|
|
Classification of spin Hall effect in two-dimensional systems |
Longjun Xiang1, Fuming Xu1,2, Luyang Wang1( ), Jian Wang1,3( ) |
1. College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China 2. Quantum Science Center of Guangdong-Hongkong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China 3. Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China |
|
|
Abstract Physical properties such as the conductivity are usually classified according to the symmetry of the underlying system using Neumann’s principle, which gives an upper bound for the number of independent components of the corresponding property tensor. However, for a given Hamiltonian, this global approach usually can not give a definite answer on whether a physical effect such as spin Hall effect (SHE) exists or not. It is found that the parity and types of spin-orbit interactions (SOIs) are good indicators that can further reduce the number of independent components of the spin Hall conductivity for a specific system. In terms of the parity as well as various Rashba-like and Dresselhaus-like SOIs, we propose a local approach to classify SHE in two-dimensional (2D) two-band models, where sufficient conditions for identifying the existence or absence of SHE in all 2D magnetic point groups are presented.
|
Keywords
spin Hall effect
symmetry
two-dimensional system
|
Corresponding Author(s):
Luyang Wang,Jian Wang
|
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work. |
Issue Date: 10 November 2023
|
|
1 |
Xiao D., C. Chang M., Niu Q.. Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
https://doi.org/10.1103/RevModPhys.82.1959
|
2 |
Gao Y.. Semiclassical dynamics and nonlinear charge current. Front. Phys., 2019, 14(3): 33404
https://doi.org/10.1007/s11467-019-0887-2
|
3 |
von Klitzing K.. The quantized Hall effect. Rev. Mod. Phys., 1986, 58(3): 519
https://doi.org/10.1103/RevModPhys.58.519
|
4 |
Nagaosa N., Sinova J., Onoda S., H. MacDonald A., P. Ong N.. Anomalous Hall effect. Rev. Mod. Phys., 2010, 82(2): 1539
https://doi.org/10.1103/RevModPhys.82.1539
|
5 |
Sodemann I., Fu L.. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett., 2015, 115(21): 216806
https://doi.org/10.1103/PhysRevLett.115.216806
|
6 |
Low T., Jiang Y., Guinea F.. Topological currents in black phosphorus with broken inversion symmetry. Phys. Rev. B, 2015, 92(23): 235447
https://doi.org/10.1103/PhysRevB.92.235447
|
7 |
Z. Du Z., Z. Lu H., C. Xie X.. Nonlinear Hall effects. Nat. Rev. Phys., 2021, 3(11): 744
https://doi.org/10.1038/s42254-021-00359-6
|
8 |
Lai S., Liu H., Zhang Z., Zhao J., Feng X., Wang N., Tang C., Liu Y., S. Novoselov K., A. Yang S., Gao W.. Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor. Nat. Nanotechnol., 2021, 16(8): 869
https://doi.org/10.1038/s41565-021-00917-0
|
9 |
Wei M., Wang B., Yu Y., Xu F., Wang J.. Nonlinear Hall effect induced by internal Coulomb interaction and phase relaxation process in a four-terminal system with time-reversal symmetry. Phys. Rev. B, 2022, 105(11): 115411
https://doi.org/10.1103/PhysRevB.105.115411
|
10 |
Wei M., Xiang L., Wang L., Xu F., Wang J.. Quantum third-order nonlinear Hall effect of a four-terminal device with time-reversal symmetry. Phys. Rev. B, 2022, 106(3): 035307
https://doi.org/10.1103/PhysRevB.106.035307
|
11 |
P. Zhang C., J. Gao X., M. Xie Y., C. Po H., T. Law K.. Higher-order nonlinear anomalous Hall effects induced by Berry curvature multipoles. Phys. Rev. B, 2023, 107(11): 115142
https://doi.org/10.1103/PhysRevB.107.115142
|
12 |
Wang C., Gao Y., Xiao D.. Intrinsic nonlinear Hall effect in antiferromagnetic tetragonal CuMnAs. Phys. Rev. Lett., 2021, 127(27): 277201
https://doi.org/10.1103/PhysRevLett.127.277201
|
13 |
Y. Liu H., Z. Zhao J., X. Huang Y., K. Wu W., L. Sheng X., Xiao C., Y. A. Yang S.. Intrinsic second-order anomalous Hall effect and its application in compensated antiferromagnets. Phys. Rev. Lett., 2021, 127(27): 277202
https://doi.org/10.1103/PhysRevLett.127.277202
|
14 |
Gao A., F. Liu Y., X. Qiu J., Ghosh B., V. Trevisan T., Onishi Y., Hu C., Qian T., J. Tien H., W. Chen S., Huang M., Bérubé D., Li H., Tzschaschel C., Dinh T., Sun Z., C. Ho S., W. Lien S., Singh B., Watanabe K., Taniguchi T., C. Bell D., Lin H., R. Chang T., R. Du C., Bansil A., Fu L., Ni N., P. Orth P., Ma Q., Y. Xu S.. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science, 2023, 381(6654): 181
https://doi.org/10.1126/science.adf1506
|
15 |
Xiang L., Zhang C., Wang L., Wang J.. Third-order intrinsic anomalous Hall effect with generalized semiclassical theory. Phys. Rev. B, 2023, 107(7): 075411
https://doi.org/10.1103/PhysRevB.107.075411
|
16 |
Wei M., Wang L., Wang B., Xiang L., Xu F., Wang B., Wang J.. Quantum fluctuation of the quantum geometric tensor and its manifestation as intrinsic Hall signatures in time-reversal invariant systems. Phys. Rev. Lett., 2023, 130(3): 036202
https://doi.org/10.1103/PhysRevLett.130.036202
|
17 |
Shi L., Z. Lu H.. Quantum transport in topological semimetals under magnetic fields (III). Front. Phys., 2023, 18(2): 21307
https://doi.org/10.1007/s11467-023-1259-5
|
18 |
B. Altshuler L.. Fluctuations in the extrinsic conductivity of disordered conductors. JETP Lett., 1985, 41: 648
|
19 |
A. Lee P., D. Stone A.. Universal conductance fluctuations in metals. Phys. Rev. Lett., 1985, 55(15): 1622
https://doi.org/10.1103/PhysRevLett.55.1622
|
20 |
A. Lee P., D. Stone A., Fukuyama H.. Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field. Phys. Rev. B, 1987, 35(3): 1039
https://doi.org/10.1103/PhysRevB.35.1039
|
21 |
W. J. Beenakker C.. Random-matrix theory of quantum transport. Rev. Mod. Phys., 1997, 69(3): 731
https://doi.org/10.1103/RevModPhys.69.731
|
22 |
L. Han Y., H. Qiao Z.. Universal conductance fluctuations in Sierpinski carpets. Front. Phys., 2019, 14(6): 63603
https://doi.org/10.1007/s11467-019-0919-y
|
23 |
Ryu S., Schnyder A., Furusaki A., Ludwig A.. Topological insulators and superconductors: Tenfold way and dimensional hierarchy. New J. Phys., 2010, 12(6): 065010
https://doi.org/10.1088/1367-2630/12/6/065010
|
24 |
K. Chiu C., C. Y. Teo J., P. Schnyder A., Ryu S.. Classification of topological quantum matter with symmetries. Rev. Mod. Phys., 2016, 88(3): 035005
https://doi.org/10.1103/RevModPhys.88.035005
|
25 |
C. Xiao R., J. Jin Y., Jiang H.. Spin photovoltaic effect in antiferromagnetic materials: Mechanisms, symmetry constraints, and recent progress. APL Mater., 2023, 11(7): 070903
https://doi.org/10.1063/5.0156426
|
26 |
L. Qi X., C. Zhang S.. Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
|
27 |
A. Bernevig B., Topological Insulators and Topological Superconductors, Princeton University Press, New Jersey, 2013
|
28 |
Sinova J., O. Valenzuela S., Wunderlich J., H. Back C., Jungwirth T.. Spin Hall effects. Rev. Mod. Phys., 2015, 87(4): 1213
https://doi.org/10.1103/RevModPhys.87.1213
|
29 |
Sinova J., Culcer D., Niu Q., A. Sinitsyn N., Jungwirth T., H. MacDonald A.. Universal intrinsic spin Hall effect. Phys. Rev. Lett., 2004, 92(12): 126603
https://doi.org/10.1103/PhysRevLett.92.126603
|
30 |
Yang Y., Xu Z., Sheng L., Wang B., Y. Xing D., N. Sheng D.. Time-reversal-symmetry-broken quantum spin Hall effect. Phys. Rev. Lett., 2011, 107(6): 066602
https://doi.org/10.1103/PhysRevLett.107.066602
|
31 |
Sun Y., Zhang Y., Felser C., Yan B.. Strong intrinsic spin Hall effect in the TaAs family of Weyl semimetals. Phys. Rev. Lett., 2016, 117(14): 146403
https://doi.org/10.1103/PhysRevLett.117.146403
|
32 |
J. Zhao H., Nakamura H., Arras R., Paillard C., Chen P., Gosteau J., Li X., R. Yang Y., Bellaiche L.. Purely cubic spin splittings with persistent spin textures. Phys. Rev. Lett., 2020, 125(21): 216405
https://doi.org/10.1103/PhysRevLett.125.216405
|
33 |
A. Nechaev I., E. Krasovskii E.. Spin polarization by first-principles relativistic k⋅p theory: Application to the surface alloys PbAg2 and BiAg2. Phys. Rev. B, 2019, 100(11): 115432
https://doi.org/10.1103/PhysRevB.100.115432
|
34 |
Höpfner P., Schafer J., Fleszar A., H. Dil J., Slomski B., Meier F., Loho C., Blumenstein C., Patthey L., Hanke W., Claessen R.. Three-dimensional spin rotations at the Fermi surface of a strongly spin‒orbit coupled surface system. Phys. Rev. Lett., 2012, 108(18): 186801
https://doi.org/10.1103/PhysRevLett.108.186801
|
35 |
Sinova J., O. Valenzuela S., Wunderlich J., H. Back C., Jungwirth T.. Spin Hall effects. Rev. Mod. Phys., 2015, 87(4): 1213
https://doi.org/10.1103/RevModPhys.87.1213
|
36 |
Wunderlich J., Kaestner B., Sinova J., Jungwirth T.. Experimental observation of the spin-Hall effect in a two-dimensional spin‒orbit coupled semiconductor system. Phys. Rev. Lett., 2005, 94(4): 047204
https://doi.org/10.1103/PhysRevLett.94.047204
|
37 |
Saitoh E., Ueda M., Miyajima H., Tatara G.. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett., 2006, 88(18): 182509
https://doi.org/10.1063/1.2199473
|
38 |
Schliemann J., Loss D.. Spin-Hall transport of heavy holes in III‒V semiconductor quantum wells. Phys. Rev. B, 2005, 71(8): 085308
https://doi.org/10.1103/PhysRevB.71.085308
|
39 |
M. Acosta C., Fazzio A.. Spin-polarization control driven by a Rashba-type effect breaking the mirror symmetry in two-dimensional dual topological insulators. Phys. Rev. Lett., 2019, 122(3): 036401
https://doi.org/10.1103/PhysRevLett.122.036401
|
40 |
D. Stolwijk S., Sakamoto K., B. Schmidt A., Kruger P., Donath M.. Spin texture with a twist in momentum space for Tl/Si(111). Phys. Rev. B, 2015, 91(24): 245420
https://doi.org/10.1103/PhysRevB.91.245420
|
41 |
Fu L.. Hexagonal warping effects in the surface states of the topological insulator Bi2Te3. Phys. Rev. Lett., 2009, 103(26): 266801
https://doi.org/10.1103/PhysRevLett.103.266801
|
42 |
Vajna S., Simon E., Szilva A., Palotas K., Ujfalussy B., Szunyogh L.. Higher-order contributions to the Rashba‒Bychkov effect with application to the Bi/Ag(111) surface alloy. Phys. Rev. B, 2012, 85(7): 075404
https://doi.org/10.1103/PhysRevB.85.075404
|
43 |
Michiardi M., Bianchi M., Dendzik M., A. Miwa J., Hoesch M., K. Kim T., Matzen P., L. Mi J., Bremholm M., B. Iversen B., Hofmann P.. Strongly anisotropic spin‒orbit splitting in a two-dimensional electron gas. Phys. Rev. B, 2015, 91(3): 035445
https://doi.org/10.1103/PhysRevB.91.035445
|
44 |
Bandyopadhyay S., Paul A., Dasgupta I.. Origin of Rashba‒Dresselhaus effect in the ferroelectric nitride perovskite LaWN3. Phys. Rev. B, 2020, 101(1): 014109
https://doi.org/10.1103/PhysRevB.101.014109
|
45 |
S. Bahramy M., J. Yang B., Arita R., Nagaosa N.. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat. Commun., 2012, 3(1): 679
https://doi.org/10.1038/ncomms1679
|
46 |
Moriya R., Sawano K., Hoshi Y., Masubuchi S., Shiraki Y., Wild A., Neumann C., Abstreiter G., Bougeard D., Koga T., Machida T.. Cubic Rashba spin‒orbit interaction of a two-dimensional hole gas in a strained-Ge/SiGe quantum well. Phys. Rev. Lett., 2014, 113(8): 086601
https://doi.org/10.1103/PhysRevLett.113.086601
|
47 |
G. Gerchikov L., V. Subashiev A.. Spin splitting of size-quantization subbands in asymmetric heterostructures. Sov. Phys. Semicond., 1992, 26: 73
|
48 |
Bleibaum O., Wachsmuth S.. Spin Hall effect in semiconductor heterostructures with cubic Rashba spin‒orbit interaction. Phys. Rev. B, 2006, 74(19): 195330
https://doi.org/10.1103/PhysRevB.74.195330
|
49 |
V. Shanavas K.. Theoretical study of the cubic Rashba effect at the SrTiO3 (001) surfaces. Phys. Rev. B, 2016, 93(4): 045108
https://doi.org/10.1103/PhysRevB.93.045108
|
50 |
Arras R., Gosteau J., J. Zhao H., Paillard C., Yang Y., Bellaiche L.. Rashba-like spin‒orbit and strain effects in tetragonal PbTiO3. Phys. Rev. B, 2019, 100(17): 174415
https://doi.org/10.1103/PhysRevB.100.174415
|
51 |
G. D. da Silveira L., Barone P., Picozzi S.. Rashba‒Dresselhaus spin-splitting in the bulk ferroelectric oxide BiAlO3. Phys. Rev. B, 2016, 93(24): 245159
https://doi.org/10.1103/PhysRevB.93.245159
|
52 |
C. Marinescu D.. Cubic Dresselhaus interaction parameter from quantum corrections to the conductivity in the presence of an in-plane magnetic field. Phys. Rev. B, 2017, 96(11): 115109
https://doi.org/10.1103/PhysRevB.96.115109
|
53 |
Glazov M., Kavokin A.. Spin Hall effect for electrons and excitons. J. Lumin., 2007, 125(1−2): 118
https://doi.org/10.1016/j.jlumin.2006.08.058
|
54 |
Seemann M., Kodderitzsch D., Wimmer S., Ebert H.. Symmetry-imposed shape of linear response tensors. Phys. Rev. B, 2015, 92(15): 155138
https://doi.org/10.1103/PhysRevB.92.155138
|
55 |
V. Gallego S., Etxebarria J., Elcoro L., S. Tasci E., M. Perez-Mato J.. Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: A new tool of the Bilbao crystallographic server. Acta Crystallogr. A Found. Adv., 2019, 75(3): 438
https://doi.org/10.1107/S2053273319001748
|
56 |
J. Lin Y., Jiménez-García K., B. Spielman I.. Spin–orbit-coupled Bose–Einstein condensates. Nature, 2011, 471(7336): 83
https://doi.org/10.1038/nature09887
|
57 |
Orso G.. Anderson transition of cold atoms with synthetic spin‒orbit coupling in two-dimensional speckle potentials. Phys. Rev. Lett., 2017, 118(10): 105301
https://doi.org/10.1103/PhysRevLett.118.105301
|
58 |
Zhai H.. Spin‒orbit coupled quantum gases. Int. J. Mod. Phys. B, 2012, 26(1): 1230001
https://doi.org/10.1142/S0217979212300010
|
59 |
Yuan H., S. Bahramy M., Morimoto K., Wu S., Nomura K., J. Yang B., Shimotani H., Suzuki R., Toh M., Kloc C., Xu X., Arita R., Nagaosa N., Iwasa Y.. Zeeman-type spin splitting controlled by an electric field. Nat. Phys., 2013, 9(9): 563
https://doi.org/10.1038/nphys2691
|
60 |
The suppression of linear Rashba SOI was discussed in Ref. [49]. A transition from the cubic Rashba effect to the coexistence of linear and cubic Rashba effects was observed experimentally in oxide heterostructures [61]. For heavy holes in III−V semiconductor quantum wells, the linear Rashba SOI can be absent making the cubic SOI as the leading order [38, 62, 63].
|
61 |
Lin W., Li L., Dŏgan F., Li C., Rotella H., Yu X., Zhang B., Li Y., S. Lew W., Wang S., Prellier W., J. Pennycook S., Chen J., Zhong Z., Manchon A., Wu T.. Interface-based tuning of Rashba spin‒orbit interaction in asymmetric oxide heterostructures with 3d electrons. Nat. Commun., 2019, 10(1): 3052
https://doi.org/10.1038/s41467-019-10961-z
|
62 |
Winkler R., Noh H., Tutuc E., Shayegan M.. Anomalous Rashba spin splitting in two-dimensional hole systems. Phys. Rev. B, 2002, 65(15): 155303
https://doi.org/10.1103/PhysRevB.65.155303
|
63 |
Nomura K., Wunderlich J., Sinova J., Kaestner B., H. Mac-Donald A., Jungwirth T.. Edge-spin accumulation in semiconductor two-dimensional hole gases. Phys. Rev. B, 2005, 72(24): 245330
https://doi.org/10.1103/PhysRevB.72.245330
|
64 |
K. Kato Y., C. Myers R., C. Gossard A., D. Awschalom D.. Observation of the spin Hall effect in semiconductors. Science, 2004, 306(5703): 1910
https://doi.org/10.1126/science.1105514
|
65 |
Basak S., Lin H., A. Wray L., Y. Xu S., Fu L., Z. Hasan M., Bansil A.. Spin texture on the warped Dirac-cone surface states in topological insulators. Phys. Rev. B, 2011, 84: 121401(R)
https://doi.org/10.1103/PhysRevB.84.121401
|
66 |
L. Campbell D., Juzeliunas G., B. Spielman I.. Realistic Rashba and Dresselhaus spin‒orbit coupling for neutral atoms. Phys. Rev. A, 2011, 84(2): 025602
https://doi.org/10.1103/PhysRevA.84.025602
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|