupert T. . Higher order symmetry-protected topological states for interacting bosons and fermions. Phys. Rev. B, 2018, 98: 235102
https://doi.org/10.1103/PhysRevB.98.235102
51 Rasmussen A. , M. Lu Y. . Classification and construction of higher-order symmetry protected topological phases of interacting bosons. Phys. Rev. B, 2019, 101: 085137
https://doi.org/10.1103/PhysRevB.101.085137
52 Huang B. , V. Liu W. . Floquet higher-order topological insulators with anomalous dynamical polarization. Phys. Rev. Lett., 2020, 124(21): 216601
https://doi.org/10.1103/PhysRevLett.124.216601
53 W. Bomantara R. , Zhou L. , Pan J. , Gong J. . Coupled-wire construction of static and Floquet second-order topological insulators. Phys. Rev. B, 2019, 99: 045441
https://doi.org/10.1103/PhysRevB.99.045441
54 Rodriguez-Vega M. , Kumar A. , Seradjeh B. . Higher-order Floquet topological phases with corner and bulk bound states. Phys. Rev. B, 2019, 100: 085138
https://doi.org/10.1103/PhysRevB.100.085138
55 Peng Y. , Refael G. . Floquet second-order topological insulators from nonsymmorphic space−time symmetries. Phys. Rev. Lett., 2019, 123(1): 016806
https://doi.org/10.1103/PhysRevLett.123.016806
56 K. Ghosh A. , Nag T. , Saha A. . Dynamical construction of quadrupolar and octupolar topological superconductors. Phys. Rev. B, 2022, 105(15): 155406
https://doi.org/10.1103/PhysRevB.105.155406
57 Hu H. , Huang B. , Zhao E. , V. Liu W. . Dynamical singularities of Floquet higher-order topological insulators. Phys. Rev. Lett., 2020, 124(5): 057001
https://doi.org/10.1103/PhysRevLett.124.057001
58 X. Zhang R.C. Yang Z., Theory of anomalous Floquet higher-order topology: Classification, characterization, and bulk-boundary correspondence, arXiv: 2010.07945 (2020)
59 D. Vu D. , X. Zhang R. , C. Yang Z. , Das Sarma S. . Superconductors with anomalous Floquet higher-order topology. Phys. Rev. B, 2021, 104(14): L140502
https://doi.org/10.1103/PhysRevB.104.L140502
60 Peng Y. . Floquet higher-order topological insulators and superconductors with space−time symmetries. Phys. Rev. Res., 2020, 2(1): 013124
https://doi.org/10.1103/PhysRevResearch.2.013124
61 K. Chiu C. , Yao H. , Ryu S. . Classification of topological insulators and superconductors in the presence of reflection symmetry. Phys. Rev. B, 2013, 88(7): 075142
https://doi.org/10.1103/PhysRevB.88.075142
62 Khalaf E. , A. Benalcazar W. , L. Hughes T. , Queiroz R. . Boundary-obstructed topological phases. Phys. Rev. Res., 2021, 3(1): 013239
https://doi.org/10.1103/PhysRevResearch.3.013239
63 Resta R. . Quantum-mechanical position operator in extended systems. Phys. Rev. Lett., 1998, 80(9): 1800
https://doi.org/10.1103/PhysRevLett.80.1800
64 Xiao D. , C. Chang M. , Niu Q. . Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
https://doi.org/10.1103/RevModPhys.82.1959
65 Wintersperger K. , Braun C. , N. Ünal F. , Eckardt A. , D. Liberto M. , Goldman N. , Bloch I. , Aidelsburger M. . Realization of an anomalous Floquet topological system with ultracold atoms. Nat. Phys., 2020, 16(10): 1058
https://doi.org/10.1038/s41567-020-0949-y
66 N. Ünal F. , Seradjeh B. , Eckardt A. . How to directly measure Floquet topological invariants in optical lattices. Phys. Rev. Lett., 2019, 122(25): 253601
https://doi.org/10.1103/PhysRevLett.122.253601
67 Rodriguez-Vega M. , Kumar A. , Seradjeh B. . Higher-order Floquet topological phases with corner and bulk bound states. Phys. Rev. B, 2019, 100(8): 085138
https://doi.org/10.1103/PhysRevB.100.085138
68 W. Bomantara R. , Zhou L. , Pan J. , Gong J. . Coupled-wire construction of static and Floquet second-order topological insulators. Phys. Rev. B, 2019, 99(4): 045441
https://doi.org/10.1103/PhysRevB.99.045441
69 Fu L. , L. Kane C. . Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett., 2008, 100(9): 096407
https://doi.org/10.1103/PhysRevLett.100.096407
70 Z. Hasan M. , L. Kane C. . Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
71 Geier M. , Trifunovic L. , Hoskam M. , W. Brouwer P. . Second-order topological insulators and superconductors with an order-two crystalline symmetry. Phys. Rev. B, 2018, 97(20): 205135
https://doi.org/10.1103/PhysRevB.97.205135
72 Xu S. , Wu C. . Space−time crystal and space−time group. Phys. Rev. Lett., 2018, 120(9): 096401
https://doi.org/10.1103/PhysRevLett.120.096401
73 Peng Y. . Topological space−time crystal. Phys. Rev. Lett., 2022, 128(18): 186802
https://doi.org/10.1103/PhysRevLett.128.186802
74 C. Po H. , Vishwanath A. , Watanabe H. . Symmetry-based indicators of band topology in the 230 space groups. Nat. Commun., 2017, 8(1): 50
https://doi.org/10.1038/s41467-017-00133-2
75 Khalaf E. , C. Po H. , Vishwanath A. , Watanabe H. . Symmetry indicators and anomalous surface states of topological crystalline insulators. Phys. Rev. X, 2018, 8(3): 031070
https://doi.org/10.1103/PhysRevX.8.031070
76 Yu J. , X. Zhang R. , D. Song Z. . Dynamical symmetry indicators for Floquet crystals. Nat. Commun., 2021, 12(1): 5985
https://doi.org/10.1038/s41467-021-26092-3
77 C. Po H. , Watanabe H. , Vishwanath A. . Fragile topology and Wannier obstructions. Phys. Rev. Lett., 2018, 121(12): 126402
https://doi.org/10.1103/PhysRevLett.121.126402
78 V. Else D. , C. Po H. , Watanabe H. . Fragile topological phases in interacting systems. Phys. Rev. B, 2019, 99(12): 125122
https://doi.org/10.1103/PhysRevB.99.125122
79 Ono S. , Yanase Y. , Watanabe H. . Symmetry indicators for topological superconductors. Phys. Rev. Res., 2019, 1(1): 013012
https://doi.org/10.1103/PhysRevResearch.1.013012
80 Nakagawa M. , J. Slager R. , Higashikawa S. , Oka T. . Wannier representation of Floquet topological states. Phys. Rev. B, 2020, 101(7): 075108
https://doi.org/10.1103/PhysRevB.101.075108
81 Yu J. , Ge Y. , Das Sarma S. . Dynamical fragile topology in Floquet crystals. Phys. Rev. B, 2021, 104(18): L180303
https://doi.org/10.1103/PhysRevB.104.L180303
82 X. Zhang R. , C. Yang Z. . Tunable fragile topology in Floquet systems. Phys. Rev. B, 2021, 103(12): L121115
https://doi.org/10.1103/PhysRevB.103.L121115
83 Zhu Y. , Qin T. , Yang X. , Xianlong G. , Liang Z. . Floquet and anomalous Floquet Weyl semimetals. Phys. Rev. Res., 2020, 2(3): 033045
https://doi.org/10.1103/PhysRevResearch.2.033045
84 Zhu W. , Umer M. , Gong J. . Floquet higher-order Weyl and nexus semimetals. Phys. Rev. Res., 2021, 3(3): L032026
https://doi.org/10.1103/PhysRevResearch.3.L032026
85 Zhang R.Hino K.Maeshima N., Floquet-weyl semimetals generated by an optically resonant interband-transition, arXiv: 2201.01578 (2022)
86 Wu H. , Q. Wang B. , H. An J. . Floquet second-order topological insulators in non-Hermitian systems. Phys. Rev. B, 2021, 103(4): L041115
https://doi.org/10.1103/PhysRevB.103.L041115
87 K. Ghosh A.Nag T., Non-hermitian higherorder topological superconductors in two-dimension: statics and dynamics, arXiv: 2205.09915 (2022)
88 Koor K.W. Bomantara R.C. Kwek L., Symmetry protected topological corner modes in a periodically driven interacting spin lattice, arXiv: 2206.06660 (2022)
89 Zhu W. , Xue H. , Gong J. , Chong Y. , Zhang B. . Time-periodic corner states from Floquet higher order topology. Nat. Commun., 2022, 13(1): 11
https://doi.org/10.1038/s41467-021-27552-6
90 Zhu W. , D. Chong Y. , Gong J. . Floquet higher order topological insulator in a periodically driven bipartite lattice. Phys. Rev. B, 2021, 103(4): L041402
https://doi.org/10.1103/PhysRevB.103.L041402
91 Chaudhary S. , Haim A. , Peng Y. , Refael G. . Phonon-induced Floquet topological phases protected by space−time symmetries. Phys. Rev. Res., 2020, 2(4): 043431
https://doi.org/10.1103/PhysRevResearch.2.043431
92 Bauer B. , Pereg-Barnea T. , Karzig T. , T. Rieder M. , Refael G. , Berg E. , Oreg Y. . Topologically protected braiding in a single wire using Floquet Majorana modes. Phys. Rev. B, 2019, 100(4): 041102
https://doi.org/10.1103/PhysRevB.100.041102
[1] Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301-.
[2] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[3] Lei Shi, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (III)[J]. Front. Phys. , 2023, 18(2): 21307-.
[4] Yuan Wang, Fayuan Zhang, Meng Zeng, Hongyi Sun, Zhanyang Hao, Yongqing Cai, Hongtao Rong, Chengcheng Zhang, Cai Liu, Xiaoming Ma, Le Wang, Shu Guo, Junhao Lin, Qihang Liu, Chang Liu, Chaoyu Chen. Intrinsic magnetic topological materials[J]. Front. Phys. , 2023, 18(2): 21304-.
[5] Liang Kong, Hao Zheng. Categorical computation[J]. Front. Phys. , 2023, 18(2): 21302-.
[6] Xu-Tao Zeng, Ziyu Chen, Cong Chen, Bin-Bin Liu, Xian-Lei Sheng, Shengyuan A. Yang. Topological hinge modes in Dirac semimetals[J]. Front. Phys. , 2023, 18(1): 13308-.
[7] Meng Xu, Lei Guo, Lei Chen, Ying Zhang, Shuang-Shuang Li, Weiyao Zhao, Xiaolin Wang, Shuai Dong, Ren-Kui Zheng. Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals[J]. Front. Phys. , 2023, 18(1): 13304-.
[8] Junjie Zeng, Rui Xue, Tao Hou, Yulei Han, Zhenhua Qiao. Formation of topological domain walls and quantum transport properties of zero-line modes in commensurate bilayer graphene systems[J]. Front. Phys. , 2022, 17(6): 63503-.
[9] Jia-En Yang, Hang Xie. Energy-resolved spin filtering effect and thermoelectric effect in topological-insulator junctions with anisotropic chiral edge states[J]. Front. Phys. , 2022, 17(6): 63504-.
[10] Jin-Xuan Han, Jin-Lei Wu, Zhong-Hui Yuan, Yan Xia, Yong-Yuan Jiang, Jie Song. Fast topological pumping for the generation of large-scale Greenberger−Horne−Zeilinger states in a superconducting circuit[J]. Front. Phys. , 2022, 17(6): 62504-.
[11] Yiqing Tian, Yiqi Zhang, Yongdong Li, R. Belić Milivoj. Vector valley Hall edge solitons in the photonic lattice with type-II Dirac cones[J]. Front. Phys. , 2022, 17(5): 53503-.
[12] Kai-Tong Wang, Fuming Xu, Bin Wang, Yunjin Yu, Yadong Wei. Transport features of topological corner states in honeycomb lattice with multihollow structure[J]. Front. Phys. , 2022, 17(4): 43501-.
[13] Annan Fan, Shi-Dong Liang. Complex energy plane and topological invariant in non-Hermitian systems[J]. Front. Phys. , 2022, 17(3): 33501-.
[14] Jiahao Fan, Huaqing Huang. Topological states in quasicrystals[J]. Front. Phys. , 2022, 17(1): 13203-.
[15] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed