Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (3) : 33205    https://doi.org/10.1007/s11467-023-1358-3
RESEARCH ARTICLE
Classification of spin Hall effect in two-dimensional systems
Longjun Xiang1, Fuming Xu1,2, Luyang Wang1(), Jian Wang1,3()
1. College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2. Quantum Science Center of Guangdong-Hongkong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
3. Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
 Download: PDF(3906 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Physical properties such as the conductivity are usually classified according to the symmetry of the underlying system using Neumann’s principle, which gives an upper bound for the number of independent components of the corresponding property tensor. However, for a given Hamiltonian, this global approach usually can not give a definite answer on whether a physical effect such as spin Hall effect (SHE) exists or not. It is found that the parity and types of spin-orbit interactions (SOIs) are good indicators that can further reduce the number of independent components of the spin Hall conductivity for a specific system. In terms of the parity as well as various Rashba-like and Dresselhaus-like SOIs, we propose a local approach to classify SHE in two-dimensional (2D) two-band models, where sufficient conditions for identifying the existence or absence of SHE in all 2D magnetic point groups are presented.

Keywords spin Hall effect      symmetry      two-dimensional system     
Corresponding Author(s): Luyang Wang,Jian Wang   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Issue Date: 10 November 2023
 Cite this article:   
Longjun Xiang,Fuming Xu,Luyang Wang, et al. Classification of spin Hall effect in two-dimensional systems[J]. Front. Phys. , 2024, 19(3): 33205.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1358-3
https://academic.hep.com.cn/fop/EN/Y2024/V19/I3/33205
In-plane Dresselhaus-like SOI (symmetry) In-plane Rashba-like SOI (symmetry)
H2=(k+σ+) (21') H1=ky σx kxσ y (k+σ) (C , T)
H3x =(k+2σ ) (2'mm') [33, 39], H4x =(k+2σ +) (6'm'm) [33, 39] H3y =(k+2σ ) (2'm'm) [33], H 4y=(k+2σ+) (6'm'm) [33]
H2=(k+3σ ) (21'), H5= (k+3σ+) (41') H6= (k+3σ) (2mm1') [33], H7= (k+3σ+) (4mm1') [33]
H5=(k+5σ ) (41'), H8= (k+5σ+) (61') H7=(k+5σ ) (4mm1'), H9= (k+5σ+) (6mm1')
Out-of-plane Dresselhaus-like SOI Out-of-plane Rashba-like SOI
(k+)σz (m1') [40] (k+)σz (m1')
(k+2)σ z (4'm'm) [11] (k+2)σ z (4'm'm)
(k+3)σ z (3m) [32, 4143] (k+3)σ z (3m) [32, 42, 44, 45]
Tab.1  SOI Hamiltonians of various orders and symmetries.
Fig.1  Schematic plots of the in-plane (a) and out-of-plane (b) spin Hall effects. Jsy /z denotes the spin current, and E is the driving electric field.
MPG σ xy x σ xy y σ xy z
mx, mx1', mx' 0 N N
2' N 0 N
T N N N
3, 31', 6' S S A
3mx, 3 mx1', 3mx', 6' my'mx 0 S A
4mm, 4mm1', 4'm'm, 4m'm', 4, 41', 6mm1', 6mm, 6, 61', 6m'm' 0 0 A
2, 21', 2mm, 2mm1', 2'm'm, 2m'm', 4' 0 0 N
Tab.2  Results from Neumann’s principle for IP-SHE. Here “N” represents no constraint. “S” and “A” refer to symmetric relation for σxyx/y and antisymmetric relation for σxyz with respective to x and y, respectively. “0” stands for zero σ xy α. The results with m x are listed. For MPGs containing m y, σ xy x and σ xy y are interchanged. For example, for MPG my, my1', my', σ xy x = N and σ xy y = 0.
MPG σ xy x σ xy y σ xy z
mx 0 1 0/1
mx1', 3 mx1' 0 1 1
T, 3, 31' 0/1 0/1 1
mx', 3 mx, 3mx' 0 0/1 1
4mm, 4'm'm, 4m'm', 4, 6mm, 6, 6m'm', 2, 2mm, 2'm'm, 2m'm', 4' 0 0 1
2', 21', 2'mm', 2mm1', 41', 4mm1', 6', 6'm'm, 61', 6mm1' NA NA 1
Tab.3  Results of direct calculation. Here “0” and “1” stand for zero and nonzero σxyα, respectively. “0/1” means SHE can be switched on and off and “NA” means that SOI Hamiltonian is not available for dz0. The results with mx are listed. For MPGs containing my, σ xy x and σ xy y are interchanged.
IP-SOI mx my mx+y OP-SOI mx my mx+y
RIP S S S ROP A S A
RIP+ A S A ROP+ S S S
DIP A A S DOP S A A
DIP+ S A A DOP+ A A S
  Table A1 Mirror symmetry of IP-SOI and OP-SOI. “A” and “S” represent antisymmetric and symmetric under different mirror operations, respectively. The SOI has the corresponding mirror symmetry if “S” is marked.
H1=(k σ+) ( C, T) H2=(k+σ+) (21') H3x =(k+2σ ) (2'mm') H3y =(k+2σ ) (2'm'm)
H4x =(k+2σ +) (6'mm') H4y =(k+2σ +) (6'm'm) H5=(k+3σ+) (41') H6=(k+3σ ) (2mm1')
H7= (k+3σ+) (4mm1') H8= (k+5σ+) (61') H9= (k+5σ+) (6mm1') H10x =(k+) σz (m1')
H10y =(k+) σz (m1') H11= (k+2) σz (4'm'm) H12= (k+2) σz (4'm'm) H13x =(k+3)σz (3m1')
H13y =(k+3)σz (3m1') H14= (k+4) σz (4m'm') H15= (k+4) σz (4mm) H16= (k+6) σz (6m'm')
H17= (k+6) σz (6mm) H18= H2+ H3 (2') H19= H1+ H4x+H4y (6') H20x =H1+ H3 y+H 11 (m')
H20y =H1+ H3 x+H 11 (m') H21= H2+ H12 (2) H22= H1+ H11+H14 (2m'm') H23= H5+ H14 (4)
H24x =H1+ H4 y+H 16 (3m') H24y =H1+ H4 x+H 16 (3m') H25= H4 x+H 4y+H13x (3) H26= H1+ H16+H17 (6)
H27= H1+H10x +H 10y ( T) H28x =H 1+H 3x+H12 (m) H28y =H 1+H 3y+H12 (m) H29= H1+H12+ H15 (2mm)
H30= H1+H11+ H12 (4') H31= H1+H13x +H 13y (31') H32x =H 1+H 4x+H13x (3m) H32y =H 1+H 4y+H13y (3m)
H2=(k+3σ) (21') H4x= (k+4σ ) (6'mm') H4y= (k+4σ ) (6'm'm) H5=(k+5σ ) (41')
H7=(k+5σ ) (4mm1')
  Table A2 SOI Hamiltonians and corresponding symmetries for 31 MPGs.
1 Xiao D., C. Chang M., Niu Q.. Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
https://doi.org/10.1103/RevModPhys.82.1959
2 Gao Y.. Semiclassical dynamics and nonlinear charge current. Front. Phys., 2019, 14(3): 33404
https://doi.org/10.1007/s11467-019-0887-2
3 von Klitzing K.. The quantized Hall effect. Rev. Mod. Phys., 1986, 58(3): 519
https://doi.org/10.1103/RevModPhys.58.519
4 Nagaosa N., Sinova J., Onoda S., H. MacDonald A., P. Ong N.. Anomalous Hall effect. Rev. Mod. Phys., 2010, 82(2): 1539
https://doi.org/10.1103/RevModPhys.82.1539
5 Sodemann I., Fu L.. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett., 2015, 115(21): 216806
https://doi.org/10.1103/PhysRevLett.115.216806
6 Low T., Jiang Y., Guinea F.. Topological currents in black phosphorus with broken inversion symmetry. Phys. Rev. B, 2015, 92(23): 235447
https://doi.org/10.1103/PhysRevB.92.235447
7 Z. Du Z., Z. Lu H., C. Xie X.. Nonlinear Hall effects. Nat. Rev. Phys., 2021, 3(11): 744
https://doi.org/10.1038/s42254-021-00359-6
8 Lai S., Liu H., Zhang Z., Zhao J., Feng X., Wang N., Tang C., Liu Y., S. Novoselov K., A. Yang S., Gao W.. Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor. Nat. Nanotechnol., 2021, 16(8): 869
https://doi.org/10.1038/s41565-021-00917-0
9 Wei M., Wang B., Yu Y., Xu F., Wang J.. Nonlinear Hall effect induced by internal Coulomb interaction and phase relaxation process in a four-terminal system with time-reversal symmetry. Phys. Rev. B, 2022, 105(11): 115411
https://doi.org/10.1103/PhysRevB.105.115411
10 Wei M., Xiang L., Wang L., Xu F., Wang J.. Quantum third-order nonlinear Hall effect of a four-terminal device with time-reversal symmetry. Phys. Rev. B, 2022, 106(3): 035307
https://doi.org/10.1103/PhysRevB.106.035307
11 P. Zhang C., J. Gao X., M. Xie Y., C. Po H., T. Law K.. Higher-order nonlinear anomalous Hall effects induced by Berry curvature multipoles. Phys. Rev. B, 2023, 107(11): 115142
https://doi.org/10.1103/PhysRevB.107.115142
12 Wang C., Gao Y., Xiao D.. Intrinsic nonlinear Hall effect in antiferromagnetic tetragonal CuMnAs. Phys. Rev. Lett., 2021, 127(27): 277201
https://doi.org/10.1103/PhysRevLett.127.277201
13 Y. Liu H., Z. Zhao J., X. Huang Y., K. Wu W., L. Sheng X., Xiao C., Y. A. Yang S.. Intrinsic second-order anomalous Hall effect and its application in compensated antiferromagnets. Phys. Rev. Lett., 2021, 127(27): 277202
https://doi.org/10.1103/PhysRevLett.127.277202
14 Gao A., F. Liu Y., X. Qiu J., Ghosh B., V. Trevisan T., Onishi Y., Hu C., Qian T., J. Tien H., W. Chen S., Huang M., Bérubé D., Li H., Tzschaschel C., Dinh T., Sun Z., C. Ho S., W. Lien S., Singh B., Watanabe K., Taniguchi T., C. Bell D., Lin H., R. Chang T., R. Du C., Bansil A., Fu L., Ni N., P. Orth P., Ma Q., Y. Xu S.. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science, 2023, 381(6654): 181
https://doi.org/10.1126/science.adf1506
15 Xiang L., Zhang C., Wang L., Wang J.. Third-order intrinsic anomalous Hall effect with generalized semiclassical theory. Phys. Rev. B, 2023, 107(7): 075411
https://doi.org/10.1103/PhysRevB.107.075411
16 Wei M., Wang L., Wang B., Xiang L., Xu F., Wang B., Wang J.. Quantum fluctuation of the quantum geometric tensor and its manifestation as intrinsic Hall signatures in time-reversal invariant systems. Phys. Rev. Lett., 2023, 130(3): 036202
https://doi.org/10.1103/PhysRevLett.130.036202
17 Shi L., Z. Lu H.. Quantum transport in topological semimetals under magnetic fields (III). Front. Phys., 2023, 18(2): 21307
https://doi.org/10.1007/s11467-023-1259-5
18 B. Altshuler L.. Fluctuations in the extrinsic conductivity of disordered conductors. JETP Lett., 1985, 41: 648
19 A. Lee P., D. Stone A.. Universal conductance fluctuations in metals. Phys. Rev. Lett., 1985, 55(15): 1622
https://doi.org/10.1103/PhysRevLett.55.1622
20 A. Lee P., D. Stone A., Fukuyama H.. Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field. Phys. Rev. B, 1987, 35(3): 1039
https://doi.org/10.1103/PhysRevB.35.1039
21 W. J. Beenakker C.. Random-matrix theory of quantum transport. Rev. Mod. Phys., 1997, 69(3): 731
https://doi.org/10.1103/RevModPhys.69.731
22 L. Han Y., H. Qiao Z.. Universal conductance fluctuations in Sierpinski carpets. Front. Phys., 2019, 14(6): 63603
https://doi.org/10.1007/s11467-019-0919-y
23 Ryu S., Schnyder A., Furusaki A., Ludwig A.. Topological insulators and superconductors: Tenfold way and dimensional hierarchy. New J. Phys., 2010, 12(6): 065010
https://doi.org/10.1088/1367-2630/12/6/065010
24 K. Chiu C., C. Y. Teo J., P. Schnyder A., Ryu S.. Classification of topological quantum matter with symmetries. Rev. Mod. Phys., 2016, 88(3): 035005
https://doi.org/10.1103/RevModPhys.88.035005
25 C. Xiao R., J. Jin Y., Jiang H.. Spin photovoltaic effect in antiferromagnetic materials: Mechanisms, symmetry constraints, and recent progress. APL Mater., 2023, 11(7): 070903
https://doi.org/10.1063/5.0156426
26 L. Qi X., C. Zhang S.. Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
27 A. Bernevig B., Topological Insulators and Topological Superconductors, Princeton University Press, New Jersey, 2013
28 Sinova J., O. Valenzuela S., Wunderlich J., H. Back C., Jungwirth T.. Spin Hall effects. Rev. Mod. Phys., 2015, 87(4): 1213
https://doi.org/10.1103/RevModPhys.87.1213
29 Sinova J., Culcer D., Niu Q., A. Sinitsyn N., Jungwirth T., H. MacDonald A.. Universal intrinsic spin Hall effect. Phys. Rev. Lett., 2004, 92(12): 126603
https://doi.org/10.1103/PhysRevLett.92.126603
30 Yang Y., Xu Z., Sheng L., Wang B., Y. Xing D., N. Sheng D.. Time-reversal-symmetry-broken quantum spin Hall effect. Phys. Rev. Lett., 2011, 107(6): 066602
https://doi.org/10.1103/PhysRevLett.107.066602
31 Sun Y., Zhang Y., Felser C., Yan B.. Strong intrinsic spin Hall effect in the TaAs family of Weyl semimetals. Phys. Rev. Lett., 2016, 117(14): 146403
https://doi.org/10.1103/PhysRevLett.117.146403
32 J. Zhao H., Nakamura H., Arras R., Paillard C., Chen P., Gosteau J., Li X., R. Yang Y., Bellaiche L.. Purely cubic spin splittings with persistent spin textures. Phys. Rev. Lett., 2020, 125(21): 216405
https://doi.org/10.1103/PhysRevLett.125.216405
33 A. Nechaev I., E. Krasovskii E.. Spin polarization by first-principles relativistic k⋅p theory: Application to the surface alloys PbAg2 and BiAg2. Phys. Rev. B, 2019, 100(11): 115432
https://doi.org/10.1103/PhysRevB.100.115432
34 Höpfner P., Schafer J., Fleszar A., H. Dil J., Slomski B., Meier F., Loho C., Blumenstein C., Patthey L., Hanke W., Claessen R.. Three-dimensional spin rotations at the Fermi surface of a strongly spin‒orbit coupled surface system. Phys. Rev. Lett., 2012, 108(18): 186801
https://doi.org/10.1103/PhysRevLett.108.186801
35 Sinova J., O. Valenzuela S., Wunderlich J., H. Back C., Jungwirth T.. Spin Hall effects. Rev. Mod. Phys., 2015, 87(4): 1213
https://doi.org/10.1103/RevModPhys.87.1213
36 Wunderlich J., Kaestner B., Sinova J., Jungwirth T.. Experimental observation of the spin-Hall effect in a two-dimensional spin‒orbit coupled semiconductor system. Phys. Rev. Lett., 2005, 94(4): 047204
https://doi.org/10.1103/PhysRevLett.94.047204
37 Saitoh E., Ueda M., Miyajima H., Tatara G.. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett., 2006, 88(18): 182509
https://doi.org/10.1063/1.2199473
38 Schliemann J., Loss D.. Spin-Hall transport of heavy holes in III‒V semiconductor quantum wells. Phys. Rev. B, 2005, 71(8): 085308
https://doi.org/10.1103/PhysRevB.71.085308
39 M. Acosta C., Fazzio A.. Spin-polarization control driven by a Rashba-type effect breaking the mirror symmetry in two-dimensional dual topological insulators. Phys. Rev. Lett., 2019, 122(3): 036401
https://doi.org/10.1103/PhysRevLett.122.036401
40 D. Stolwijk S., Sakamoto K., B. Schmidt A., Kruger P., Donath M.. Spin texture with a twist in momentum space for Tl/Si(111). Phys. Rev. B, 2015, 91(24): 245420
https://doi.org/10.1103/PhysRevB.91.245420
41 Fu L.. Hexagonal warping effects in the surface states of the topological insulator Bi2Te3. Phys. Rev. Lett., 2009, 103(26): 266801
https://doi.org/10.1103/PhysRevLett.103.266801
42 Vajna S., Simon E., Szilva A., Palotas K., Ujfalussy B., Szunyogh L.. Higher-order contributions to the Rashba‒Bychkov effect with application to the Bi/Ag(111) surface alloy. Phys. Rev. B, 2012, 85(7): 075404
https://doi.org/10.1103/PhysRevB.85.075404
43 Michiardi M., Bianchi M., Dendzik M., A. Miwa J., Hoesch M., K. Kim T., Matzen P., L. Mi J., Bremholm M., B. Iversen B., Hofmann P.. Strongly anisotropic spin‒orbit splitting in a two-dimensional electron gas. Phys. Rev. B, 2015, 91(3): 035445
https://doi.org/10.1103/PhysRevB.91.035445
44 Bandyopadhyay S., Paul A., Dasgupta I.. Origin of Rashba‒Dresselhaus effect in the ferroelectric nitride perovskite LaWN3. Phys. Rev. B, 2020, 101(1): 014109
https://doi.org/10.1103/PhysRevB.101.014109
45 S. Bahramy M., J. Yang B., Arita R., Nagaosa N.. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat. Commun., 2012, 3(1): 679
https://doi.org/10.1038/ncomms1679
46 Moriya R., Sawano K., Hoshi Y., Masubuchi S., Shiraki Y., Wild A., Neumann C., Abstreiter G., Bougeard D., Koga T., Machida T.. Cubic Rashba spin‒orbit interaction of a two-dimensional hole gas in a strained-Ge/SiGe quantum well. Phys. Rev. Lett., 2014, 113(8): 086601
https://doi.org/10.1103/PhysRevLett.113.086601
47 G. Gerchikov L., V. Subashiev A.. Spin splitting of size-quantization subbands in asymmetric heterostructures. Sov. Phys. Semicond., 1992, 26: 73
48 Bleibaum O., Wachsmuth S.. Spin Hall effect in semiconductor heterostructures with cubic Rashba spin‒orbit interaction. Phys. Rev. B, 2006, 74(19): 195330
https://doi.org/10.1103/PhysRevB.74.195330
49 V. Shanavas K.. Theoretical study of the cubic Rashba effect at the SrTiO3 (001) surfaces. Phys. Rev. B, 2016, 93(4): 045108
https://doi.org/10.1103/PhysRevB.93.045108
50 Arras R., Gosteau J., J. Zhao H., Paillard C., Yang Y., Bellaiche L.. Rashba-like spin‒orbit and strain effects in tetragonal PbTiO3. Phys. Rev. B, 2019, 100(17): 174415
https://doi.org/10.1103/PhysRevB.100.174415
51 G. D. da Silveira L., Barone P., Picozzi S.. Rashba‒Dresselhaus spin-splitting in the bulk ferroelectric oxide BiAlO3. Phys. Rev. B, 2016, 93(24): 245159
https://doi.org/10.1103/PhysRevB.93.245159
52 C. Marinescu D.. Cubic Dresselhaus interaction parameter from quantum corrections to the conductivity in the presence of an in-plane magnetic field. Phys. Rev. B, 2017, 96(11): 115109
https://doi.org/10.1103/PhysRevB.96.115109
53 Glazov M., Kavokin A.. Spin Hall effect for electrons and excitons. J. Lumin., 2007, 125(1−2): 118
https://doi.org/10.1016/j.jlumin.2006.08.058
54 Seemann M., Kodderitzsch D., Wimmer S., Ebert H.. Symmetry-imposed shape of linear response tensors. Phys. Rev. B, 2015, 92(15): 155138
https://doi.org/10.1103/PhysRevB.92.155138
55 V. Gallego S., Etxebarria J., Elcoro L., S. Tasci E., M. Perez-Mato J.. Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: A new tool of the Bilbao crystallographic server. Acta Crystallogr. A Found. Adv., 2019, 75(3): 438
https://doi.org/10.1107/S2053273319001748
56 J. Lin Y., Jiménez-García K., B. Spielman I.. Spin–orbit-coupled Bose–Einstein condensates. Nature, 2011, 471(7336): 83
https://doi.org/10.1038/nature09887
57 Orso G.. Anderson transition of cold atoms with synthetic spin‒orbit coupling in two-dimensional speckle potentials. Phys. Rev. Lett., 2017, 118(10): 105301
https://doi.org/10.1103/PhysRevLett.118.105301
58 Zhai H.. Spin‒orbit coupled quantum gases. Int. J. Mod. Phys. B, 2012, 26(1): 1230001
https://doi.org/10.1142/S0217979212300010
59 Yuan H., S. Bahramy M., Morimoto K., Wu S., Nomura K., J. Yang B., Shimotani H., Suzuki R., Toh M., Kloc C., Xu X., Arita R., Nagaosa N., Iwasa Y.. Zeeman-type spin splitting controlled by an electric field. Nat. Phys., 2013, 9(9): 563
https://doi.org/10.1038/nphys2691
60 The suppression of linear Rashba SOI was discussed in Ref. [49]. A transition from the cubic Rashba effect to the coexistence of linear and cubic Rashba effects was observed experimentally in oxide heterostructures [61]. For heavy holes in III−V semiconductor quantum wells, the linear Rashba SOI can be absent making the cubic SOI as the leading order [38, 62, 63].
61 Lin W., Li L., Dŏgan F., Li C., Rotella H., Yu X., Zhang B., Li Y., S. Lew W., Wang S., Prellier W., J. Pennycook S., Chen J., Zhong Z., Manchon A., Wu T.. Interface-based tuning of Rashba spin‒orbit interaction in asymmetric oxide heterostructures with 3d electrons. Nat. Commun., 2019, 10(1): 3052
https://doi.org/10.1038/s41467-019-10961-z
62 Winkler R., Noh H., Tutuc E., Shayegan M.. Anomalous Rashba spin splitting in two-dimensional hole systems. Phys. Rev. B, 2002, 65(15): 155303
https://doi.org/10.1103/PhysRevB.65.155303
63 Nomura K., Wunderlich J., Sinova J., Kaestner B., H. Mac-Donald A., Jungwirth T.. Edge-spin accumulation in semiconductor two-dimensional hole gases. Phys. Rev. B, 2005, 72(24): 245330
https://doi.org/10.1103/PhysRevB.72.245330
64 K. Kato Y., C. Myers R., C. Gossard A., D. Awschalom D.. Observation of the spin Hall effect in semiconductors. Science, 2004, 306(5703): 1910
https://doi.org/10.1126/science.1105514
65 Basak S., Lin H., A. Wray L., Y. Xu S., Fu L., Z. Hasan M., Bansil A.. Spin texture on the warped Dirac-cone surface states in topological insulators. Phys. Rev. B, 2011, 84: 121401(R)
https://doi.org/10.1103/PhysRevB.84.121401
66 L. Campbell D., Juzeliunas G., B. Spielman I.. Realistic Rashba and Dresselhaus spin‒orbit coupling for neutral atoms. Phys. Rev. A, 2011, 84(2): 025602
https://doi.org/10.1103/PhysRevA.84.025602
[1] Haiyan Zhang, Zhiwei Guo, Yunhui Li, Yaping Yang, Yuguang Chen, Hong Chen. A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer[J]. Front. Phys. , 2024, 19(4): 43209-.
[2] Jie Chen, Chun Chen, Xiaoqun Wang. Eigenstate properties of the disordered Bose−Hubbard chain[J]. Front. Phys. , 2024, 19(4): 43207-.
[3] Radu Budaca. A semiclassical perspective on nuclear chirality[J]. Front. Phys. , 2024, 19(2): 24301-.
[4] Jia-Nan Cui, Zhengqiang Zhou, Mingyuan Sun. Universal dynamic scaling and Contact dynamics in quenched quantum gases[J]. Front. Phys. , 2024, 19(2): 22201-.
[5] Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301-.
[6] Huawei Fan, Ya Wang, Xingang Wang. Eigenvector-based analysis of cluster synchronization in general complex networks of coupled chaotic oscillators[J]. Front. Phys. , 2023, 18(4): 45302-.
[7] Changdong Chen, Youwen Liu, Lina Zhao, Xiaopeng Hu, Yangyang Fu. Asymmetric nonlinear-mode-conversion in an optical waveguide withPT symmetry[J]. Front. Phys. , 2022, 17(5): 52504-.
[8] Yi-Piao Wu, Guo-Qing Zhang, Cai-Xia Zhang, Jian Xu, Dan-Wei Zhang. Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose–Einstein condensate in a double-well potential[J]. Front. Phys. , 2022, 17(4): 42503-.
[9] Xun-Wei Xu, Hai-Quan Shi, Ai-Xi Chen. Nonreciprocal transition between two indirectly coupled energy levels[J]. Front. Phys. , 2022, 17(4): 42505-.
[10] Yin-Xiang Li, Xiao-Tong Yang. p + ip-wave pairing symmetry at type-II van Hove singularities[J]. Front. Phys. , 2021, 16(5): 53501-.
[11] Ying-Tao Zhang, Shan Jiang, Qingming Li, Qing-Feng Sun. An analytical solution for quantum scattering through a PT-symmetric delta potential[J]. Front. Phys. , 2021, 16(4): 43503-.
[12] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[13] Zhi-Xin Yang, Liang Wang, Yu-Mu Liu, Dong-Yang Wang, Cheng-Hua Bai, Shou Zhang, Hong-Fu Wang. Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature[J]. Front. Phys. , 2020, 15(5): 52504-.
[14] Mike Guidry, Yang Sun, Lian-Ao Wu, Cheng-Li Wu. Fermion dynamical symmetry and strongly-correlated electrons: A comprehensive model of high-temperature superconductivity[J]. Front. Phys. , 2020, 15(4): 43301-.
[15] Yong-Jia Wang, Qing-Feng Li. Application of microscopic transport model in the study of nuclear equation of state from heavy ion collisions at intermediate energies[J]. Front. Phys. , 2020, 15(4): 44302-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed