Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 13308    https://doi.org/10.1007/s11467-022-1221-y
RESEARCH ARTICLE
Topological hinge modes in Dirac semimetals
Xu-Tao Zeng1, Ziyu Chen1, Cong Chen1,2, Bin-Bin Liu1, Xian-Lei Sheng1,3(), Shengyuan A. Yang4,5
1. School of Physics, Beihang University, Beijing 100191, China
2. Department of Physics, The University of Hong Kong, Hong Kong, China
3. Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China
4. Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
5. Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
 Download: PDF(6122 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dirac semimetals (DSMs) are an important class of topological states of matter. Here, focusing on DSMs of band inversion type, we investigate their boundary modes from the effective model perspective. We show that in order to properly capture the boundary modes, k-cubic terms must be included in the effective model, which would drive an evolution of surface degeneracy manifold from a nodal line to a nodal point. Sizable k-cubic terms are also needed for better exposing the topological hinge modes in the spectrum. Using first-principles calculations, we demonstrate that this feature and the topological hinge modes can be clearly exhibited in β-CuI. We extend the discussion to magnetic DSMs and show that the time-reversal symmetry breaking can gap out the surface bands and hence is beneficial for the experimental detection of hinge modes. Furthermore, we show that magnetic DSMs serve as a parent state for realizing multiple other higher-order topological phases, including higher-order Weyl-point/nodal-line semimetals and higher-order topological insulators.

Keywords topological      hinge      Dirac      semimetals     
Corresponding Author(s): Xian-Lei Sheng   
Issue Date: 17 November 2022
 Cite this article:   
Xu-Tao Zeng,Ziyu Chen,Cong Chen, et al. Topological hinge modes in Dirac semimetals[J]. Front. Phys. , 2023, 18(1): 13308.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1221-y
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/13308
Fig.1  DSM effective model without the k-cubic terms [Eq. (1)]. (a) We discretize the model on a 3D hexagonal lattice. (b) The corresponding BZ. (c) Bulk band structure. Here, each band is twofold degenerate. (d) Surface band dispersion on a side surface. There is a surface nodal line form by the crossing of surface bands, which connects the projections of two bulk Dirac points. (e) The corresponding surface spectrum along high symmetry path and (f) the constant energy slice at Fermi level. Here, we take the model parameters as C0=1,C 1=0.2, C2=0 ,M0= 1,M1=0.5,M2=0.5,andA=1.
Fig.2  DSM effective model with cubic terms included [Eq. (2) + Eq. (1)]. (a) Bulk band structure. (b) Surface band dispersion on a side surface. There is a Dirac cone at the surface BZ center. (c) Surface spectrum and (d) constant energy slice at Fermi level for the side surface. (e) Spectrum of a 1D hexagonal tube geometry (with 30 cell length of an edge) as shown in (f). The hinge modes are indicated by the red lines. (f) Spatial distribution of the hinge mode marked by the star in (e). Here, we take the parameters as C0=1,C 1=0.2, C2=0 ,M0= 1,M1=0.5,M2=0.5,andA=1.
Fig.3  Results for the effective 2D Hamiltonian H~λ(kx ,ky)=H~0λ+ H~1λ when λ =π/3. (a) Evolution of the Wannier centers for the occupied bands. (b) Nested Berry phase when λ varies along kz. The system has a nontrivial second-order topology for λ between the two Dirac points. (c, d) Spectra for the nanodisk geometry (c) without and (d) with H~1λ. The insets show the distribution of the states marked in red in the spectra. Here, we take the parameters as C0=1,C1=0.2,C2=0,M0= 1,M1=0.5,M2=0.5,andA=1.
Fig.4  (a) Crystal structure of hexagonal β-CuI. (b) The first BZ of β-CuI and its projected surface BZ on (010) planes. (c, d) Band structure of β-CuI (c) without and (d) with spin-orbit coupling.
Fig.5  (a, b) Projected spectrum and the Fermi contours for the (010) surface. (c) Spectrum for the 1D tube geometry of β-CuI as shown in (d). Here, each side of the tube cross section has a length of 60 unit cells. The hinge modes are highlighted by the red lines. (d) Spatial distribution of two hinge modes marked in (c).
Fig.6  (a) Illustration of the lattice model for magnetic DSM. (b) Bulk band structure. (c) Surface spectrum of the model [Eq. (9)] along high symmetry paths for the side surface normal to y. (d) Surface band dispersion. (e) Spectrum of a 1D tube geometry shown in (f). Each side of the cross section has a length of 40 cells. The hinge modes are highlighted by the red lines. (f) Spatial distribution of the model marked by star in (e). Here, we take the parameters as m0=2, m1=m2= w=0.5,v =1,m3=0.2, and all other parameters are set to zero.
Fig.7  Magnetic higher-order Weyl semimetal. (a, b) Illustration of transition from 2 Dirac points to 4 Weyl points (c) Bulk band structure. (d) Constant energy slice at Fermi level for the side surface. (e) Spectrum of a 1D square tube geometry (with 60 cell length of an edge) as shown in (f). The hinge modes are indicated by the red lines. (f) Spatial distribution of the hinge mode of the hinge Dirac cone at Γ point in (e). Here, we take the parameters as C 0=0, C1=0,C2=0,M 0=1, M1=0.5 ,M2= 0.5,A=1 and D=0.5.
Fig.8  Magnetic higher-order nodal-line semimetal. (a) Bulk band structure. (b) Two nodal rings are illustrated. Each ring features a nontrivial winding number. (c) The hinge modes are indicated by the red lines. (d) Spatial distribution of the hinge mode marked by the star in (c). Here, we take the parameters as C0=0,C1=0,C 2=0, M0=1 ,M1= 0.5, M2=0.5 ,A=1 and D=0.5.
Fig.9  Magnetic higher-order topological insulator. (a) Bulk band structure. (b) Surface spectrum are totally gapped by introducing C4z breaking term Dkzσx sy. (c) Spectrum of a 1D square tube geometry (with 20 cell length of an edge) as shown in (d). The hinge modes are indicated by the red(diagonal) and blue(off-diagonal) lines. (d) Spatial distribution of the hinge mode of the hinge Dirac cone at Γ point in (c). Here, we take the parameters as C 0=0, C1=0 , C2=0,M0=1,M 1=0.5, M2=0.5 ,A=1 and D=0.5.
  Fig. B1 (a, b) Projected spectrum and the Fermi contour on the (010) surface. The projection of bulk Dirac points are indicated by two white points. (c) Spectrum of a 1D tube geometry as shown in (d). Each side of the cross section has a width of 40 cells. The hinge modes are highlighted by the red color. (d) Spatial distribution of the hinge mode marked by star in (c). In the calculation, we take the parameters as C0=1,C1=0.25,C2=0,M0= 1,M1=0.5,M2=0.5,A0= 1,A1= A 2=0, B1= B2=0.5.
1 Z. Hasan M., L. Kane C.. Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
2 L. Qi X., C. Zhang S.. Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
3 Q. Shen S., Topological Insulators, Vol. 174, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012
4 A. Bernevig B.L. Hughes T., Topological Insulators and Topological Superconductors, Princeton University Press, 2013
5 Bansil A., Lin H., Das T.. Topological band theory. Rev. Mod. Phys., 2016, 88(2): 021004
https://doi.org/10.1103/RevModPhys.88.021004
6 K. Chiu C., C. Y. Teo J., P. Schnyder A., Ryu S.. Classification of topological quantum matter with symmetries. Rev. Mod. Phys., 2016, 88(3): 035005
https://doi.org/10.1103/RevModPhys.88.035005
7 A. Yang S.. Dirac and Weyl materials: Fundamental aspects and some spintronics applications. Spin, 2016, 6(2): 1640003
https://doi.org/10.1142/S2010324716400038
8 Dai X.. Weyl fermions go into orbit. Nat. Phys., 2016, 12(8): 727
https://doi.org/10.1038/nphys3841
9 A. Burkov A.. Topological semimetals. Nat. Mater., 2016, 15(11): 1145
https://doi.org/10.1038/nmat4788
10 P. Armitage N., J. Mele E., Vishwanath A.. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys., 2018, 90(1): 015001
https://doi.org/10.1103/RevModPhys.90.015001
11 Qi J., Liu H., Jiang H., C. Xie X.. Dephasing effects in topological insulators. Front. Phys., 2019, 14(4): 43403
https://doi.org/10.1007/s11467-019-0907-2
12 D. M. Haldane F.. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett., 1988, 61(18): 2015
https://doi.org/10.1103/PhysRevLett.61.2015
13 Wan X., M. Turner A., Vishwanath A., Y. Savrasov S.. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B, 2011, 83(20): 205101
https://doi.org/10.1103/PhysRevB.83.205101
14 M. Young S., Zaheer S., C. Y. Teo J., L. Kane C., J. Mele E., M. Rappe A.. Dirac semimetal in three dimensions. Phys. Rev. Lett., 2012, 108(14): 140405
https://doi.org/10.1103/PhysRevLett.108.140405
15 Wang Z., Sun Y., Q. Chen X., Franchini C., Xu G., Weng H., Dai X., Fang Z.. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B, 2012, 85(19): 195320
https://doi.org/10.1103/PhysRevB.85.195320
16 Wang Z., Weng H., Wu Q., Dai X., Fang Z.. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B, 2013, 88(12): 125427
https://doi.org/10.1103/PhysRevB.88.125427
17 Li S., M. Yu Z., Yao Y., A. Yang S.. Type-II topological metals. Front. Phys., 2020, 15(4): 43201
https://doi.org/10.1007/s11467-020-0963-7
18 A. Steinberg J., M. Young S., Zaheer S., L. Kane C., J. Mele E., M. Rappe A.. Bulk Dirac points in distorted spinels. Phys. Rev. Lett., 2014, 112(3): 036403
https://doi.org/10.1103/PhysRevLett.112.036403
19 K. Liu Z., Zhou B., Zhang Y., J. Wang Z., M. Weng H., Prabhakaran D., K. Mo S., X. Shen Z., Fang Z., Dai X., Hussain Z., L. Chen Y.. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science, 2014, 343(6173): 864
https://doi.org/10.1126/science.1245085
20 K. Liu Z., Jiang J., Zhou B., J. Wang Z., Zhang Y., M. Weng H., Prabhakaran D., K. Mo S., Peng H., Dudin P., Kim T., Hoesch M., Fang Z., Dai X., X. Shen Z., L. Feng D., Hussain Z., L. Chen Y.. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater., 2014, 13(7): 677
https://doi.org/10.1038/nmat3990
21 Neupane M., Y. Xu S., Sankar R., Alidoust N., Bian G., Liu C., Belopolski I., R. Chang T., T. Jeng H., Lin H., Bansil A., Chou F., Z. Hasan M.. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun., 2014, 5(1): 3786
https://doi.org/10.1038/ncomms4786
22 Jeon S., B. Zhou B., Gyenis A., E. Feldman B., Kimchi I., C. Potter A., D. Gibson Q., J. Cava R., Vishwanath A., Yazdani A.. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nat. Mater., 2014, 13(9): 851
https://doi.org/10.1038/nmat4023
23 Borisenko S., Gibson Q., Evtushinsky D., Zabolotnyy V., Büchner B., J. Cava R.. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett., 2014, 113(2): 027603
https://doi.org/10.1103/PhysRevLett.113.027603
24 Liang T., Gibson Q., N. Ali M., Liu M., J. Cava R., P. Ong N.. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater., 2015, 14(3): 280
https://doi.org/10.1038/nmat4143
25 Y. Xu S., Liu C., K. Kushwaha S., Sankar R., W. Krizan J., Belopolski I., Neupane M., Bian G., Alidoust N., R. Chang T., T. Jeng H., Y. Huang C., F. Tsai W., Lin H., P. Shibayev P., C. Chou F., J. Cava R., Z. Hasan M.. Observation of Fermi arc surface states in a topological metal. Science, 2015, 347(6219): 294
https://doi.org/10.1126/science.1256742
26 Xiong J., K. Kushwaha S., Liang T., W. Krizan J., Hirschberger M., Wang W., J. Cava R., P. Ong N.. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science, 2015, 350(6259): 413
https://doi.org/10.1126/science.aac6089
27 Kargarian M., Randeria M., M. Lu Y.. Are the surface Fermi arcs in Dirac semimetals topologically protected. Proc. Natl. Acad. Sci. USA, 2016, 113(31): 8648
https://doi.org/10.1073/pnas.1524787113
28 Zhang F., L. Kane C., J. Mele E.. Surface state magnetization and chiral edge states on topological insulators. Phys. Rev. Lett., 2013, 110(4): 046404
https://doi.org/10.1103/PhysRevLett.110.046404
29 A. Benalcazar W., A. Bernevig B., L. Hughes T.. Quantized electric multipole insulators. Science, 2017, 357(6346): 61
https://doi.org/10.1126/science.aah6442
30 Langbehn J., Peng Y., Trifunovic L., von Oppen F., W. Brouwer P.. Reflection-symmetric second-order topological insulators and superconductors. Phys. Rev. Lett., 2017, 119(24): 246401
https://doi.org/10.1103/PhysRevLett.119.246401
31 Song Z., Fang Z., Fang C.. (d−2)-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett., 2017, 119(24): 246402
https://doi.org/10.1103/PhysRevLett.119.246402
32 Schindler F., M. Cook A., G. Vergniory M., Wang Z., S. P. Parkin S., A. Bernevig B., Neupert T., Andrei Bernevig B., Neupert T.. Higher-order topological insulators. Sci. Adv., 2018, 4(6): eaat0346
https://doi.org/10.1126/sciadv.aat0346
33 Schindler F., Wang Z., G. Vergniory M., M. Cook A., Murani A., Sengupta S., Y. Kasumov A., Deblock R., Jeon S., Drozdov I., Bouchiat H., Guéron S., Yazdani A., A. Bernevig B., Neupert T.. Higher-order topology in bismuth. Nat. Phys., 2018, 14(9): 918
https://doi.org/10.1038/s41567-018-0224-7
34 L. Sheng X., Chen C., Liu H., Chen Z., M. Yu Z., X. Zhao Y., A. Yang S.. Two-dimensional second-order topological insulator in graphdiyne. Phys. Rev. Lett., 2019, 123(25): 256402
https://doi.org/10.1103/PhysRevLett.123.256402
35 X. Wang H., K. Lin Z., Jiang B., Y. Guo G., H. Jiang J.. Higher-order Weyl semimetals. Phys. Rev. Lett., 2020, 125(14): 146401
https://doi.org/10.1103/PhysRevLett.125.146401
36 A. A. Ghorashi S., Li T., L. Hughes T.. Higher-order Weyl semimetals. Phys. Rev. Lett., 2020, 125(26): 266804
https://doi.org/10.1103/PhysRevLett.125.266804
37 Qiu H., Xiao M., Zhang F., Qiu C.. Higher-order Dirac sonic crystals. Phys. Rev. Lett., 2021, 127(14): 146601
https://doi.org/10.1103/PhysRevLett.127.146601
38 Chen C., T. Zeng X., Chen Z., X. Zhao Y., L. Sheng X., A. Yang S.. Second-order real nodal-line semimetal in three-dimensional graphdiyne. Phys. Rev. Lett., 2022, 128(2): 026405
https://doi.org/10.1103/PhysRevLett.128.026405
39 D. Scammell H., Ingham J., Geier M., Li T.. Intrinsic first- and higher-order topological superconductivity in a doped topological insulator. Phys. Rev. B, 2022, 105(19): 195149
https://doi.org/10.1103/PhysRevB.105.195149
40 J. Wieder B., Wang Z., Cano J., Dai X., M. Schoop L., Bradlyn B., A. Bernevig B.. Strong and fragile topological Dirac semimetals with higher-order Fermi arcs. Nat. Commun., 2020, 11(1): 627
https://doi.org/10.1038/s41467-020-14443-5
41 Fang Y., Cano J.. Classification of Dirac points with higher-order Fermi arcs. Phys. Rev. B, 2021, 104(24): 245101
https://doi.org/10.1103/PhysRevB.104.245101
42 A. Bernevig B., L. Hughes T., C. Zhang S.. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314(5806): 1757
https://doi.org/10.1126/science.1133734
43 Le C., Wu X., Qin S., Li Y., Thomale R., C. Zhang F., Hu J.. Dirac semimetal in β-CuI without surface Fermi arcs. Proc. Natl. Acad. Sci. USA, 2018, 115(33): 8311
https://doi.org/10.1073/pnas.1803599115
44 Shan Y., Li G., Tian G., Han J., Wang C., Liu S., Du H., Yang Y.. Description of the phase transitions of cuprous iodide. J. Alloys Compd., 2009, 477(1−2): 403
https://doi.org/10.1016/j.jallcom.2008.10.026
45 Tang P., Zhou Q., Xu G., C. Zhang S.. Dirac fermions in an antiferromagnetic semimetal. Nat. Phys., 2016, 12(12): 1100
https://doi.org/10.1038/nphys3839
46 Hua G., Nie S., Song Z., Yu R., Xu G., Yao K.. Dirac semimetal in type-IV magnetic space groups. Phys. Rev. B, 2018, 98: 201116(R)
https://doi.org/10.1103/PhysRevB.98.201116
47 Wang K., X. Dai J., B. Shao L., A. Yang S., X. Zhao Y.. Boundary Criticality of PT-invariant topology and second-order nodal-line semimetals. Phys. Rev. Lett., 2020, 125(12): 126403
https://doi.org/10.1103/PhysRevLett.125.126403
48 Nie S.Chen J.Yue C.Le C.Yuan D. Zhang W.Weng H., Tunable Dirac semimetals with higher-order Fermi arcs in Kagome lattices Pd3Pb2X2 (X = S, Se), arXiv: 2203.03162 (2022)
49 Kresse G., Hafner J.. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49(20): 14251
https://doi.org/10.1103/PhysRevB.49.14251
50 Kresse G., Furthmüller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
51 E. Blöchl P.. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
https://doi.org/10.1103/PhysRevB.50.17953
52 P. Perdew J., Burke K., Ernzerhof M.. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
53 J. Monkhorst H., D. Pack J.. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
https://doi.org/10.1103/PhysRevB.13.5188
54 Marzari N., Vanderbilt D.. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B, 1997, 56(20): 12847
https://doi.org/10.1103/PhysRevB.56.12847
55 Souza I., Marzari N., Vanderbilt D.. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B, 2001, 65(3): 035109
https://doi.org/10.1103/PhysRevB.65.035109
56 P. L. Sancho M., M. L. Sancho J., Rubio J.. Quick iterative scheme for the calculation of transfer matrices: application to Mo(100). J. Phys. F Met. Phys., 1984, 14(5): 1205
https://doi.org/10.1088/0305-4608/14/5/016
57 P. L. Sancho M., M. L. Sancho J., M. L. Sancho J., Rubio J.. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F Met. Phys., 1985, 15(4): 851
https://doi.org/10.1088/0305-4608/15/4/009
58 Wu Q., Zhang S., F. Song H., Troyer M., A. Soluyanov A.. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun., 2018, 224: 405
https://doi.org/10.1016/j.cpc.2017.09.033
[1] Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301-.
[2] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[3] Lei Shi, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (III)[J]. Front. Phys. , 2023, 18(2): 21307-.
[4] Yuan Wang, Fayuan Zhang, Meng Zeng, Hongyi Sun, Zhanyang Hao, Yongqing Cai, Hongtao Rong, Chengcheng Zhang, Cai Liu, Xiaoming Ma, Le Wang, Shu Guo, Junhao Lin, Qihang Liu, Chang Liu, Chaoyu Chen. Intrinsic magnetic topological materials[J]. Front. Phys. , 2023, 18(2): 21304-.
[5] Liang Kong, Hao Zheng. Categorical computation[J]. Front. Phys. , 2023, 18(2): 21302-.
[6] Biao Huang. Topological invariants for anomalous Floquet higher-order topological insulators[J]. Front. Phys. , 2023, 18(1): 13601-.
[7] Meng Xu, Lei Guo, Lei Chen, Ying Zhang, Shuang-Shuang Li, Weiyao Zhao, Xiaolin Wang, Shuai Dong, Ren-Kui Zheng. Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals[J]. Front. Phys. , 2023, 18(1): 13304-.
[8] Junjie Zeng, Rui Xue, Tao Hou, Yulei Han, Zhenhua Qiao. Formation of topological domain walls and quantum transport properties of zero-line modes in commensurate bilayer graphene systems[J]. Front. Phys. , 2022, 17(6): 63503-.
[9] Jia-En Yang, Hang Xie. Energy-resolved spin filtering effect and thermoelectric effect in topological-insulator junctions with anisotropic chiral edge states[J]. Front. Phys. , 2022, 17(6): 63504-.
[10] Jin-Xuan Han, Jin-Lei Wu, Zhong-Hui Yuan, Yan Xia, Yong-Yuan Jiang, Jie Song. Fast topological pumping for the generation of large-scale Greenberger−Horne−Zeilinger states in a superconducting circuit[J]. Front. Phys. , 2022, 17(6): 62504-.
[11] Yiqing Tian, Yiqi Zhang, Yongdong Li, R. Belić Milivoj. Vector valley Hall edge solitons in the photonic lattice with type-II Dirac cones[J]. Front. Phys. , 2022, 17(5): 53503-.
[12] Kai-Tong Wang, Fuming Xu, Bin Wang, Yunjin Yu, Yadong Wei. Transport features of topological corner states in honeycomb lattice with multihollow structure[J]. Front. Phys. , 2022, 17(4): 43501-.
[13] Annan Fan, Shi-Dong Liang. Complex energy plane and topological invariant in non-Hermitian systems[J]. Front. Phys. , 2022, 17(3): 33501-.
[14] Jiahao Fan, Huaqing Huang. Topological states in quasicrystals[J]. Front. Phys. , 2022, 17(1): 13203-.
[15] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed