Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2011, Vol. 6 Issue (2) : 224-230    https://doi.org/10.1007/s11467-011-0170-7
RESEARCH ARTICLE
Metal-decorated defective BN nanosheets as hydrogen storage materials
Ming LI (李明)1,2, Ya-fei LI (李亚飞)2, Zhen ZHOU (周震)2(), Pan-wen SHEN (申泮文)2
1. College of Chemical Engineering and Biological Technology, Hebei Polytechnic University, Tangshan 063009, China; 2. Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
 Download: PDF(422 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Density functional theory computations were performed to investigate hydrogen adsorption in metaldecorated defective BN nanosheets. The binding energies of Ca and Sc on pristine BN nanosheets are much lower than the corresponding cohesive energies of the bulk metals; however, B vacancies in BN nanosheets enhance the binding of Ca and Sc atoms dramatically and avoid the clustering of the metal atoms on the surface of BN nanosheets. Ca and Sc strongly bind to defective BN nanosheets due to charge transfer between metal atoms and BN nanosheets. Sc-decorated BN nanosheets with B vacancies demonstrate promising hydrogen adsorption performances with a hydrogen adsorption energy of -0.19~ -0.35 eV/H2.

Keywords BN      nanosheets      hydrogen storage      first principles     
Corresponding Author(s): Zhen ZHOU (周震),Email:zhouzhen@nankai.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Ming LI (李明),Ya-fei LI (李亚飞),Zhen ZHOU (周震), et al. Metal-decorated defective BN nanosheets as hydrogen storage materials[J]. Front. Phys. , 2011, 6(2): 224-230.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0170-7
https://academic.hep.com.cn/fop/EN/Y2011/V6/I2/224
1 R. Coontz and B. Hanson, Science , 2004, 305: 957
doi: 10.1126/science.305.5686.957
2 G. W. Crabtree, M. S. Dresselhaus, and M. V. Buchanan, Phys. Today , 2004, 57: 39
doi: 10.1063/1.1878333
3 L. Schlapbach and A. Zütel, Nature , 2001, 414: 353
doi: 10.1038/35104634
4 S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz, Catal. Today , 2007, 120: 246
doi: 10.1016/j.cattod.2006.09.022
5 J. Graetz, Chem. Soc. Rev. , 2009, 38: 73
doi: 10.1039/b718842k
6 R. C. Lochan and M. Head-Gordon, Phys. Chem. Chem. Phys. , 2006, 8: 1357
doi: 10.1039/b515409j
7 C. Liu, Y. Chen, C. Z. Wu, S. T. Xu, and H. M. Cheng, Carbon , 2010, 48: 452
doi: 10.1016/j.carbon.2009.09.060
8 Z. Zhou, X. P. Gao, J. Yan, and D. Y. Song, Carbon , 2006, 44: 939
doi: 10.1016/j.carbon.2005.10.016
9 S. A. Shevlin and Z. X. Guo, Chem. Soc. Rev. , 2009, 38: 211
doi: 10.1039/b815553b
10 Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. , 2005, 94: 155504
doi: 10.1103/PhysRevLett.94.155504
11 T. Yildirim and S. Ciraci, Phys. Rev. Lett. , 2005, 94: 175501
doi: 10.1103/PhysRevLett.94.175501
12 A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B , 1994, 49: 5081
doi: 10.1103/PhysRevB.49.5081
13 N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Science , 1995, 269: 966
doi: 10.1126/science.269.5226.966
14 Z. Zhou and Y.F. Li, J. Comput. Theor. Nanosci. , 2009, 6: 327
doi: 10.1166/jctn.2009.1039
15 Z. Y. Yang, Y. F. Li, and Z. Zhou, Front. Phys. China , 2009, 4: 378
doi: 10.1007/s11467-009-0024-8
16 Y. F. Li, Z. Zhou, D. Golberg, Y. Bando, P. v. R. Schleyer, and Z. F. Chen, J. Phys. Chem. C , 2008, 112: 1365
doi: 10.1021/jp077115a
17 Y. F. Li, Z. Zhou, and J. J. Zhao, Nanotechnology , 2008, 19: 015202
doi: 10.1088/0957-4484/19/01/015202
18 Y. F. Li, Z. Zhou, and J. J. Zhao, J. Chem. Phys. , 2007, 127: 184705
doi: 10.1063/1.2786112
19 Z. Zhou, J. J. Zhao, Z. F. Chen, X. P. Gao, T. Y. Yan, and P. v. R. Schleyer, J. Phys. Chem. B , 2006, 110: 13363
doi: 10.1021/jp0622740
20 T. Oku, T. Hirano, M. Kuno, T. Kusunose, K. Niihara, and K. Suganuma, Mater. Sci. Eng. B , 2000, 74: 206
doi: 10.1016/S0921-5107(99)00563-2
21 R. Z. Ma, Y. Bando, H. W. Zhu, T. Sato, C. L. Xu, and D. H. Wu, J. Am. Chem. Soc. , 2002, 124: 7672
doi: 10.1021/ja026030e
22 C. C. Tang, Y. Bando, X. X. Ding, S. R. Qi, and D. Golberg, J. Am. Chem. Soc. , 2002, 124: 14550
doi: 10.1021/ja028051e
23 T. Oku, M. Kuno, and I. Narita, J. Phys. Chem. Solids , 2004, 65: 549
doi: 10.1016/j.jpcs.2003.10.033
24 J. J. Zhao, A. Buidum, J. Han, and J. P. Lu, Nanotechnology , 2002, 13: 195
doi: 10.1088/0957-4484/13/2/312
25 W. Shi and J. K. Johnson, Phys. Rev. Lett. , 2003, 91: 015504
doi: 10.1103/PhysRevLett.91.015504
26 A. Cruz, V. Bertin, E. Poulain, J. I. Benitez, and S. Castillo, J. Chem. Phys. , 2004, 120: 6222
doi: 10.1063/1.1630298
27 Y. Fukai, The Metal-Hydrogen System: Basic Bulk Properties, Berlin: Spinger-Verlag, 1993
28 X. J. Wu, J. L. Yang, and X. C. Zeng, J. Chem. Phys. , 2006, 125: 044704
doi: 10.1063/1.2210933
29 Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc. , 2005, 127: 14582
doi: 10.1021/ja0550125
30 P. O. Krasnov, F. Ding, A. K. Singh, and B. I. Yakobson, J. Phys. Chem. C , 2007, 111: 17977
doi: 10.1021/jp077264t
31 D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. C. Tang, and C. Y. Zhi, ACS Nano , 2010, 4: 2979
doi: 10.1021/nn1006495
32 L. Song, L. J. Ci, H. Lu, P. B. Sorokin, C. H. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, Nano Lett. , 2010, 10: 3209
doi: 10.1021/nl1022139
33 H. B. Zeng, C.Y. Zhi, Z. H. Zhang, X. L.Wei, X. B.Wang, W. L. Guo, Y. Bando, and D. Golberg, Nano Lett. , 2010, 10: 5049
doi: 10.1021/nl103251m
34 C. H. Park and S. G. Louie, Nano Lett. , 2008, 8: 2200
doi: 10.1021/nl080695i
35 X. F. Gao, Z. Zhou, Y. L. Zhao, S. Nagase, S. B. Zhang, and Z. F. Chen, J. Phys. Chem. C , 2008, 112: 12677
doi: 10.1021/jp801679j
36 W. Chen, Y. F. Li, G. T. Yu, Z. Zhou, and Z. F. Chen, J. Chem. Theory Comput. , 2009, 5: 3088
doi: 10.1021/ct900388x
37 W. Chen, Y. F. Li, G. T. Yu, C. Z. Li, S. B. Zhang, Z. Zhou, and Z. F. Chen, J. Am. Chem. Soc. , 2010, 132: 1699
doi: 10.1021/ja908475v
38 G. Kresse and J. Furthmüller, Phys. Rev. B , 1996, 54: 11169
doi: 10.1103/PhysRevB.54.11169
39 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B , 1992, 46: 6671
doi: 10.1103/PhysRevB.46.6671
40 D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. , 1980, 45: 566
doi: 10.1103/PhysRevLett.45.566
41 Y. H. Kim, Y. F. Zhao, A. Williamson, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. , 2006, 96, 016102
doi: 10.1103/PhysRevLett.96.016102
42 Y. F. Li, Z. Zhou, P. W. Shen, S. B. Zhang, and Z. F. Chen, Nanotechnology , 2009, 20: 215701
doi: 10.1088/0957-4484/20/21/215701
43 C. G. Zhang, R. W. Zhang, Z. X. Wang, Z. Zhou, S. B. Zhang, and Z. F. Chen, Chem. Eur. J. , 2009, 15: 5910
doi: 10.1002/chem.200900172
44 D. Vanderbilt, Phys. Rev. B , 1990, 41: 7892
doi: 10.1103/PhysRevB.41.7892
45 G. Kim, S. H. Jhi, S. Lim, and N. Park, Appl. Phys. Lett. , 2009, 94: 173102
doi: 10.1063/1.3126450
46 S. Azevedo, J. R. Kaschny, C. M. C. de Castilho, and F. de Brito Mota, Nanotechnology , 2007, 18: 495707
doi: 10.1088/0957-4484/18/49/495707
47 C. Jin, F. Lin, K. Suenaga, and S. Iijima, Phys. Rev. Lett. , 2009, 102: 195505
doi: 10.1103/PhysRevLett.102.195505
48 X. J. Wu, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys. , 2006, 124: 054706
doi: 10.1063/1.2162897
49 M. Yoon, S. Y. Yang, C. Hicke, E. Wang, D. Geohegan, and Z. Y. Zhang, Phys. Rev. Lett. , 2008, 100: 206806
doi: 10.1103/PhysRevLett.100.206806
50 M. Li, Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, Nano Lett. , 2009, 9: 1944
doi: 10.1021/nl900116q
51 Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe, J. Chem. Theory Comput. , 2009, 5: 374
doi: 10.1021/ct800373g
52 X. B. Yang, R. Q. Zhang, and J. Ni, Phys. Rev. B , 2009, 79: 075431
doi: 10.1103/PhysRevB.79.075431
53 H. Lee, J. Ihm, M. L. Cohen, and S. G. Louie, Phys. Rev. B , 2009, 80: 115412
doi: 10.1103/PhysRevB.80.115412
54 G. F. Wu, J. L. Wang, X. Y. Zhang, and L. Y. Zhu, J. Phys. Chem. C , 2009, 113: 7052
doi: 10.1021/jp8113732
55 G. J. Kubas, J. Organomet. Chem. , 2001, 635: 37
doi: 10.1016/S0022-328X(01)01066-X
[1] Jian Lv, Xin Yang, Dan Xu, Yu-Xin Huang, Hong-Bo Wang, Hui Wang. High-pressure polymorphs of LiPN2: A first-principles study[J]. Front. Phys. , 2018, 13(5): 136104-.
[2] Chen Yang, Ying Chen, Dan Liu, Jinfeng Wang, Cheng Chen, Jiemin Wang, Ye Fan, Shaoming Huang, Weiwei Lei. Vertically aligned γ-AlOOH nanosheets on Al foils as flexible and reusable substrates for NH3 adsorption[J]. Front. Phys. , 2018, 13(4): 138101-.
[3] Jianing Zhuang,Yin Wang,Yan Zhou,Jian Wang,Hong Guo. Impurity-limited quantum transport variability in magnetic tunnel junctions[J]. Front. Phys. , 2017, 12(4): 127304-.
[4] Yi-Han Cheng,Chuan-Yu Zhang,Juan Ren,Kai-Yu Tong. Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers[J]. Front. Phys. , 2016, 11(5): 113101-.
[5] Juan Ren,Ning-Chao Zhang,Peng Wang,Chao Ning,Hong Zhang,Xiao-Juan Peng. Electronic structures and magnetic properties of rare-earth-atom-doped BNNTs[J]. Front. Phys. , 2016, 11(2): 118101-.
[6] Hong ZHANG, Xiao-dong LI, Yong-jian TANG. DFT study of dihydrogen interactions with lithium containing organic complexes C4H4-mLim and C5H5-mLim (m = 1, 2)[J]. Front. Phys. , 2011, 6(2): 231-235.
[7] Xiao ZHOU (周啸), Jian ZHOU (周健), Kun Lü (吕坤), Qiang SUN (孙强). Tripyrrylmethane based 2D porous structure for hydrogen storage[J]. Front. Phys. , 2011, 6(2): 220-223.
[8] Fen LI, Ji-jun ZHAO, Li-xian SUN. Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles[J]. Front. Phys. , 2011, 6(2): 214-219.
[9] Jian WANG, Guang-bo CHE, Qing-wei WANG, Wan-xi ZHANG, Li-min WANG. Electrochemical hydrogen storage properties of melt-spun Ti0.9Zr0.1V0.2Ni1.5La0.5 alloy[J]. Front. Phys. , 2011, 6(2): 209-213.
[10] Sa LI, Hong-min ZHAO, Puru JENA. Ti-doped nano-porous graphene: A material for hydrogen storage and sensor[J]. Front. Phys. , 2011, 6(2): 204-208.
[11] Zhi-wei ZHANG (张志伟), Jian-chen LI (李建忱), Qing JIANG (蒋青). Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review[J]. Front. Phys. , 2011, 6(2): 162-176.
[12] Li-fang SONG (宋莉芳), Chun-hong JIANG (姜春红), Shu-sheng LIU (刘淑生), Cheng-li JIAO (焦成丽), Xiao-liang SI (司晓亮), Shuang WANG (王爽), Fen LI (李芬), Jian ZHANG (张箭), Li-xian SUN (孙立贤), Fen XU (徐芬), Feng-lei HUANG (黄风雷). Progress in improving thermodynamics and kinetics of new hydrogen storage materials[J]. Front. Phys. , 2011, 6(2): 151-161.
[13] Feng DING, Boris I. YAKOBSON. Challenges in hydrogen adsorptions: from physisorption to chemisorption[J]. Front. Phys. , 2011, 6(2): 142-150.
[14] Zhen-yu YANG (杨振宇), Ya-fei LI (李亚飞), Zhen ZHOU (周震). Functionalization of BN nanotubes with free radicals: electroaffinity-independent configuration and band structure engineering[J]. Front Phys Chin, 2009, 4(3): 378-382.
[15] Qiang FU (付强), Lan-feng YUAN (袁岚峰), Yi LUO (罗毅), Jin-long YANG (杨金龙). Exploring at nanoscale from first principles[J]. Front Phys Chin, 2009, 4(3): 256-268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed