Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (1) : 1-15    https://doi.org/10.1007/s11705-016-1562-6
REVIEW ARTICLE
Discovery and development of synthetic tricyclic pyrroloquinone (TPQ) alkaloid analogs for human cancer therapy
Wei Wang1,2, Bhavitavya Nijampatnam3, Sadanandan E. Velu3(), Ruiwen Zhang1,2()
1. Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
2. Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
3. Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
 Download: PDF(1821 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Natural products and their derivatives represent a rich source for the discovery and development of new cancer therapeutic drugs. Bioactive components derived from natural sources including marine compounds have been shown to be effective agents in the clinic or in preclinical settings. In the present review, we present a story of discovery, synthesis and evaluation of three synthetic tricyclic pyrroloquinone (TPQ) alkaloid analogs as cancer therapeutic agents. Chemical synthesis of these compounds (BA-TPQ, TBA-TPQ, and TCBA-TPQ) has been accomplished and the mechanisms of action (MOA) and structure-activity relationships (SAR) have been investigated. In the past, the complexity of chemical synthesis and the lack of well-defined MOA have dampened the enthusiasm for the development of some makaluvamines. Recent discovery of novel molecular targets for these alkaloids (unrelated to inhibition of Topoisomerase II) warrant further consideration as clinical candidates in the future. In addition to the establishment of novel synthetic approaches and demonstration of in vitro and in vivo anticancer activities, we have successfully demonstrated that these makaluvamines attack several key molecular targets, including the MDM2-p53 pathway, providing ample opportunities of modulating the compound structure based on SAR and the use of such compounds in combination therapy in the future.

Keywords synthesis      marine drugs      tricyclic pyrroloquinone alkaloid      cancer therapy      MDM2      p53     
Corresponding Author(s): Sadanandan E. Velu,Ruiwen Zhang   
Online First Date: 23 February 2016    Issue Date: 29 February 2016
 Cite this article:   
Wei Wang,Bhavitavya Nijampatnam,Sadanandan E. Velu, et al. Discovery and development of synthetic tricyclic pyrroloquinone (TPQ) alkaloid analogs for human cancer therapy[J]. Front. Chem. Sci. Eng., 2016, 10(1): 1-15.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1562-6
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I1/1
Fig.1  Marine natural product analogs used in cancer therapy
Fig.2  Naturally occurring tricyclic pyrroloquinone (TPQ) alkaloids
Fig.3  Tricyclic pyrroloquinone synthetic analogs
Fig.4  TPQ analogs
  Scheme 1 Synthesis of TPQ intermediate compound 3
  Scheme 2 Synthesis of TPQ analogs
Fig.5  Benzyl and phenethyl analogs of TPQ alkaloids
Fig.6  Most potent benzyl and phenethyl amino analogs of TPQ alkaloids
Fig.7  Mechanism of action of TPQ alkaloids
  
1 R Siegel, K D Miller, A Jemal. Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 2015, 65(1): 5–29
https://doi.org/10.3322/caac.21254
2 H Wang, T O Khor, L Shu, Z Y Su, F Fuentes, J H Lee, A N Kong. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anti-cancer Agents in Medicinal Chemistry, 2012, 12(10): 1281–1305
https://doi.org/10.2174/187152012803833026
3 S Nobili, D Lippi, E Witort, M Donnini, L Bausi, E Mini, S Capaccioli. Natural compounds for cancer treatment and prevention. Pharmacological Research, 2009, 59(6): 365–378
https://doi.org/10.1016/j.phrs.2009.01.017
4 R G Mehta, G Murillo, R Naithani, X Peng. Cancer chemoprevention by natural products: How far have we come? Pharmacological Research, 2010, 27(6): 950–961
https://doi.org/10.1007/s11095-010-0085-y
5 S Nag, D H Nadkarni, J J Qin, S Voruganti, T Nguyen, S Xu, W Wang, H Wang, S E Velu, R Zhang. Anticancer activity and molecular mechanisms of action of makaluvamines and analogues. Molecular and Cellular Pharmacology, 2012, 4(2): 69–81
6 M Mehbub, J Lei, C Franco, W Zhang. Marine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives. Marine Drugs, 2014, 12(8): 4539–4577
https://doi.org/10.3390/md12084539
7 P Manivasagan, K H Kang, K Sivakumar, E C Li-Chan, H M Oh, S K Kim. Marine actinobacteria: An important source of bioactive natural products. Environmental Toxicology and Pharmacology, 2014, 38(1): 172–188
https://doi.org/10.1016/j.etap.2014.05.014
8 Y Kita, H Fujioka. Marine pyrroloiminoquinone alkaloids. Topics in Current Chemistry, 2012, 309: 131–162
https://doi.org/10.1007/128_2011_134
9 Bhatnagar I, S K Kim . Marine antitumor drugs: Status, shortfalls and strategies. Marine Drugs, 2010, 8(10): 2702–2720
10 G Zanchett, E C Oliveira-Filho. Cyanobacteria and cyanotoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins, 2013, 5(10): 1896–1917
https://doi.org/10.3390/toxins5101896
11 N Jakubowska, E Szeląg-Wasielewska. Toxic picoplanktonic cyanobacteria—review. Marine Drugs, 2015, 13(3): 1497–1518
https://doi.org/10.3390/md13031497
12 F Reen, J Gutiérrez-Barranquero, A Dobson, C Adams, F O’Gara. Emerging concepts promising new horizons for marine biodiscovery and synthetic biology. Marine Drugs, 2015, 13(5): 2924–2954
https://doi.org/10.3390/md13052924
13 B Haefner. Drugs from the deep, marine natural products as drug candidates. Drug Discovery Today, 2003, 8(12): 536–544
https://doi.org/10.1016/S1359-6446(03)02713-2
14 Simmons T L, Andrianasolo E, McPhail K, Flatt P, Gerwick W H. Marine natural products as anticancer drugs. Molecular Cancer Therapeutics, 2005, 4(2): 333–342
15 J C Venter , K Remington , J F Heidelberg , A L Halpern , D Rusch , J A Eisen , D Wu , I Paulsen , K E Nelson , W Nelson , D E Fouts , S Levy , A H Knap , M W Lomas , K Nealson , O White , J Peterson , J Hoffman , R Parsons , H Baden-Tillson , C Pfannkoch , Y H Rogers , H O Smith . Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004, 304(5667): 66–74
16 D H Williams, M J Stone, P R Hauck, S K Rahman. Why are secondary metabolites (natural products) biosynthesized? Journal of Natural Products, 1989, 52(6): 1189–1208
https://doi.org/10.1021/np50066a001
17 Firn R DJones C G. Natural products-a simple model to explain chemical diversity. Natural Product Reports, 2003, 20(4): 382–391
18 D Sipkema, M C R Franssen, R Osinga, J Tramper, R H Wijffels. Marine sponges as pharmacy. Marine Biotechnology (New York, N.Y.), 2005, 7(3): 142–162
https://doi.org/10.1007/s10126-004-0405-5
19 Mayer A M, A D Rodríguez , Taglialatela-Scafati OFusetani N. Marine pharmacology in 2009–2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Marine Drugs, 2013, 11(7): 2510–2573
20 Antunes E MCopp B RDavies-Coleman M TSamaai T. Pyrroloiminoquinone and related metabolites from marine sponges. Natural Product Reports, 2005, 22(1): 62–72
21 D J Faulkner. Marine natural products. Natural Product Reports, 2002, 19(1): 1–48
22 J R Carney, P J Scheuer, M Kelly-Borges. Makaluvamine G. A cytotoxic pigment from an Indonesian sponge Histodermella sp. Tetrahedron, 1993, 49(38): 8483–8486
https://doi.org/10.1016/S0040-4020(01)96256-8
23 Casapullo ACutignano ABruno IBifulco GDebitus CGomez-Paloma LRiccio R. Makaluvamine P, a new cytotoxic pyrroloiminoquinone from Zyzzya cf. fuliginosa. Journal of Natural Products, 2001, 64(10): 1354–1356
24 D C Radisky, E S Radisky, L R Barrows, B R Copp, R A Kramer, C M Ireland. Novel cytotoxic topoisomerase II inhibiting pyrroloiminoquinones from Fijian sponges of the genus Zyzzya. Journal of the American Chemical Society, 1993, 115(5): 1632–1638
25 Gunasekera S PZuleta I ALongley R EWright A EPomponi S A. Discorhabdins S, T, and U, new cytotoxic pyrroloiminoquinones from a deep-water Caribbean sponge of the genus Batzella. , 2003, 66(12): 1615–1617
26 V Bénéteau, A Pierré, B Pfeiffer, P Renard, T Besson. Synthesis and antiproliferative evaluation of 7-aminosubstituted pyrroloiminoquinone derivatives. Bioorganic & Medicinal Chemistry Letters, 2000, 10(19): 2231–2234
https://doi.org/10.1016/S0960-894X(00)00450-9
27 J M Kokoshka, T L Capson, J A Holden, C M Ireland, L R Barrows. Differences in the topoisomerase I cleavage complexes formed by camptothecin and wakayin, a DNA-intercalating marine natural product. Anti-Cancer Drugs, 1996, 7(7): 758–765
https://doi.org/10.1097/00001813-199609000-00007
28 Legentil LBenel LBertrand VLesur BDelfourne E. Synthesis and antitumor characterization of pyrazolic analogues of the marine pyrroloquinoline alkaloids, wakayin and tsitsikammamines. Journal of Medicinal Chemistry, 2006, 49(10): 2979–2988
29 L Legentil, B Lesur, E Delfourne. Aza-analogues of the marine pyrroloquinoline alkaloids wakayin and tsitsikammamines, synthesis and topoisomerase inhibition. Bioorganic & Medicinal Chemistry Letters, 2006, 16(2): 427–429
https://doi.org/10.1016/j.bmcl.2005.09.063
30 R Zhao, B Oreski, J W Lown. Synthesis and biological evaluation of hybrid molecules containing the pyrroloquinoline nucleus and DNA-minor groove binders. Bioorganic & Medicinal Chemistry Letters, 1996, 6(18): 2169–2172
https://doi.org/10.1016/0960-894X(96)00395-2
31 Barrows L R, Radisky D C Copp B R Swaffar D S Kramer R A Warters R L Ireland C M Makaluvamines, marine natural products, are active anti-cancer agents and DNA topo II inhibitors. Anti-Cancer Drug Design, 1993, 8(5): 333–347
32 V A Stonik. Marine natural products: A way to new drugs. Acta Naturae, 2009, 1(2): 15–25
33 A M S Mayer, K B Glaser, C Cuevas, R S Jacobs, W Kem, R D Little, J M McIntosh, D J Newman, B C Potts, D E Shuster. The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends in Pharmacological Sciences, 2010, 31(6): 255–265
https://doi.org/10.1016/j.tips.2010.02.005
34 N Shetty, S Gupta. Eribulin drug review. South Asian Journal of Cancer, 2014, 3(1): 57–59
https://doi.org/10.4103/2278-330X.126527
35 L Polastro, P G Aftimos, A Awada. Eribulin mesylate in the management of metastatic breast cancer and other solid cancers: A drug review. Expert Review of Anticancer Therapy, 2014, 14(6): 649–665
https://doi.org/10.1586/14737140.2014.920693
36 Swami UShah UGoel S. Eribulin in cancer treatment. Marine Drugs, 2015, 13(8): 5016–5058
37 N F Dybdal-Hargreaves, A L Risinger, S L Mooberry. Eribulin mesylate: Mechanism of action of a unique microtubule-targeting agent. Clinical Cancer Research, 2015, 21(11): 2445–2452
https://doi.org/10.1158/1078-0432.CCR-14-3252
38 M K Doherty, P G Morris. Eribulin for the treatment of metastatic breast cancer: An update on its safety and efficacy. International Journal of Women’s Health, 2015, 7: 47–58
https://doi.org/10.2147/IJWH.S74462
39 National Cancer Institute. FDA Approval for Eribulin Mesylate. 2015
40 National Institute for Health and Clinical. Excellence Trabectedin for the treatment of advanced soft tissue sarcoma. 2015
41 M V De Souza. (+)-discodermolide: A marine natural product against cancer. The Scientific World Journal, 2004, 4: 415–436
https://doi.org/10.1100/tsw.2004.96
42 S J Shaw. The structure activity relationship of discodermolide analogues. Mini-Reviews in Medicinal Chemistry, 2008, 8(3): 276–284
https://doi.org/10.2174/138955708783744137
43 D G Kingston. Tubulin-interactive natural products as anticancer agents. Journal of Natural Products, 2009, 72(3): 507–515
44 A B Smith III, K Sugasawa, O Atasoylu, C P H Yang, S B Horwitz. Design and synthesis of (+)-discodermolide-paclitaxel hybrids leading to enhanced biological activity. Journal of Medicinal Chemistry, 2011, 54(18): 6319–6327
https://doi.org/10.1021/jm200692n
45 Hu J FFan HXiong JWu S B. Discorhabdins and pyrroloiminoquinone-related alkaloids. Chemical Reviews, 2011, 111(9): 5465–5491
46 B Nijampatnam, S Dutta, S E Velu. Recent advances in isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids of marine origin. Chinese Journal of Natural Medicine, 2015, 13(8): 561–577
https://doi.org/10.1016/S1875-5364(15)30052-2
47 B R Copp, C M Ireland, L R Barrows. Wakayin: A novel cytotoxic pyrroloiminoquinone alkoloid from the Ascidian Clavelina Species. Journal of Organic Chemistry, 1991, 56(15): 4596–4597
https://doi.org/10.1021/jo00015a005
48 N B Perry, J W Blunt, J D McCombs, M H G Munro. Discorhabdin C, a highly cytotoxic pigment from a sponge of the genus Latrunculia. Journal of Organic Chemistry, 1986, 51(26): 5476–5478
https://doi.org/10.1021/jo00376a096
49 Y Wada, Y Harayama, D Kamimura, M Yoshida, T Shibata, K Fujiwara, K Morimoto, H Fujioka, Y Kita. The synthetic and biological studies of discorhabdins and related compounds. Organic & Biomolecular Chemistry, 2011, 9(13): 4959–4976
https://doi.org/10.1039/c1ob05058c
50 Y Wada, H Fujioka, Y Kita. Synthesis of the marine pyrroloiminoquinone alkaloids, discorhabdins. Marine Drugs, 2010, 8(4): 1394–1416
https://doi.org/10.3390/md8041394
51 L Legentil, L Benel, V Bertrand, B Lesur, E Delfourne. Synthesis and antitumor characterization of pyrazolic analogues of the marine pyrroloquinoline alkaloids: Wakayin and tsitsikammamines. Journal of Medicinal Chemistry, 2006, 49(10): 2979–2988
https://doi.org/10.1021/jm051247f
52 J K Nunnery, E Mevers, W H Gerwick. Biologically active secondary metabolites from marine cyanobacteria. Current Opinion in Biotechnology, 2010, 21(6): 787–793
https://doi.org/10.1016/j.copbio.2010.09.019
53 B A Shinkre , K P Raisch , L Fan , S E Velu . Analogs of the marine alkaloid makaluvamines: Synthesis, topoisomerase II inhibition, and anticancer activity. Bioorganic & Medicinal Chemistry Letters, 2007, 17(10): 2890–2893
54 Sadanandan E V , Pillai S K , Lakshmikantham M V , Billimoria A D , Culpepper J S , Cava M P . Efficient syntheses of the marine alkaloids makaluvamine D and discorhabdin C: The 4,6,7-trimethoxyindole approach. The Journal of Organic Chemistry, 1995, 60(6): 1800–1805
55 B A Shinkre, K P Raisch, L Fan, S E Velu. Synthesis and antiproliferative activity of benzyl and phenethyl analogs of makaluvamines. Bioorganic & Medicinal Chemistry, 2008, 16(5): 2541–2549
https://doi.org/10.1016/j.bmc.2007.11.051
56 W Wang, E R Rayburn, S E Velu, D Chen, D H Nadkarni, S Murugesan, D Chen, R Zhang. A novel synthetic iminoquinone, BA-TPQ, as an anti-breast cancer agent: In vitro and in vivo activity and mechanisms of action. Breast Cancer Research and Treatment, 2010, 123(2): 321–331
https://doi.org/10.1007/s10549-009-0638-0
57 D Chen, W Wang, J J Qin, M H Wang, S Murugesan, D H Nadkarni, S E Velu, H Wang, R Zhang. Identification of the ZAK-MKK4-JNK-TGFβ Signaling Pathway as a Molecular Target for Novel Synthetic Iminoquinone Anticancer Compound BA-TPQ. Current Cancer Drug Targets, 2013, 13(6): 651–660
https://doi.org/10.2174/15680096113139990040
58 W Wang, E R Rayburn, S E Velu, D H Nadkarni, S Murugesan, R Zhang. In vitro and in vivo anticancer activity of novel synthetic makaluvamine analogues. Clinical Cancer Research, 2009, 15(10): 3511–3518
https://doi.org/10.1158/1078-0432.CCR-08-2689
59 F Wang , S J Ezell , Y Zhang , W Wang , E R Rayburn , D H Nadkarni , S Murugesan , S E Velu , R Zhang . FBA-TPQ, a novel marine-derived compound as experimental therapy for prostate cancer. Investigational New Drugs, 2010, 28(3): 234–241
60 T Chen , Y Xu , H Guo , Y Liu, P Hu , X Yang , X Li, S Ge , S E Velu , D H Nadkarni , W Wang , R Zhang , H Wang . Experimental therapy of ovarian cancer with synthetic makaluvamine analog: In vitro and in vivo anticancer activity and molecular mechanisms of action. PLoS One, 2011, 6(6): e20729
61 X Zhang , H Xu , X Zhang , S Voruganti , S Murugesan, D H Nadkarni , S E Velu , M H Wang , W Wang , R Zhang . Preclinical evaluation of anticancer efficacy and pharmacological properties of FBA-TPQ, a novel synthetic makaluvamine analog. Marine Drugs, 2012, 10(5): 1138–1155.
62 D H Nadkarni , F Wang , W Wang , E R Rayburn , S J Ezell , S Murugesan , S E Velu , R Zhang . Synthesis and in vitro anti-lung cancer activity of novel 1,3,4,8-tetrahydropyrrolo[4,3,2-de]quinolin-8(1H)-one alkaloid analogs. Medicinal Chemistry, 2009, 5(3): 227–236
63 H Li, S J Ezell, X Zhang, W Wang, H Xu, E R Rayburn, X Zhang, E Gurpinar, X Yang, C I Sommers, S E Velu, R Zhang. Development and validation of an HPLC method for quantitation of BA-TPQ, a novel iminoquinone anticancer agent, and an initial pharmacokinetic study in mice. Biomedical Chromatography, 2011, 25(5): 628–634
https://doi.org/10.1002/bmc.1498
64 S J Ezell, H Li, H Xu, X Zhang, E Gurpinar, X Zhang, E R Rayburn, C I Sommers, X Yang, S E Velu, W Wang, R Zhang. Preclinical pharmacology of BA-TPQ, a novel synthetic iminoquinone anticancer agent. Marine Drugs, 2010, 8(7): 2129–2141
https://doi.org/10.3390/md8072129
65 X Zhang, H Xu, X Zhang, S Voruganti, S Murugesan, D H Nadkarni, S E Velu, M H Wang, W Wang, R Zhang. Preclinical evaluation of anticancer efficacy and pharmacological properties of FBA-TPQ, a novel synthetic makaluvamine analog. Marine Drugs, 2012, 10(5): 1138–1155
https://doi.org/10.3390/md10051138
66 J X Yu , S Voruganti , D D Li , J J Qin , S Nag , S Xu , S E Velu , W Wang , R Zhang . Development and validation of an HPLC-MS/MS analytical method for quantitative analysis of TCBA-TPQ, a novel anticancer makaluvamine analog, and application in a pharmacokinetic study in rats. Chinese Journal of Natural Medicines, 2015, 13(7): 554–560
67 S S Matsumoto, H M Haughey, D M Schmehl, D A Venables, C M Ireland, J A Holden, L R Barrows. Makaluvamines vary in ability to induce dosedependent DNA cleavage via topoisomerase II interaction. Anti-Cancer Drugs, 1999, 10(1): 39–45
https://doi.org/10.1097/00001813-199901000-00006
68 D A Venables, G P Concepción, S S Matsumoto, L R Barrows, C M Ireland. Makaluvamine N: A New Pyrroloiminoquinone from Zyzzya fuliginosa. Journal of Natural Products, 1997, 60(4): 408–410
https://doi.org/10.1021/np9607262
69 M G Dijoux, P C Schnabel, Y F Hallock, J L Boswell, T R Johnson, J A Wilson, C M Ireland, R van Soest, M R Boyd, L R Barrows, J H CardellinaII. Antitumor activity and distribution of pyrroloiminoquinones in the sponge genus Zyzzya. Bioorganic & Medicinal Chemistry, 2005, 13(21): 6035–6044
https://doi.org/10.1016/j.bmc.2005.06.019
70 Z Wang , Y Sun . Targeting p53 for novel anticancer therapy. Translational Oncology, 2010, 3(1): 1–12
71 A J Levine. p53, the cellular gatekeeper for growth and division. Cell, 1997, 88(3): 323–331
https://doi.org/10.1016/S0092-8674(00)81871-1
72 E Rayburn, R Zhang, J He, H Wang. MDM2 and human malignancies: Expression, clinical pathology, prognostic markers, and implications for chemotherapy. Current Cancer Drug Targets, 2005, 5(1): 27–42
https://doi.org/10.2174/1568009053332636
73 Z Zhang, R Zhang. p53-independent activities of MDM2 and their relevance to cancer therapy. Current Cancer Drug Targets, 2005, 5(1): 9–20
https://doi.org/10.2174/1568009053332618
74 J D Oliner, J A Pietenpol, S Thiagalingam, J Gyuris, K W Kinzler, B Vogelstein. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature, 1993, 362(6423): 857–860
https://doi.org/10.1038/362857a0
75 Y Haupt , R Maya , A Kazaz , M Oren . Mdm2 promotes the rapid degradation of p53. Nature, 387(6630): 296–299
76 A Bouska, T Lushnikova, S Plaza, C M Eischen. Mdm2 promotes genetic instability and transformation independent of p53. Molecular and Cellular Biology, 2008, 28(15): 4862–4874
https://doi.org/10.1128/MCB.01584-07
77 R Zhang, H Wang. MDM2 oncogene as a novel target for human cancer therapy. Current Pharmaceutical Design, 2000, 6(4): 393–416
https://doi.org/10.2174/1381612003400911
78 R Zhang, H Wang, S Agrawal. Novel antisense anti-MDM2 mixed-backbone oligonucleotides: Proof of principle, in vitro and in vivo activities, and mechanisms. Current Cancer Drug Targets, 2005, 5(1): 43–50
https://doi.org/10.2174/1568009053332663
79 E R Rayburn, S J Ezell, R Zhang. Recent advances in validation of MDM2 oncogene as a molecular target for cancer prevention and therapy. Anti-cancer Agents in Medicinal Chemistry, 2009, 9(8): 882–903
https://doi.org/10.2174/187152009789124628
80 S Nag, J J Qin, K Srivenugopal, M H Wang, R Zhang. The MDM2-p53 pathway revisited. Journal of Biomedical Research, 2013, 27(4): 254–271
https://doi.org/10.7555/JBR.27.20130030
81 S Nag, X Zhang, K S Srivenugopal, M H Wang, W Wang, R Zhang. Targeting MDM2-p53 interaction for cancer therapy: Are we there yet? Current Medicinal Chemistry, 2014, 21(5): 553–574
https://doi.org/10.2174/09298673113206660325
82 L Chen, S Agrawal, W Zhou, R Zhang, J Chen. Synergistic activation of p53 by inhibition of MDM2 expression and DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(1): 195–200
https://doi.org/10.1073/pnas.95.1.195
83 H Wang, L Nan, D Yu, S Agrawal, R Zhang. Antisense anti-MDM2 oligonucleotides as a novel therapeutic approach to human breast cancer: In vitro and in vivo activities and mechanisms. Clinical Cancer Research, 2001, 7(11): 3613–3624
84 H Wang, L Nan, D Yu, J R Lindsey, S Agrawal, R Zhang. Anti-tumor efficacy of a novel antisense anti-mdm2 mixed-backbone oligonucleotide in human colon cancer models: p53-dependent and p53-independent mechanisms. Molecular Medicine (Cambridge, Mass.), 2002, 8(4): 185–199
85 Z Zhang, M Li, H Wang, S Agrawal, R Zhang. Antisense therapy targeting MDM2 oncogene in prostate cancer: Effects on proliferation, apoptosis, multiple gene expression, and chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(20): 11636–11641
https://doi.org/10.1073/pnas.1934692100
86 Z Zhang, H Wang, G Prasad, M Li, D Yu, J Bonner, S Agrawal, R Zhang. Radiosensitization by antisense anti-MDM2 mixed-backbone oligonucleotide in in vitro and in vivo human cancer models. Clinical Cancer Research, 2004, 10(4): 1263–1273
https://doi.org/10.1158/1078-0432.CCR-0245-03
87 Z Zhang, H Wang, M Li, E Rayburn, S Agrawal, R Zhang. Novel MDM2 p53-independent functions identified through RNA silencing technologies. Annals of the New York Academy of Sciences, 2005, 1058(1): 205–214
https://doi.org/10.1196/annals.1359.030
88 W Wang, J J Qin, S Voruganti, M H Wang, H Sharma, S Patil, J Zhou, H Wang, D Mukhopadhyay, J K Buolamwini, R Zhang. Identification of a new class of MDM2 inhibitor that inhibits growth of orthotopic pancreatic tumors in mice. Gastroenterology, 2014, 147(4): 893–902
https://doi.org/10.1053/j.gastro.2014.07.001
89 S Nag, J J Qin, J K Buolamwini, W Wang, R Zhang. A quantitative LC-MS/MS method for determination of SP-141, a novel pyrido[b]indole anticancer agent, and its application to a mouse PK study. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2014, 969: 235–240
https://doi.org/10.1016/j.jchromb.2014.08.030
90 W Wang, J J Qin, S Voruganti, K S Srivenugopal, S Nag, S Patil, H Sharma, M H Wang, J K Buolamwini, R Zhang. A pyrido[b]indole MDM2 inhibitor, SP-141, exerts potent therapeutic effects in breast cancer models. Nature Communications, 2014, 5: 5086
https://doi.org/10.1038/ncomms6086
91 S Nag, J J Qin, S Voruganti, M H Wang, H Sharma, S Patil, J K Buolamwini, W Wang, R Zhang. Development and validation of a rapid HPLC method for quantitation of SP-141, a novel pyrido[b]indole anticancer agent, and an initial pharmacokinetic study in mice. Biomedical Chromatography, 2015, 29(5): 654–663
https://doi.org/10.1002/bmc.3327
92 S Wang, W Sun, Y Zhao, D McEachern, I Meaux, C Barrière, J A Stuckey, J L Meagher, L Bai, L Liu, C G Hoffman-Luca, J Lu, S Shangary, S Yu, D Bernard, A Aguilar, O Dos-Santos, L Besret, S Guerif, P Pannier, D Gorge-Bernat, L Debussche. SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Research, 2014, 74(20): 5855–5865
https://doi.org/10.1158/0008-5472.CAN-14-0799
93 B Zhang, B T Golding, I R Hardcastle. Small-molecule MDM2-p53 inhibitors: recent advances. Future Medicinal Chemistry, 2015, 7(5): 631–645
https://doi.org/10.4155/fmc.15.13
94 P C Lv, J Sun, H L Zhu. Recent Advances of p53-MDM2 Small Molecule Inhibitors (2011-Present). Current Medicinal Chemistry, 2015, 22(5): 618–626
https://doi.org/10.2174/0929867322666141128162557
95 J J Qin, S A Nag, S Voruganti, W Wang, R Zhang. Natural product MDM2 inhibitors: Anticancer activity and mechanisms of action. Current Medicinal Chemistry, 2012, 19(33): 5705–5725
https://doi.org/10.2174/092986712803988910
96 M Li, Z Zhang, D Hill, X Chen, H Wang, R Zhang. Genistein, a dietary isoflavone, down-regulates MDM2 oncogene at both transcriptional and post-translational levels. Cancer Research, 2005, 65(18): 8200–8208
https://doi.org/10.1158/0008-5472.CAN-05-1302
97 M Li, Z Zhang, D Hill, H Wang, R Zhang. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Research, 2007, 67(5): 1988–1996
https://doi.org/10.1158/0008-5472.CAN-06-3066
98 J Hou, D Wang, R Zhang, H Wang. Experimental therapy of hepatoma with artemisinin and its derivatives: In vitro and in vivo activity, chemosensitization, and mechanisms of action. Clinical Cancer Research, 2008, 14(17): 5519–5530
https://doi.org/10.1158/1078-0432.CCR-08-0197
99 T Chen, M Li, R Zhang, H Wang. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy. Journal of Cellular and Molecular Medicine, 2009, 13(7): 1358–1370
https://doi.org/10.1111/j.1582-4934.2008.00360.x
100 W Wang, H Wang, E Rayburn, Y Zhao, D Hill, R Zhang. 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol, a novel natural product for prostate cancer therapy: Activity in vitro and in vivo and mechanisms of action. British Journal of Cancer, 2008, 98(4): 792–802
https://doi.org/10.1038/sj.bjc.6604227
101 W Wang, E R Rayburn, M Hao, Y Zhao, D L Hill, R Zhang, H Wang. Experimental therapy of prostate cancer with novel natural product anti-cancer ginsenosides. Prostate, 2008, 68(8): 809–819
https://doi.org/10.1002/pros.20742
102 W Wang, E R Rayburn, J Hang, Y Zhao, H Wang, R Zhang. Anti-lung cancer effects of novel ginsenoside 25-OCH3-PPD. Lung Cancer, 2009, 65(3): 306–311
https://doi.org/10.1016/j.lungcan.2008.11.016
103 W Wang, E R Rayburn, Y Zhao, H Wang, R Zhang. Novel ginsenosides 25-OH-PPD and 25-OCH3-PPD as experimental therapy for pancreatic cancer: Anticancer activity and mechanisms of action. Cancer Letters, 2009, 278(2): 241–248
https://doi.org/10.1016/j.canlet.2009.01.005
104 S A Nag, J J Qin, W Wang, M Wang, H Wang, R Zhang. Ginsenosides as anticancer agents: In vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action. Frontiers in Pharmacology, 2012, 3: 25
https://doi.org/10.3389/fphar.2012.00025
105 W Wang, X Zhang, J J Qin, S Voruganti, S A Nag, M H Wang, H Wang, R Zhang. Natural product ginsenoside 25-OCH3-PPD inhibits breast cancer growth and metastasis through down-regulating MDM2. PLoS One, 2012, 7(7): e41586
https://doi.org/10.1371/journal.pone.0041586
106 J Yu, S A Nag, R Zhang. Advances in translational pharmacological investigations in identifying and validating molecular targets of natural product anticancer agents. Current Cancer Drug Targets, 2013, 13(5): 596–609
https://doi.org/10.2174/15680096113139990032
107 S Voruganti, J J Qin, S Sarkar, S Nag, I A Walbi, S Wang, Y Zhao, W Wang, R Zhang. Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action. Oncotarget, 2015, 6(25): 21379–21394
https://doi.org/10.18632/oncotarget.4091
108 J J Qin, W Wang, S Voruganti, H Wang, W D Zhang, R Zhang. Identification of a new class of natural product MDM2 inhibitor: In vitro and in vivo anti-breast cancer activities and target validation. Oncotarget, 2015, 6(5): 2623–2640
https://doi.org/10.18632/oncotarget.3098
109 J J Qin, W Wang, S Voruganti, H Wang, W D Zhang, R Zhang. Inhibiting NFAT1 for breast cancer therapy: New insights into the mechanism of action of MDM2 inhibitor JapA. Oncotarget, 2015, 6(32): 33106–33119
[1] Xing Feng, Meiqing Du, Hongbei Wei, Xiaoxiao Ruan, Tao Fu, Jie Zhang, Xiaolong Sun. Chemically triggered life control of “smart” hydrogels through click and declick reactions[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1399-1406.
[2] Xin Li, Meng Su, Yao Chen, Mehar U. Nisa, Ning Zhao, Xiangning Jiang, Zhenhua Li. The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1224-1236.
[3] Yong-Hui Wen, Long Cheng, Tian-Ming Xu, Xing-Hai Liu, Ning-Jie Wu. Synthesis, insecticidal activities and DFT study of pyrimidin-4-amine derivatives containing the 1,2,4-oxadiazole motif[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1090-1100.
[4] Katarína Gáborová, Marcela Achimovičová, Michal Hegedüs, Vladimír Girman, Mária Kaňuchová, Erika Dutková. Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties[J]. Front. Chem. Sci. Eng., 2022, 16(3): 433-442.
[5] Mengying Liu, Yun Xu, Yanjun Zhao, Zheng Wang, Dunyun Shi. Hydroxyl radical-involved cancer therapy via Fenton reactions[J]. Front. Chem. Sci. Eng., 2022, 16(3): 345-363.
[6] Quirin Göttl, Dominik G. Grimm, Jakob Burger. Automated synthesis of steady-state continuous processes using reinforcement learning[J]. Front. Chem. Sci. Eng., 2022, 16(2): 288-302.
[7] Yachao Dong, Christos Georgakis, Jacob Santos-Marques, Jian Du. Dynamic response surface methodology using Lasso regression for organic pharmaceutical synthesis[J]. Front. Chem. Sci. Eng., 2022, 16(2): 221-236.
[8] Yongxin Zhang, Shucheng Wang, Yaodong Huang. A highly efficient methodology for the preparation of N-methoxycarbazoles and the total synthesis of 3,3'-[oxybis(methylene)]bis(9-methoxy-9H-carbazole)[J]. Front. Chem. Sci. Eng., 2021, 15(3): 679-686.
[9] Simin Feng, Xiaoli Zhang, Dunyun Shi, Zheng Wang. Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review[J]. Front. Chem. Sci. Eng., 2021, 15(2): 221-237.
[10] Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri. Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: role of support and metal nanoparticle size on catalyst activity and products selectivity[J]. Front. Chem. Sci. Eng., 2021, 15(2): 299-309.
[11] Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
[12] Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
[13] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
[14] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[15] Zhaoqi Ye, Hongbin Zhang, Yahong Zhang, Yi Tang. Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties[J]. Front. Chem. Sci. Eng., 2020, 14(2): 143-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed