Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (5) : 53604    https://doi.org/10.1007/s11467-023-1290-6
TOPICAL REVIEW
Defect repairing in two-dimensional transition metal dichalcogenides
Shiyan Zeng, Fang Li, Chao Tan, Lei Yang, Zegao Wang()
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
 Download: PDF(10203 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) have stimulated enormous research interest due to rich phase structure, high theoretical carrier mobility and layer-dependent bandgap. In view of the close correlation between defects and properties in 2D TMDCs, more attentions have been paid on the defect engineering in recent years, however the mechanism is still unclear. Herein, we review the critical progress of defect engineering and provide an extensive way to modulate the properties depressed by defects. To insight into the defect engineering, we firstly introduce two common kinds of defects during the growth progress of TMDCs and the possible distribution of energy levels those defects could induce. Then, various methods to improve point defects and grain boundaries during the period of growth are discussed intensively, with the assistance of which more large-area TMDCs films can be obtained. Considering the defects in TMDCs are inevitable regardless of concentration, we also highlight strategies to heal the defects after growth. Through dry methods or wet methods, the chalcogen vacancies can be repaired and thus, the performance of electronic device would be significantly enhanced. Finally, we propose the challenges and prospective for defect engineering in 2D TMDCs materials to support the optimization of device and lead them to wide applied fields.

Keywords defect      repairing      two-dimensional transition metal      dichalcogenides     
Corresponding Author(s): Zegao Wang   
Issue Date: 31 May 2023
 Cite this article:   
Shiyan Zeng,Fang Li,Chao Tan, et al. Defect repairing in two-dimensional transition metal dichalcogenides[J]. Front. Phys. , 2023, 18(5): 53604.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1290-6
https://academic.hep.com.cn/fop/EN/Y2023/V18/I5/53604
Fig.1  The scope of this review.
Fig.2  (a) Top view and side view of point defects: Schottky vacancy, Frenkel defect, adatoms, interstitial atom and substitutional atom. (b) The diagram of edge defects. (c) The diagram of grain boundary: low-angle grain boundary and high-angle grain boundary. (d) The occupation of energy levels caused by different defects.
Fig.3  (a) Schematic illustration of the CVD setup for the NaX-assisted (X = Cl, Br, and I) MoS2 growth, and Raman intensity mappings in two types of MoS2 samples with NaBr and without salt [66]. (b) Large area HAADF-STEM images of MoSe2, Mo0.98W0.02Se, and Mo0.82W0.18Se2 monolayers from left to right, respectively (above). Enlarged HAADF-STEM images from the regions contained by dashed squares in corresponding images above after Lucy–Richardson deconvolution (below). The Se vacancies with one missing Se atoms are labeled by V, and those with two missing Se atoms are labeled by H [70]. (c) Optical images of MoS2 grown on sapphire for 30 min with O2 flow rate ranging from 0 to 5 sccm. The insets are AFM height images of MoS2 grown on sapphire under different O2 flow rates (0?2 sccm) [71]. (d, e) Typical Raman (d) and photoluminescence (e) spectra of as-grown MoS2 with (red) and without (black) O2 carrier gas, respectively [71].
Fig.4  (a) Schematics of the improved CVD synthesis for the high-throughput growth of submillimeter monolayer TMDC single crystals [72]. (b) SEM images of WS2 crystals: on the substrate without self-stacking, on the self-stacked substrate for forming micro-reactors, and on the self-stacked substrate placed in the circumfluence CVD chamber, respectively. The insets show the typical WS2 flakes correspondingly [72]. (c) Corresponding OM images and Raman spectra of MoS2 synthesized using MoO3 powder (above) and Mo foil (below) as precursors [79]. (d) Optical images of the monolayer WS2 crystals that were grown from FWO3, PTWO3, AWO3, and PTAWO3 powders, respectively [80]. (e) Optical microscopy images and domain size distribution histogram of MoS2 grown on c-plane sapphire and molten glass, respectively [81]. (f) Typical optical images of monolayer MoS2 assisted grown by three different seeding promoters corresponding to PTAS, CuPc and CV, respectively [95]. (g) OM and AFM images of MoS2 grown on SiO2 without ?OH (left) and with ?OH (right), respectively [98].
Fig.5  (a) A 3D schematic plot of layered WS2, with the sulfur atoms shown in yellow, tungsten atoms in gray and the N atoms in blue [100]. (b) Atomic structures of WS2 without nitrogen plasma treatment (left) and with nitrogen plasma treatment (right) that were obtained via STEM. The insets are schematic diagram of sulfur atom (yellow round) and tungsten atom (brown round), as well as the corresponding SAED pattern [100]. (c) Schematic illustration of for hydrogen-doped MoS2 [102]. (d) Band diagram showing the evolution of MoS2 Fermi level: before hydrogenation, upon the first exposure to hydrogen, and after the complete hydrogenation, respectively [102]. (e) STM images of MoS2/G/Au after annealing at different temperature [105].
Fig.6  (a) PL images of a MoS2 monolayer before (above) and after treatment (below). Insets show optical micrographs [114]. (b) ADF-STEM images of five pristine 1L-MoS2 samples (top panels) and the distribution maps (bottom panels) of the V S (yellow dot) and VS2 (red dot) defects measured from the corresponding ADF-STEM images. Note that a noticeable antisite defect, MoS2, is observed and is denoted by an arrow on the ADF-STEM images [111]. (c) The HAADF images and Z-contrast mapping in the areas marked with yellow rectangles before (left) and after (right) PSS-induced SVSH, reveal that the sulfur vacancies (1S) are healed spontaneously by the sulfur adatom clusters on MoS2 surface through a PSS-induced hydrogenation process [118]. (d) Kinetics and transient states of the reaction between a single SV and MPS. There are two energy barriers, the first one (0.51 eV) is due to the S?H bond breaking, and the second one (0.22 eV) is due to S?C bond breaking. The inset shows the chemical structure of MPS [120]. (e) High-resolution aberration-corrected TEM images of as-exfoliated (left) and TS-treated (right) monolayer MoS2 sample, showing the significant reduction of SV by MPS treatment. The SVs are highlighted by red arrows. The overlaid blue and yellow symbols mark the position of Mo and S atoms, respectively [120]. (f) Series of STM images of MoS2 (0001) surface before and after adsorption of dodecanethiol molecules [123]. (g) Schematic of probable repairing processes [123].
Fig.7  (a) AFM characterization of partially laser modified WSe2 flakes. For each of these flakes, the portion on the right corresponds to laser modified region. (b) Proposed photo-induced chemical changes to the MoSe2 sample. (c) PL intensity mappings of an individual MoSe2 flake before and after HBr treatment. (d) Optical microscopic images of MoSe2 flakes on SiO2/Si (upper panel) and those of the same flakes after the deposition of ZnPc by SDC methods (lower panel). The second column shows the thickness of the as-grown and functionalized MoSe2 using the SDC method, analyzed by AFM. (e) PL intensity as a function of the excitation power for as-grown MoSe2 and MoSe2 + ZnPc.
Defect typeRepair stagePropertiesRepairing methodRefs.
Sulfur vacanciesGrowth processN-type dopingIntroducing NaX[66]
Lower mobilityOxygen-assisted CVD[71]
Post-treatmentLower on/off current ratioN2, O2, H2 plasma treatment[100-102]
Annealing[105]
Weaker PL intensityTFSI treatment[110]
PSS treatment[119]
MPS treatment[120]
Selenium vacanciesGrowth processN-type dopingIntroducing other metallic oxide powder[70]
Post-treatmentWeaker PL intensityOxygen passivizationAnnealing[138][139]
HBr treatment[140]
Lower mobilityMPc treatment[135]
Grain boundariesGrowth processHigher domain density Small sizeSpace confinement effect[72]
Double-tube system with one-side sealed inner tube[73]
Lower mobility Lower on/off currentTwo-stage (induction and growth stage) CVD method[74]
Selection and pretreatment of the substrate and source[79-81]
Introducing catalysts and additives[88-99]
Post-treatment?
Tab.1  Summary of important defect repairing methods in TMDCs.
1 K. Geim A. . Graphene: Status and prospects. Science, 2009, 324(5934): 1530
https://doi.org/10.1126/science.1158877
2 S. Novoselov K.I. Fal′ko V.Colombo L.R. Gellert P.G. Schwab M.Kim K., A roadmap for graphene, Nature 490(7419), 192 (2012)
3 M. Wyss K. , X. Luong D. , M. Tour J. . Large-scale syntheses of 2D materials: Flash Joule heating and other methods. Adv. Mater., 2022, 34(8): 2106970
https://doi.org/10.1002/adma.202106970
4 Li J. , Chen M. , Samad A. , Dong H. , Ray A. , Zhang J. , Jiang X. , Schwingenschlögl U. , Domke J. , Chen C. , Han Y. , Fritz T. , S. Ruoff R. , Tian B. , Zhang X. . Wafer-scale single-crystal monolayer graphene grown on sapphire substrate. Nat. Mater., 2022, 21(7): 740
https://doi.org/10.1038/s41563-021-01174-1
5 Zhang Y. , Shen W. , Wu S. , Tang W. , Shu Y. , Ma K. , Zhang B. , Zhou P. , Wang S. . High-speed transition-metal dichalcogenides based Schottky photodiodes for visible and infrared light communication. ACS Nano, 2022, 16(11): 19187
https://doi.org/10.1021/acsnano.2c08394
6 Hou L. , Cui X. , Guan B. , Wang S. , Li R. , Liu Y. , Zhu D. , Zheng J. . Synthesis of a monolayer fullerene network. Nature, 2022, 606(7914): 507
https://doi.org/10.1038/s41586-022-04771-5
7 Murali G.K. R. Modigunta J.H. Park Y.H. Lee J.Rawal J.Y. Lee S.In I.J. Park S., A review on MXene synthesis, stability, and photocatalytic applications, ACS Nano 16(9), 13370 (2022)
8 E. Naclerio A.R. Kidambi P., A review of scalable hexagonal boron nitride (h-BN) synthesis for present and future applications, Adv. Mater. 35(6), 2207374 (2023)
9 Zhang Z. , Yang P. , Hong M. , Jiang S. , Zhao G. , Shi J. , Xie Q. , Zhang Y. . Recent progress in the controlled synthesis of 2D metallic transition metal dichalcogenides. Nanotechnology, 2019, 30(18): 182002
https://doi.org/10.1088/1361-6528/aaff19
10 Ma H. , Qian Q. , Qin B. , Wan Z. , Wu R. , Zhao B. , Zhang H. , Zhang Z. , Li J. , Zhang Z. , Li B. , Wang L. , Duan X. . Controlled synthesis of ultrathin PtSe2 nanosheets with thickness-tunable electrical and magnetoelectrical properties. Adv. Sci. (Weinh.), 2022, 9(1): 2103507
https://doi.org/10.1002/advs.202103507
11 Wang Y.C. Kim J.Li Y.Y. Ma K.Hong S.Kim M.S. Shin H.Y. Jeong H.Chhowalla M., P-type electrical contacts for 2D transition-metal dichalcogenides, Nature 610(7930), 61 (2022)
12 Li F. , Tao R. , Cao B. , Yang L. , Wang Z. . Manipulating the light-matter interaction of PtS/MoS2 p–n junctions for high performance broadband photodetection. Adv. Funct. Mater., 2021, 31(36): 2104367
https://doi.org/10.1002/adfm.202104367
13 Manzeli S.Ovchinnikov D.Pasquier D.V. Yazyev O.Kis A., 2D transition metal dichalcogenides, Nat. Rev. Mater. 2(8), 17033 (2017)
14 Pi L. , Li L. , Liu K. , Zhang Q. , Li H. , Zhai T. . Recent progress on 2D noble-transition-metal dichalcogenides. Adv. Funct. Mater., 2019, 29(51): 1904932
https://doi.org/10.1002/adfm.201904932
15 Liang Q. , Chen Z. , Zhang Q. , T. S. Wee A. . Pentagonal 2D transition metal dichalcogenides: PdSe2 and beyond. Adv. Funct. Mater., 2022, 32(38): 2203555
https://doi.org/10.1002/adfm.202203555
16 Cao B. , Ye Z. , Yang L. , Gou L. , Wang Z. . Recent progress in van der Waals 2D PtSe2. Nanotechnology, 2021, 32(41): 412001
https://doi.org/10.1088/1361-6528/ac0d7c
17 Gao Y. , Wang S. , Wang B. , Jiang Z. , Fang T. . Recent progress in phase regulation, functionalization, and biosensing applications of polyphase MoS2. Small, 2022, 18(34): 2202956
https://doi.org/10.1002/smll.202202956
18 Zhu X. , Chen Y. , Liu Z. , Han Y. , Qiao Z. . Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials. Front. Phys., 2023, 18(2): 23302
https://doi.org/10.1007/s11467-022-1228-4
19 Y. Wang Y. , P. Li F. , Wei W. , B. Huang B. , Dai Y. . Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16(1): 13501
https://doi.org/10.1007/s11467-020-0991-3
20 Liang Q. , Zhang Q. , Zhao X. , Liu M. , T. S. Wee A. . Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano, 2021, 15(2): 2165
https://doi.org/10.1021/acsnano.0c09666
21 Gong Y. , Lin Z. , X. Chen Y. , Khan Q. , Wang C. , Zhang B. , Nie G. , Xie N. , Li D. , platinum diselenide:Synthesis Two-dimensional . Emerging applications, and future challenges. Nano-Micro Lett., 2020, 12(1): 174
https://doi.org/10.1007/s40820-020-00515-0
22 Norouzzadeh E. , Mohammadi S. , Moradinasab M. . Tunneling FET based on defect-free, vacancy-defected, and passivated monolayer PtSe2 channel: A first principles study. Mater. Sci. Semicond. Process., 2022, 138: 106258
https://doi.org/10.1016/j.mssp.2021.106258
23 Mahmood A. , Lu G. , Wang X. , Wang Y. , Xie X. , Sun J. . Investigating the stability and role of defects in vertically aligned WS2/MoS2 heterojunctions on OER activity using first principles study. J. Power Sources, 2022, 551: 232208
https://doi.org/10.1016/j.jpowsour.2022.232208
24 M. M. C. de Melo P. , Zanolli Z. , J. Verstraete M. . Optical signatures of defect centers in transition metal dichalcogenide monolayers. Adv. Quant. Technol., 2021, 4(3): 2000118
https://doi.org/10.1002/qute.202000118
25 Yu Y. , Zhang X. , Zhou Z. , Zhang Z. , Bao Y. , Xu H. , Lin L. , Zhang Y. , Wang X. . Microscopic pump-probe optical technique to characterize the defect of monolayer transition metal dichalcogenides. Photon. Res., 2019, 7(7): 711
https://doi.org/10.1364/PRJ.7.000711
26 Wu K. , Zhong H. , Guo Q. , Tang J. , Yang Z. , Qian L. , Yuan S. , Zhang S. , Xu H. . Revealing the competition between defect-trapped exciton and band-edge exciton photoluminescence in monolayer hexagonal WS2. Adv. Opt. Mater., 2022, 10(6): 2101971
https://doi.org/10.1002/adom.202101971
27 H. Lien D. , Z. Uddin S. , Yeh M. , Amani M. , Kim H. , W. III Ager J. , Yablonovitch E. , Javey A. . Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science, 2019, 364(6439): 468
https://doi.org/10.1126/science.aaw8053
28 C. Shen P. , Lin Y. , Su C. , McGahan C. , Y. Lu A. , Ji X. , Wang X. , Wang H. , Mao N. , Guo Y. , H. Park J. , Wang Y. , Tisdale W. , Li J. , Ling X. , E. Aidala K. , Palacios T. , Kong J. . Healing of donor defect states in monolayer molybdenum disulfide using oxygen-incorporated chemical vapour deposition. Nat. Electron., 2021, 5(1): 28
https://doi.org/10.1038/s41928-021-00685-8
29 Wen B. , N. Luo D. , L. Zhang L. , L. Li X. , Wang X. , L. Huang L. , Zhang X. , F. Diao D. . Excited state biexcitons in monolayer WSe2 driven by vertically grown graphene nanosheets with high-density electron trapping edges. Front. Phys., 2023, 18(3): 33306
https://doi.org/10.1007/s11467-022-1232-8
30 Li J. , Joseph T. , Ghorbani-Asl M. , Kolekar S. , V. Krasheninnikov A. , Batzill M. . Edge and point-defect induced electronic and magnetic properties in monolayer PtSe2. Adv. Funct. Mater., 2022, 32(18): 2110428
https://doi.org/10.1002/adfm.202110428
31 Li P.Bu Y.Wang L.Wang C.Huang J.Tong K.Chen Y.He J.Zhao Z.Xu B.Liu Z.Gao G.Nie A.Wang H.Tian Y., In situ observation of fracture along twin boundaries in boron carbide, Adv. Mater., doi: (2022)
32 Yun H. , Topsakal M. , Prakash A. , Jalan B. , S. Jeong J. , Birol T. , A. Mkhoyan K. . Metallic line defect in wide-bandgap transparent perovskite BaSnO3. Sci. Adv., 2021, 7(3): eabd4449
https://doi.org/10.1126/sciadv.abd4449
33 Feng S. , Tan J. , Zhao S. , Zhang S. , Khan U. , Tang L. , Zou X. , Lin J. , M. Cheng H. , Liu B. . Synthesis of ultrahigh-quality monolayer molybdenum disulfide through in situ defect healing with thiol molecules. Small, 2020, 16(35): 2003357
https://doi.org/10.1002/smll.202003357
34 Li J. , Wang S. , Jiang Q. , Qian H. , Hu S. , Kang H. , Chen C. , Zhan X. , Yu A. , Zhao S. , Zhang Y. , Chen Z. , Sui Y. , Qiao S. , Yu G. , Peng S. , Jin Z. , Liu X. . Single-crystal MoS2 monolayer wafer grown on Au(111) film substrates. Small, 2021, 17(30): 2100743
https://doi.org/10.1002/smll.202100743
35 Yang P. , Shan Y. , Chen J. , Ekoya G. , Han J. , J. Qiu Z. , Sun J. , Chen F. , Wang H. , Bao W. , Hu L. , J. Zhang R. , Liu R. , Cong C. . Remarkable quality improvement of as-grown monolayer MoS2 by sulfur vapor pretreatment of SiO2/Si substrates. Nanoscale, 2020, 12(3): 1958
https://doi.org/10.1039/C9NR09129G
36 J. Urbanos F. , Gullace S. , Samorì P. . MoS2 defect healing for high-performance chemical sensing of polycyclic aromatic hydrocarbons. ACS Nano, 2022, 16(7): 11234
https://doi.org/10.1021/acsnano.2c04503
37 Liu T. , Peng N. , Zhang X. , Zheng R. , Xia M. , Yu H. , Shui M. , Xie Y. , Shu J. . Controllable defect engineering enhanced bond strength for stable electrochemical energy storage. Nano Energy, 2021, 79: 105460
https://doi.org/10.1016/j.nanoen.2020.105460
38 Chilkoor G. , Shrestha N. , Kutana A. , Tripathi M. , C. Robles Hernández F. , I. Yakobson B. , Meyyappan M. , B. Dalton A. , M. Ajayan P. , M. Rahman M. , Gadhamshetty V. . Atomic layers of graphene for microbial corrosion prevention. ACS Nano, 2021, 15(1): 447
https://doi.org/10.1021/acsnano.0c03987
39 Z. Zerger C. , K. Rodenbach L. , T. Chen Y. , Safvati B. , Z. Brubaker M. , Tran S. , A. Chen T. , Y. Li M. , J. Li L. , Goldhaber-Gordon D. , C. Manoharan H. . Nanoscale electronic transparency of wafer-scale hexagonal boron nitride. Nano Lett., 2022, 22(11): 4608
https://doi.org/10.1021/acs.nanolett.1c04274
40 Tao R. , Qu X. , Wang Z. , Li F. , Yang L. , Li J. , Wang D. , Zheng K. , Dong M. . Tune the electronic structure of MoS2 homojunction for broadband photodetection. J. Mater. Sci. Technol., 2022, 119: 61
https://doi.org/10.1016/j.jmst.2021.12.032
41 Wang D. , Wang Z. , Yang Z. , Wang S. , Tan C. , Yang L. , Hao X. , Ke Z. , Dong M. . Facile damage-free double exposure for high-performance 2D semiconductor based transistors. Mater. Today Phys., 2022, 24: 100678
https://doi.org/10.1016/j.mtphys.2022.100678
42 Fujisawa K. , R. Carvalho B. , Zhang T. , Perea-López N. , Lin Z. , Carozo V. , L. L. M. Ramos S. , Kahn E. , Bolotsky A. , Liu H. , L. Elías A. , Terrones M. . Quantification and healing of defects in atomically thin molybdenum disulfide: Beyond the controlled creation of atomic defects. ACS Nano, 2021, 15(6): 9658
https://doi.org/10.1021/acsnano.0c10897
43 Zhang C. , Wang C. , Yang F. , K. Huang J. , J. Li L. , Yao W. , Ji W. , K. Shih C. . Engineering point-defect states in monolayer WSe2. ACS Nano, 2019, 13(2): 1595
https://doi.org/10.1021/acsnano.8b07595
44 Wang K. , Zhang L. , D. Nguyen G. , Sang X. , Liu C. , Yu Y. , Ko W. , R. Unocic R. , A. Puretzky A. , M. Rouleau C. , B. Geohegan D. , Fu L. , Duscher G. , P. Li A. , Yoon M. , Xiao K. . Selective antisite defect formation in WS2 monolayers via reactive growth on dilute W−Au alloy substrates. Adv. Mater., 2022, 34(3): 2106674
https://doi.org/10.1002/adma.202106674
45 Gan Z. , Paradisanos I. , Estrada-Real A. , Picker J. , Najafidehaghani E. , Davies F. , Neumann C. , Robert C. , Wiecha P. , Watanabe K. , Taniguchi T. , Marie X. , Biskupek J. , Mundszinger M. , Leiter R. , Kaiser U. , V. Krasheninnikov A. , Urbaszek B. , George A. , Turchanin A. . Chemical vapor deposition of high-optical-quality large-area monolayer Janus transition metal dichalcogenides. Adv. Mater., 2022, 34(38): 2205226
https://doi.org/10.1002/adma.202205226
46 Kang T. , W. Tang T. , Pan B. , Liu H. , Zhang K. , Luo Z. . Strategies for controlled growth of transition metal dichalcogenides by chemical vapor deposition for integrated electronics. ACS Mater. Au, 2022, 2(6): 665
https://doi.org/10.1021/acsmaterialsau.2c00029
47 Zhang Y. , Yao Y. , G. Sendeku M. , Yin L. , Zhan X. , Wang F. , Wang Z. , He J. . Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater., 2019, 31(41): 1901694
https://doi.org/10.1002/adma.201901694
48 Wan Y. , Li E. , Yu Z. , K. Huang J. , Y. Li M. , S. Chou A. , T. Lee Y. , J. Lee C. , C. Hsu H. , Zhan Q. , Aljarb A. , H. Fu J. , P. Chiu S. , Wang X. , J. Lin J. , P. Chiu Y. , H. Chang W. , Wang H. , Shi Y. , Lin N. , Cheng Y. , Tung V. , J. Li L. . Low-defect-density WS2 by hydroxide vapor phase deposition. Nat. Commun., 2022, 13(1): 4149
https://doi.org/10.1038/s41467-022-31886-0
49 Hassan A. , Wang Z. , H. Ahn Y. , Azam M. , A. Khan A. , Farooq U. , Zubair M. , Cao Y. . Recent defect passivation drifts and role of additive engineering in perovskite photovoltaics. Nano Energy, 2022, 101: 107579
https://doi.org/10.1016/j.nanoen.2022.107579
50 Xu J. , Shao G. , Tang X. , Lv F. , Xiang H. , Jing C. , Liu S. , Dai S. , Li Y. , Luo J. , Zhou Z. . Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nat. Commun., 2022, 13(1): 2193
https://doi.org/10.1038/s41467-022-29929-7
51 Zuo Y. , Liu C. , Ding L. , Qiao R. , Tian J. , Liu C. , Wang Q. , Xue G. , You Y. , Guo Q. , Wang J. , Fu Y. , Liu K. , Zhou X. , Hong H. , Wu M. , Lu X. , Yang R. , Zhang G. , Yu D. , Wang E. , Bai X. , Ding F. , Liu K. . Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat. Commun., 2022, 13(1): 1007
https://doi.org/10.1038/s41467-022-28628-7
52 Barja S. , Refaely-Abramson S. , Schuler B. , Y. Qiu D. , Pulkin A. , Wickenburg S. , Ryu H. , M. Ugeda M. , Kastl C. , Chen C. , Hwang C. , Schwartzberg A. , Aloni S. , K. Mo S. , Frank Ogletree D. , F. Crommie M. , V. Yazyev O. , G. Louie S. , B. Neaton J. , Weber-Bargioni A. . Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun., 2019, 10(1): 3382
https://doi.org/10.1038/s41467-019-11342-2
53 González-Hernández R. , López-Pérez W. , A. Rodríguez M J. . Nickel adsorption and incorporation on a 2×2-T4 GaN(0001) surface: A DFT study. Appl. Surf. Sci., 2013, 266: 205
https://doi.org/10.1016/j.apsusc.2012.11.148
54 Tang T.Wang Z.Guan J., A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction, Chin. J. Catal. 43(3), 636 (2022)
55 Liu S. , Zhou L. , Zhang W. , Jin J. , Mu X. , Zhang S. , Chen C. , Mu S. . Stabilizing sulfur vacancy defects by performing “click” chemistry of ultrafine palladium to trigger a high-efficiency hydrogen evolution of MoS2. Nanoscale, 2020, 12(18): 9943
https://doi.org/10.1039/D0NR01693D
56 Cheng M. , Yang J. , Li X. , Li H. , Du R. , Shi J. , He J. . Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
https://doi.org/10.1007/s11467-022-1190-1
57 Bishara H. , Lee S. , Brink T. , Ghidelli M. , Dehm G. . Understanding grain boundary electrical resistivity in Cu: The effect of boundary structure. ACS Nano, 2021, 15(10): 16607
https://doi.org/10.1021/acsnano.1c06367
58 Zhang J. , Lin L. , Jia K. , Sun L. , Peng H. , Liu Z. . Controlled growth of single-crystal graphene films. Adv. Mater., 2020, 32(1): 1903266
https://doi.org/10.1002/adma.201903266
59 Bussolotti F. , Yang J. , Kawai H. , P. Y. Wong C. , E. J. Goh K. . Impact of S-vacancies on the charge injection barrier at the electrical contact with the MoS2 monolayer. ACS Nano, 2021, 15(2): 2686
https://doi.org/10.1021/acsnano.0c07982
60 Chen Y. , Huang S. , Ji X. , Adepalli K. , Yin K. , Ling X. , Wang X. , Xue J. , Dresselhaus M. , Kong J. , Yildiz B. . Tuning electronic structure of single layer MoS2 through defect and interface engineering. ACS Nano, 2018, 12(3): 2569
https://doi.org/10.1021/acsnano.7b08418
61 Hu Z. , Zhao Y. , Zou W. , Lu Q. , Liao J. , Li F. , Shang M. , Lin L. , Liu Z. . Doping of graphene films: Open the way to applications in electronics and optoelectronics. Adv. Funct. Mater., 2022, 32(42): 2203179
https://doi.org/10.1002/adfm.202203179
62 Zhang S. , G. Wang C. , Y. Li M. , Huang D. , J. Li L. , Ji W. , Wu S. . Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett., 2017, 119(4): 046101
https://doi.org/10.1103/PhysRevLett.119.046101
63 Yang R. , Fan J. , Sun M. . Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202
https://doi.org/10.1007/s11467-022-1176-z
64 Tebyetekerwa M. , Cheng Y. , Zhang J. , Li W. , Li H. , P. Neupane G. , Wang B. , N. Truong T. , Xiao C. , M. Al-Jassim M. , Yin Z. , Lu Y. , Macdonald D. , T. Nguyen H. . Emission control from transition metal dichalcogenide monolayers by aggregation-induced molecular rotors. ACS Nano, 2020, 14(6): 7444
https://doi.org/10.1021/acsnano.0c03086
65 Kim J. , Oh Y. , Shin J. , Yang M. , Shin N. , Shekhar S. , Hong S. . Nanoscale mapping of carrier mobilities in the ballistic transports of carbon nanotube networks. ACS Nano, 2022, 16(12): 21626
https://doi.org/10.1021/acsnano.2c10715
66 Wang W. , Shu H. , Wang J. , Cheng Y. , Liang P. , Chen X. . Defect passivation and photoluminescence enhancement of monolayer MoS2 crystals through sodium halide-assisted chemical vapor deposition growth. ACS Appl. Mater. Interfaces, 2020, 12(8): 9563
https://doi.org/10.1021/acsami.9b19224
67 Huang B. , Yoon M. , G. Sumpter B. , H. Wei S. , Liu F. . Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides. Phys. Rev. Lett., 2015, 115(12): 126806
https://doi.org/10.1103/PhysRevLett.115.126806
68 Yarali M. , Brahmi H. , Yan Z. , Li X. , Xie L. , Chen S. , Kumar S. , Yoon M. , Xiao K. , Mavrokefalos A. . Effect of metal doping and vacancies on the thermal conductivity of monolayer molybdenum diselenide. ACS Appl. Mater. Interfaces, 2018, 10(5): 4921
https://doi.org/10.1021/acsami.7b14310
69 Zhang K.M. Bersch B.Joshi J.Addou R.R. Cormier C.Zhang C.Xu K.C. Briggs N.Wang K.Subramanian S.Cho K.Fullerton-Shirey S.M. Wallace R.M. Vora P.A. Robinson J., Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping, Adv. Funct. Mater. 28(16) (2018)
70 Li X. , A. Puretzky A. , Sang X. , Kc S. , Tian M. , Ceballos F. , Mahjouri-Samani M. , Wang K. , R. Unocic R. , Zhao H. , Duscher G. , R. Cooper V. , M. Rouleau C. , B. Geohegan D. , Xiao K. . Suppression of defects and deep levels using isoelectronic tungsten substitution in monolayer MoSe2. Adv. Funct. Mater., 2017, 27(19): 1603850
https://doi.org/10.1002/adfm.201603850
71 Chen W. , Zhao J. , Zhang J. , Gu L. , Yang Z. , Li X. , Yu H. , Zhu X. , Yang R. , Shi D. , Lin X. , Guo J. , Bai X. , Zhang G. . Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc., 2015, 137(50): 15632
https://doi.org/10.1021/jacs.5b10519
72 Wang Z. , Yang H. , Zhang S. , Wang J. , Cao K. , Lu Y. , Hou W. , Guo S. , A. Zhang X. , Wang L. . An approach to high-throughput growth of submillimeter transition metal dichalcogenide single crystals. Nanoscale, 2019, 11(46): 22440
https://doi.org/10.1039/C9NR07496A
73 Tu Z. , Li G. , Ni X. , Meng L. , Bai S. , Chen X. , Lou J. , Qin Y. . Synthesis of large monolayer single crystal MoS2 nanosheets with uniform size through a double-tube technology. Appl. Phys. Lett., 2016, 109(22): 223101
https://doi.org/10.1063/1.4968582
74 Chen J. , Tang W. , Tian B. , Liu B. , Zhao X. , Liu Y. , Ren T. , Liu W. , Geng D. , Y. Jeong H. , S. Shin H. , Zhou W. , P. Loh K. . Chemical vapor deposition of high-quality large-sized MoS2 crystals on silicon dioxide substrates. Adv. Sci. (Weinh.), 2016, 3(8): 1500033
https://doi.org/10.1002/advs.201600033
75 G. Ji H. , C. Lin Y. , Nagashio K. , Maruyama M. , Solís-Fernández P. , Sukma Aji A. , Panchal V. , Okada S. , Suenaga K. , Ago H. . Hydrogen-assisted epitaxial growth of monolayer tungsten disulfide and seamless grain stitching. Chem. Mater., 2018, 30(2): 403
https://doi.org/10.1021/acs.chemmater.7b04149
76 Gong Y. , Ye G. , Lei S. , Shi G. , He Y. , Lin J. , Zhang X. , Vajtai R. , T. Pantelides S. , Zhou W. , Li B. , M. Ajayan P. . Synthesis of millimeter-scale transition metal dichalcogenides single crystals. Adv. Funct. Mater., 2016, 26(12): 2009
https://doi.org/10.1002/adfm.201504633
77 Lin Z. , Zhao Y. , Zhou C. , Zhong R. , Wang X. , H. Tsang Y. , Chai Y. . Controllable growth of large-size crystalline mos2 and resist-free transfer assisted with a Cu thin film. Sci. Rep., 2015, 5(1): 18596
https://doi.org/10.1038/srep18596
78 Wang S. , Pacios M. , Bhaskaran H. , H. Warner J. . Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition. Nanotechnology, 2016, 27(8): 085604
https://doi.org/10.1088/0957-4484/27/8/085604
79 Yang P. , Zou X. , Zhang Z. , Hong M. , Shi J. , Chen S. , Shu J. , Zhao L. , Jiang S. , Zhou X. , Huan Y. , Xie C. , Gao P. , Chen Q. , Zhang Q. , Liu Z. , Zhang Y. . Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun., 2018, 9(1): 979
https://doi.org/10.1038/s41467-018-03388-5
80 E. Pam M. , Shi Y. , Hu J. , Zhao X. , Dan J. , Gong X. , Huang S. , Geng D. , Pennycook S. , K. Ang L. , Y. Yang H. . Effects of precursor pre-treatment on the vapor deposition of WS2 monolayers. Nanoscale Adv., 2019, 1(3): 953
https://doi.org/10.1039/C8NA00212F
81 Zhang Z. , Xu X. , Song J. , Gao Q. , Li S. , Hu Q. , Li X. , Wu Y. . High-performance transistors based on monolayer CVD MoS2 grown on molten glass. Appl. Phys. Lett., 2018, 113(20): 202103
https://doi.org/10.1063/1.5051781
82 Chen J. , Zhao X. , J. R. Tan S. , Xu H. , Wu B. , Liu B. , Fu D. , Fu W. , Geng D. , Liu Y. , Liu W. , Tang W. , Li L. , Zhou W. , C. Sum T. , P. Loh K. . Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc., 2017, 139(3): 1073
https://doi.org/10.1021/jacs.6b12156
83 Yang P. , Zhang S. , Pan S. , Tang B. , Liang Y. , Zhao X. , Zhang Z. , Shi J. , Huan Y. , Shi Y. , J. Pennycook S. , Ren Z. , Zhang G. , Chen Q. , Zou X. , Liu Z. , Zhang Y. . Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano, 2020, 14(4): 5036
https://doi.org/10.1021/acsnano.0c01478
84 Shi J. , Zhang X. , Ma D. , Zhu J. , Zhang Y. , Guo Z. , Yao Y. , Ji Q. , Song X. , Zhang Y. , Li C. , Liu Z. , Zhu W. , Zhang Y. . Substrate facet effect on the growth of monolayer MoS2 on Au foils. ACS Nano, 2015, 9(4): 4017
https://doi.org/10.1021/acsnano.5b00081
85 J. Yun S. , H. Chae S. , Kim H. , C. Park J. , H. Park J. , H. Han G. , S. Lee J. , M. Kim S. , M. Oh H. , Seok J. , S. Jeong M. , K. Kim K. , H. Lee Y. . Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano, 2015, 9(5): 5510
https://doi.org/10.1021/acsnano.5b01529
86 Gao Y. , Liu Z. , M. Sun D. , Huang L. , P. Ma L. , C. Yin L. , Ma T. , Zhang Z. , L. Ma X. , M. Peng L. , M. Cheng H. , Ren W. . Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun., 2015, 6(1): 8569
https://doi.org/10.1038/ncomms9569
87 Godin K. , Kang K. , Fu S. , H. Yang E. . Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates. J. Phys. D Appl. Phys., 2016, 49(32): 325304
https://doi.org/10.1088/0022-3727/49/32/325304
88 Lan F. , Yang R. , Hao S. , Zhou B. , Sun K. , Cheng H. , Zhang S. , Li L. , Jin L. . Controllable synthesis of millimeter-size single crystal WS2. Appl. Surf. Sci., 2020, 504: 144378
https://doi.org/10.1016/j.apsusc.2019.144378
89 Li G. , Wang X. , Han B. , Zhang W. , Qi S. , Zhang Y. , Qiu J. , Gao P. , Guo S. , Long R. , Tan Z. , Z. Song X. , Liu N. . Direct growth of continuous and uniform MoS2 film on SiO2/Si substrate catalyzed by sodium sulfate. J. Phys. Chem. Lett., 2020, 11(4): 1570
https://doi.org/10.1021/acs.jpclett.9b03879
90 Kim H. , H. Han G. , J. Yun S. , Zhao J. , H. Keum D. , Y. Jeong H. , H. Ly T. , Jin Y. , H. Park J. , H. Moon B. , W. Kim S. , H. Lee Y. . Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides. Nanotechnology, 2017, 28(36): 36LT01
https://doi.org/10.1088/1361-6528/aa7e5e
91 G. Song J. , Hee Ryu G. , Kim Y. , Je Woo W. , Yong Ko K. , Kim Y. , Lee C. , K. Oh I. , Park J. , Lee Z. , Kim H. . Catalytic chemical vapor deposition of large-area uniform two-dimensional molybdenum disulfide using sodium chloride. Nanotechnology, 2017, 28(46): 465103
https://doi.org/10.1088/1361-6528/aa8f15
92 Kim H. , Ovchinnikov D. , Deiana D. , Unuchek D. , Kis A. . Suppressing nucleation in metal–organic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett., 2017, 17(8): 5056
https://doi.org/10.1021/acs.nanolett.7b02311
93 Shi Y. , Yang P. , Jiang S. , Zhang Z. , Huan Y. , Xie C. , Hong M. , Shi J. , Zhang Y. . Na-assisted fast growth of large single-crystal MoS2 on sapphire. Nanotechnology, 2019, 30(3): 034002
https://doi.org/10.1088/1361-6528/aaea3f
94 J. Modtland B. , Navarro-Moratalla E. , Ji X. , Baldo M. , Kong J. . Monolayer tungsten disulfide (WS2) via chlorine-driven chemical vapor transport. Small, 2017, 13(33): 1701232
https://doi.org/10.1002/smll.201701232
95 Yang P. , G. Yang A. , Chen L. , Chen J. , Zhang Y. , Wang H. , Hu L. , J. Zhang R. , Liu R. , P. Qu X. , J. Qiu Z. , Cong C. . Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide. Nano Res., 2019, 12(4): 823
https://doi.org/10.1007/s12274-019-2294-y
96 Ling X. , H. Lee Y. , Lin Y. , Fang W. , Yu L. , S. Dresselhaus M. , Kong J. . Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett., 2014, 14(2): 464
https://doi.org/10.1021/nl4033704
97 F. Lim Y. , Priyadarshi K. , Bussolotti F. , K. Gogoi P. , Cui X. , Yang M. , Pan J. , W. Tong S. , Wang S. , J. Pennycook S. , E. J. Goh K. , T. S. Wee A. , L. Wong S. , Chi D. . Modification of vapor phase concentrations in MoS2 growth using a NiO foam barrier. ACS Nano, 2018, 12(2): 1339
https://doi.org/10.1021/acsnano.7b07682
98 Zhu J. , Xu H. , Zou G. , Zhang W. , Chai R. , Choi J. , Wu J. , Liu H. , Shen G. , Fan H. . MoS2–OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates. J. Am. Chem. Soc., 2019, 141(13): 5392
https://doi.org/10.1021/jacs.9b00047
99 U. Özküçük G. , Odacı C. , Şahin E. , Ay F. , K. Perkgöz N. . Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate. Mater. Sci. Semicond. Process., 2020, 105: 104679
https://doi.org/10.1016/j.mssp.2019.104679
100 Jiang J.Zhang Q.Wang A.Zhang Y.Meng F.Zhang C.Feng X.Feng Y.Gu L.Liu H.Han L., A facile and effective method for patching sulfur vacancies of WS2 via nitrogen plasma treatment, Small 15(36), 1901791 (2019)
101 Nan H. , Wang Z. , Wang W. , Liang Z. , Lu Y. , Chen Q. , He D. , Tan P. , Miao F. , Wang X. , Wang J. , Ni Z. . Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano, 2014, 8(6): 5738
https://doi.org/10.1021/nn500532f
102 Pierucci D. , Henck H. , Ben Aziza Z. , H. Naylor C. , Balan A. , E. Rault J. , G. Silly M. , J. Dappe Y. , Bertran F. , Le Fevre P. , Sirotti F. , T. Johnson A. , Ouerghi A. . Tunable doping in hydrogenated single layered molybdenum disulfide. ACS Nano, 2017, 11(2): 1755
https://doi.org/10.1021/acsnano.6b07661
103 Zhu Y. , Yi H. , Hao Q. , Liu J. , Ke Y. , Wang Z. , Fan D. , Zhang W. . Scalable synthesis and defect modulation of large monolayer WS2 via annealing in H2S atmosphere/thiol treatment to enhance photoluminescence. Appl. Surf. Sci., 2019, 485: 101
https://doi.org/10.1016/j.apsusc.2019.04.168
104 Hu S. , Li J. , Wang S. , Liang Y. , Kang H. , Zhang Y. , Chen Z. , Sui Y. , Yu G. , Peng S. , Jin Z. , Liu X. . Detecting the repair of sulfur vacancies in CVD-grown MoS2 domains via hydrogen etching. J. Electron. Mater., 2020, 49(4): 2547
https://doi.org/10.1007/s11664-020-07957-7
105 Liu M. , Shi J. , Li Y. , Zhou X. , Ma D. , Qi Y. , Zhang Y. , Liu Z. . Temperature-triggered sulfur vacancy evolution in monolayer MoS2/graphene heterostructures. Small, 2017, 13(40): 1602967
https://doi.org/10.1002/smll.201602967
106 V. Sivaram S. , T. Hanbicki A. , R. Rosenberger M. , G. Jernigan G. , J. Chuang H. , M. McCreary K. , T. Jonker B. . Spatially selective enhancement of photoluminescence in MoS2 by exciton-mediated adsorption and defect passivation. ACS Appl. Mater. Interfaces, 2019, 11(17): 16147
https://doi.org/10.1021/acsami.9b00390
107 Bera A. , V. S. Muthu D. , K. Sood A. . Enhanced Raman and photoluminescence response in monolayer MoS2 due to laser healing of defects. J. Raman Spectrosc., 2018, 49(1): 100
https://doi.org/10.1002/jrs.5196
108 Venkatakrishnan A. , Chua H. , Tan P. , Hu Z. , Liu H. , Liu Y. , Carvalho A. , Lu J. , H. Sow C. . Microsteganography on WS2 monolayers tailored by direct laser painting. ACS Nano, 2017, 11(1): 713
https://doi.org/10.1021/acsnano.6b07118
109 Kiriya D. , Hijikata Y. , Pirillo J. , Kitaura R. , Murai A. , Ashida A. , Yoshimura T. , Fujimura N. . Systematic study of photoluminescence enhancement in monolayer molybdenum disulfide by acid treatment. Langmuir, 2018, 34(35): 10243
https://doi.org/10.1021/acs.langmuir.8b01425
110 Dai X. , Zhang X. , M. Kislyakov I. , Wang L. , Huang J. , Zhang S. , Dong N. , Wang J. . Enhanced two-photon absorption and two-photon luminescence in monolayer MoS2 and WS2 by defect repairing. Opt. Express, 2019, 27(10): 13744
https://doi.org/10.1364/OE.27.013744
111 Roy S. , Choi W. , Jeon S. , H. Kim D. , Kim H. , J. Yun S. , Lee Y. , Lee J. , M. Kim Y. , Kim J. . Atomic observation of filling vacancies in monolayer transition metal sulfides by chemically sourced sulfur atoms. Nano Lett., 2018, 18(7): 4523
https://doi.org/10.1021/acs.nanolett.8b01714
112 P. Dhakal K. , Roy S. , J. Yun S. , Ghimire G. , Seo C. , Kim J. . Heterogeneous modulation of exciton emission in triangular WS2 monolayers by chemical treatment. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5(27): 6820
https://doi.org/10.1039/C7TC01833A
113 Kim Y. , Lee Y. , Kim H. , Roy S. , Kim J. . Near-field exciton imaging of chemically treated MoS2 monolayers. Nanoscale, 2018, 10(18): 8851
https://doi.org/10.1039/C8NR00606G
114 Amani M. , H. Lien D. , Kiriya D. , Xiao J. , Azcatl A. , Noh J. , R. Madhvapathy S. , Addou R. , Kc S. , Dubey M. , Cho K. , M. Wallace R. , C. Lee S. , H. He J. , W. Ager J. , Zhang X. , Yablonovitch E. , Javey A. . Near-unity photoluminescence quantum yield in MoS2. Science, 2015, 350(6264): 1065
https://doi.org/10.1126/science.aad2114
115 Kim H. , H. Lien D. , Amani M. , W. Ager J. , Javey A. . Highly stable near-unity photoluminescence yield in monolayer MoS2 by fluoropolymer encapsulation and superacid treatment. ACS Nano, 2017, 11(5): 5179
https://doi.org/10.1021/acsnano.7b02521
116 Alharbi A. , Zahl P. , Shahrjerdi D. . Material and device properties of superacid-treated monolayer molybdenum disulfide. Appl. Phys. Lett., 2017, 110(3): 033503
https://doi.org/10.1063/1.4974046
117 Lin P. , Zhu L. , Li D. , L. Wang Z. . Defect repair for enhanced piezo-phototronic MoS2 flexible phototransistors. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(46): 14731
https://doi.org/10.1039/C9TC05337A
118 Zhang X. , Liao Q. , Liu S. , Kang Z. , Zhang Z. , Du J. , Li F. , Zhang S. , Xiao J. , Liu B. , Ou Y. , Liu X. , Gu L. , Zhang Y. . Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun., 2017, 8(1): 15881
https://doi.org/10.1038/ncomms15881
119 Zhang X. , Liao Q. , Kang Z. , Liu B. , Ou Y. , Du J. , Xiao J. , Gao L. , Shan H. , Luo Y. , Fang Z. , Wang P. , Sun Z. , Zhang Z. , Zhang Y. . Self-healing originated van der Waals homojunctions with strong interlayer coupling for high-performance photodiodes. ACS Nano, 2019, 13(3): 3280
https://doi.org/10.1021/acsnano.8b09130
120 Yu Z. , Pan Y. , Shen Y. , Wang Z. , Y. Ong Z. , Xu T. , Xin R. , Pan L. , Wang B. , Sun L. , Wang J. , Zhang G. , W. Zhang Y. , Shi Y. , Wang X. . Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun., 2014, 5(1): 5290
https://doi.org/10.1038/ncomms6290
121 Zhou L.Yan S.Pan L.Wang X.Wang Y.Shi Y., A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries, Nano Res. 9(3), 857 (2016)
122 Bertolazzi S. , Bonacchi S. , Nan G. , Pershin A. , Beljonne D. , Samori P. . Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols. Adv. Mater., 2017, 29(18): 1606760
https://doi.org/10.1002/adma.201606760
123 Makarova M. , Okawa Y. , Aono M. . Selective adsorption of thiol molecules at sulfur vacancies on MoS2(0001), followed by vacancy repair via S–C dissociation. J. Phys. Chem. C, 2012, 116(42): 22411
https://doi.org/10.1021/jp307267h
124 El Garah M. , Bertolazzi S. , Ippolito S. , Eredia M. , Janica I. , Melinte G. , Ersen O. , Marletta G. , Ciesielski A. , Samorì P. . MoS2 nanosheets via electrochemical lithium-ion intercalation under ambient conditions. FlatChem, 2018, 9: 33
https://doi.org/10.1016/j.flatc.2018.06.001
125 Cho K. , Min M. , Y. Kim T. , Jeong H. , Pak J. , K. Kim J. , Jang J. , J. Yun S. , H. Lee Y. , K. Hong W. , Lee T. . Electrical and optical characterization of MoS2 with sulfur vacancy passivation by treatment with alkanethiol molecules. ACS Nano, 2015, 9(8): 8044
https://doi.org/10.1021/acsnano.5b04400
126 Ding Q. , J. Czech K. , Zhao Y. , Zhai J. , J. Hamers R. , C. Wright J. , Jin S. . Basal-plane ligand functionalization on semiconducting 2H-MoS2 monolayers. ACS Appl. Mater. Interfaces, 2017, 9(14): 12734
https://doi.org/10.1021/acsami.7b01262
127 M. Sim D. , Kim M. , Yim S. , J. Choi M. , Choi J. , Yoo S. , S. Jung Y. . Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano, 2015, 9(12): 12115
https://doi.org/10.1021/acsnano.5b05173
128 Wei S. , Ge C. , Zhou L. , Zhang S. , Dai M. , Gao F. , Sun Y. , Qiu Y. , Wang Z. , Zhang J. , Hu P. . Performance improvement of multilayered SnS2 field effect transistors through synergistic effect of vacancy repairing and electron doping introduced by EDTA. ACS Appl. Electron. Mater., 2019, 1(11): 2380
https://doi.org/10.1021/acsaelm.9b00550
129 H. Park J. , Sanne A. , Guo Y. , Amani M. , Zhang K. , C. P. Movva H. , A. Robinson J. , Javey A. , Robertson J. , K. Banerjee S. , C. Kummel A. . Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Sci. Adv., 2017, 3(10): e1701661
https://doi.org/10.1126/sciadv.1701661
130 Ding W. , Li X. , Jiang F. , Liu P. , Liu P. , Zhu S. , Zhang G. , Liu C. , Xu J. . Defect modification engineering on a laminar MoS2 film for optimizing thermoelectric properties. J. Mater. Chem. C, 2020, 8(6): 1909
https://doi.org/10.1039/C9TC06012J
131 O. A. Tanoh A. , Alexander-Webber J. , Xiao J. , Delport G. , A. Williams C. , Bretscher H. , Gauriot N. , Allardice J. , Pandya R. , Fan Y. , Li Z. , Vignolini S. , D. Stranks S. , Hofmann S. , Rao A. . Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands. Nano Lett., 2019, 19(9): 6299
https://doi.org/10.1021/acs.nanolett.9b02431
132 H. Luong D. , S. Lee H. , Ghimire G. , Lee J. , Kim H. , J. Yun S. , H. An G. , H. Lee Y. . Enhanced light–matter interactions in self-assembled plasmonic nanoparticles on 2D semiconductors. Small, 2018, 14(47): 1802949
https://doi.org/10.1002/smll.201802949
133 L. Atallah T. , Wang J. , Bosch M. , Seo D. , A. Burke R. , Moneer O. , Zhu J. , Theibault M. , E. Brus L. , Hone J. , Y. Zhu X. . Electrostatic screening of charged defects in monolayer MoS2. J. Phys. Chem. Lett., 2017, 8(10): 2148
https://doi.org/10.1021/acs.jpclett.7b00710
134 Jiang J. , Ling C. , Xu T. , Wang W. , Niu X. , Zafar A. , Yan Z. , Wang X. , You Y. , Sun L. , Lu J. , Wang J. , Ni Z. . Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater., 2018, 30(40): e1804332
https://doi.org/10.1002/adma.201804332
135 Xu X. , Chen Z. , Sun B. , Zhao Y. , Tao L. , B. Xu J. . Efficient passivation of monolayer MoS2 by epitaxially grown 2D organic crystals. Sci. Bull. (Beijing), 2019, 64(22): 1700
https://doi.org/10.1016/j.scib.2019.09.009
136 Mouri S. , Miyauchi Y. , Matsuda K. . Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett., 2013, 13(12): 5944
https://doi.org/10.1021/nl403036h
137 Yang L. , Majumdar K. , Liu H. , Du Y. , Wu H. , Hatzistergos M. , Y. Hung P. , Tieckelmann R. , Tsai W. , Hobbs C. , D. Ye P. . Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett., 2014, 14(11): 6275
https://doi.org/10.1021/nl502603d
138 Lu J. , Carvalho A. , K. Chan X. , Liu H. , Liu B. , S. Tok E. , P. Loh K. , H. Castro Neto A. , H. Sow C. . Atomic healing of defects in transition metal dichalcogenides. Nano Lett., 2015, 15(5): 3524
https://doi.org/10.1021/acs.nanolett.5b00952
139 Wang L. , Schmid M. , N. Nilsson Z. , Tahir M. , Chen H. , B. Sambur J. . Laser annealing improves the photoelectrochemical activity of ultrathin MoSe2 photoelectrodes. ACS Appl. Mater. Interfaces, 2019, 11(21): 19207
https://doi.org/10.1021/acsami.9b04785
140 V. Han H. , Y. Lu A. , S. Lu L. , K. Huang J. , Li H. , L. Hsu C. , C. Lin Y. , H. Chiu M. , Suenaga K. , W. Chu C. , C. Kuo H. , H. Chang W. , J. Li L. , Shi Y. . Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano, 2016, 10(1): 1454
https://doi.org/10.1021/acsnano.5b06960
141 Meng Y. , Ling C. , Xin R. , Wang P. , Song Y. , Bu H. , Gao S. , Wang X. , Song F. , Wang J. , Wang X. , Wang B. , Wang G. . Repairing atomic vacancies in single-layer MoSe2 field-effect transistor and its defect dynamics. npj Quant. Mater., 2017, 2(1): 16
https://doi.org/10.1038/s41535-017-0018-7
142 Ahn H. , C. Huang Y. , W. Lin C. , L. Chiu Y. , C. Lin E. , Y. Lai Y. , H. Lee Y. . Efficient defect healing of transition metal dichalcogenides by metallophthalocyanine. ACS Appl. Mater. Interfaces, 2018, 10(34): 29145
https://doi.org/10.1021/acsami.8b09378
143 Li Y. , Yang M. , Lu Y. , Cao D. , Chen X. , Shu H. . Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures. Front. Phys., 2023, 18(3): 33307
https://doi.org/10.1007/s11467-022-1244-4
[1] Meilin Li, Huanhuan Sun, Jun Zhou, Yunshan Zhao. Engineering phonon thermal transport in few-layer PdSe2[J]. Front. Phys. , 2024, 19(3): 33203-.
[2] YanZuo Chen, ShaoGang Yu, Tao Jiang, XiaoJun Liu, XinBin Cheng, Di Huang. Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides[J]. Front. Phys. , 2024, 19(2): 23301-.
[3] Hui Zeng, Yao Wen, Lei Yin, Ruiqing Cheng, Hao Wang, Chuansheng Liu, Jun He. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides[J]. Front. Phys. , 2023, 18(5): 53603-.
[4] Fang Li, Jun Fu, Mingzhu Xue, You Li, Hualing Zeng, Erjun Kan, Ting Hu, Yi Wan. Room-temperature vertical ferroelectricity in rhenium diselenide induced by interlayer sliding[J]. Front. Phys. , 2023, 18(5): 53305-.
[5] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[6] Mo Cheng, Junbo Yang, Xiaohui Li, Hui Li, Ruofan Du, Jianping Shi, Jun He. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies[J]. Front. Phys. , 2022, 17(6): 63601-.
[7] Rui Yang, Jianuo Fan, Mengtao Sun. Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties[J]. Front. Phys. , 2022, 17(4): 43202-.
[8] Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides[J]. Front. Phys. , 2021, 16(1): 13501-.
[9] Ya-Hui Mao, Huan Shan, Jin-Rong Wu, Ze-Jun Li, Chang-Zheng Wu, Xiao-Fang Zhai, Ai-Di Zhao, Bing Wang. Observation of pseudogap in SnSe2 atomic layers grown on graphite[J]. Front. Phys. , 2020, 15(4): 43501-.
[10] Yuan Gan, Jiyuan Liang, Chang-woo Cho, Si Li, Yanping Guo, Xiaoming Ma, Xuefeng Wu, Jinsheng Wen, Xu Du, Mingquan He, Chang Liu, Shengyuan A. Yang, Kedong Wang, Liyuan Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation[J]. Front. Phys. , 2020, 15(3): 33602-.
[11] Qi-Tao Liu, De-Yu Liu, Jian-Ming Li, Yong-Bo Kuang. The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting[J]. Front. Phys. , 2019, 14(5): 53403-.
[12] Zi-Wu Wang, Run-Ze Li, Xi-Ying Dong, Yao Xiao, Zhi-Qing Li. Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides[J]. Front. Phys. , 2018, 13(4): 137305-.
[13] Trevor LaMountain, Erik J. Lenferink, Yen-Jung Chen, Teodor K. Stanev, Nathaniel P. Stern. Environmental engineering of transition metal dichalcogenide optoelectronics[J]. Front. Phys. , 2018, 13(4): 138114-.
[14] R. Szcze¸śniak, A. P. Durajski, M. W. Jarosik. Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides[J]. Front. Phys. , 2018, 13(2): 137401-.
[15] Zhong Li, Jia-Dan Li, Lin Zhuang, Rui-Jiang Hong. Minority carrier lifetime evaluation of periphery edge region in high-performance multicrystalline ingot produced by seed-assisted directional solidification[J]. Front. Phys. , 2017, 12(5): 128103-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed