Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

   Online First

Administered by

30 Most Downloaded Articles
Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month| Most Downloaded in Recent Year|

Most Downloaded in Recent Month
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
The road to sustainable use and waste management of plastics in Portugal
Joana C. Prata, Ana L. Patrício Silva, Armando C. Duarte, Teresa Rocha-Santos
Front. Environ. Sci. Eng.    2022, 16 (1): 5-null.   https://doi.org/10.1007/s11783-021-1439-x
Abstract   HTML   PDF (2069KB)

• Portugal recycles 34% of the 40 kg/hab year of plastic packaging waste.

• Recycling of plastics in Portugal produces a final revenue of 167 €/t.

• Recycling and recovery must be the priority for imported wastes.

• Beach litter must be reduced from 330 to 20 items/100 m (94%) under EU goals.

• Consumption, use, and waste management of plastics need to improve.

As a European Union (EU) member, Portugal must comply with reductions in plastic waste. In Portugal, the 330 items/100 m of beach litter, comprising up to 3.9 million pieces and of which 88% is plastic, is higher than the EU median (149 items/100 m) and must be reduced to 20 items/100 m (94%). Integrative measures are needed to reduce littering and improve plastics’ use and disposal under the circular economy. Of this 414 kt of plastic packaging waste, 163 kt were declared plastic packaging, 140 kt subjected to recycling, and 94 kt to energy recovery. The current recycling rate of plastic packaging (34%) should be improved to reach EU recycling averages (42%) and goals and to provide widespread benefits, considering revenues of 167 €/t. As a net importer of waste, Portugal could benefit from the valorization of imported waste. Besides increased recycling, pyrolysis and gasification could provide short-term alternatives for producing value-added substances from plastic waste, such as hydrogen, consistent with the National Plan of Hydrogen and improving ongoing regulations on single-use plastics. This manuscript provides an integrative view of plastics in Portugal, from use to disposal, providing specific recommendations under the circular economy.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(9)
Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades
Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin
Front. Environ. Sci. Eng.    2020, 14 (5): 84-.   https://doi.org/10.1007/s11783-020-1263-8
Abstract   HTML   PDF (2055KB)

▪ Overviewed evolution and environmental applications of stabilized nanoparticles.

▪ Reviewed theories on particle stabilization for enhanced reactivity/deliverability.

▪ Examined various in situ remediation technologies based on stabilized nanoparticles.

▪ Summarized knowledge on transport of stabilized nanoparticles in porous media.

▪ Identified key knowledge gaps and future research needs on stabilized nanoparticles.

Due to improved soil deliverability and high reactivity, stabilized nanoparticles have been studied for nearly two decades for in situ remediation of soil and groundwater contaminated with organic pollutants. While large amounts of bench- and field-scale experimental data have demonstrated the potential of the innovative technology, extensive research results have also unveiled various merits and constraints associated different soil characteristics, types of nanoparticles and particle stabilization techniques. Overall, this work aims to critically overview the fundamental principles on particle stabilization, and the evolution and some recent developments of stabilized nanoparticles for degradation of organic contaminants in soil and groundwater. The specific objectives are to: 1) overview fundamental mechanisms in nanoparticle stabilization; 2) summarize key applications of stabilized nanoparticles for in situ remediation of soil and groundwater contaminated by legacy and emerging organic chemicals; 3) update the latest knowledge on the transport and fate of stabilized nanoparticles; 4) examine the merits and constraints of stabilized nanoparticles in environmental remediation applications; and 5) identify the knowledge gaps and future research needs pertaining to stabilized nanoparticles for remediation of contaminated soil and groundwater. Per instructions of this invited special issue, this review is focused on contributions from our group (one of the pioneers in the subject field), which, however, is supplemented by important relevant works by others. The knowledge gained is expected to further advance the science and technology in the environmental applications of stabilized nanoparticles.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(24)
Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals
Fei LI,Suocheng DONG,Fujia LI,Libiao YANG
Front. Environ. Sci. Eng.    2016, 10 (2): 276-287.   https://doi.org/10.1007/s11783-014-0700-y
Abstract   HTML   PDF (285KB)

As the largest contributor to water impairment, agriculture-related pollution has attracted the attention of scientists as well as policy makers, and quantitative information is being sought to focus and advance the policy debate. This study applies the panel unit root, heterogeneous panel cointegration, and panel-based dynamic ordinary least squares to investigate the Environmental Kuznets Curve on environmental issues resulting from use of agricultural synthetic fertilizer, pesticide, and film for 31 provincial economies in mainland China from 1989 to 2009. The empirical results indicate a positive long-run co-integrated relationship between the environmental index and real GDP per capita. This relationship takes on the inverted U-shaped Environmental Kuznets Curve, and the value of the turning point is approximately 10,000–13,000, 85,000–89,000 and over 160,000 CNY, for synthetic fertilizer nitrogen indicator, fertilizer phosphorus indicator and pesticide indicator, respectively. At present, China is subject to tremendous environmental pressure and should assign more importance to special agriculture-related environmental issues.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(10) WebOfScience(29)
Adsorption behavior of antibiotic in soil environment: a critical review
Shiliang WANG,Hui WANG
Front. Environ. Sci. Eng.    2015, 9 (4): 565-574.   https://doi.org/10.1007/s11783-015-0801-2
Abstract   HTML   PDF (155KB)

Antibiotics are used widely in human and veterinary medicine, and are ubiquitous in environment matrices worldwide. Due to their consumption, excretion, and persistence, antibiotics are disseminated mostly via direct and indirect emissions such as excrements, sewage irrigation, and sludge compost and enter the soil and impact negatively the natural ecosystem of soil. Most antibiotics are amphiphilic or amphoteric and ionize. A non-polar core combined with polar functional moieties makes up numerous antibiotic molecules. Because of various molecule structures, physicochemical properties vary widely among antibiotic compounds. Sorption is an important process for the environment behaviors and fate of antibiotics in soil environment. The adsorption process has decisive role for the environmental behaviors and the ultimate fates of antibiotics in soil. Multiply physicochemical properties of antibiotics induce the large variations of their adsorption behaviors. In addition, factors of soil environment such as the pH, ionic strength, metal ions, and organic matter content also strongly impact the adsorption processes of antibiotics. Review about adsorption of antibiotics on soil can provide a fresh insight into understanding the antibiotic-soil interactions. Therefore, literatures about the adsorption mechanisms of antibiotics in soil environment and the effects of environment factors on adsorption behaviors of antibiotics in soil are reviewed and discussed systematically in this review.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(42) WebOfScience(164)
Paving the way toward soil safety and health: current status, challenges, and potential solutions
Chiheng Chu, Lizhong Zhu
Front. Environ. Sci. Eng.    2024, 18 (6): 74-null.   https://doi.org/10.1007/s11783-024-1834-1
Abstract   HTML   PDF (5500KB)

● The safety and health of soil face global threats from widespread contamination.

● Tackling soil pollutions require holistic soil remediation and management.

● Big data can revolutionize contaminated soil management and remediation.

Soil is a non-renewable resource, providing a majority of the world’s food and fiber while serving as a vital carbon reservoir. However, the health of soil faces global threats from human activities, particularly widespread contamination by industrial chemicals. Existing physical, chemical, and biological remediation approaches encounter challenges in preserving soil structure and function throughout the remediation process, as well as addressing the complexities of soil contamination on a regional scale. Viable solutions encompass monitoring and simulating soil processes, with a focus on utilizing big data to bridge micro-scale and macro-scale processes. Additionally, reducing pollutant emissions to soil is paramount due to the significant challenges associated with removing contaminants once they have entered the soil, coupled with the high economic costs of remediation. Further, it is imperative to implement advanced remediation technologies, such as monitored natural attenuation, and embrace holistic soil management approaches that involve regulatory frameworks, soil health indicators, and soil safety monitoring platforms. Safeguarding the enduring health and resilience of soils necessitates a blend of interdisciplinary research, technological innovation, and collaborative initiatives.

Table and Figures | Reference | Related Articles | Metrics
Review on remediation technologies for arsenic-contaminated soil
Xiaoming Wan, Mei Lei, Tongbin Chen
Front. Environ. Sci. Eng.    2020, 14 (2): 24-.   https://doi.org/10.1007/s11783-019-1203-7
Abstract   HTML   PDF (306KB)

• Recent progress of As-contaminated soil remediation technologies is presented.

• Phytoextraction and chemical immobilization are the most widely used methods.

• Novel remediation technologies for As-contaminated soil are still urgently needed.

• Methods for evaluating soil remediation efficiency are lacking.

• Future research directions for As-contaminated soil remediation are proposed.

Arsenic (As) is a top human carcinogen widely distributed in the environment. As-contaminated soil exists worldwide and poses a threat on human health through water/food consumption, inhalation, or skin contact. More than 200 million people are exposed to excessive As concentration through direct or indirect exposure to contaminated soil. Therefore, affordable and efficient technologies that control risks caused by excess As in soil must be developed. The presently available methods can be classified as chemical, physical, and biological. Combined utilization of multiple technologies is also common to improve remediation efficiency. This review presents the research progress on different remediation technologies for As-contaminated soil. For chemical methods, common soil washing or immobilization agents were summarized. Physical technologies were mainly discussed from the field scale. Phytoextraction, the most widely used technology for As-contaminated soil in China, was the main focus for bioremediation. Method development for evaluating soil remediation efficiency was also summarized. Further research directions were proposed based on literature analysis.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(74)
Quantitative characterization of Cu binding potential of dissolved organic matter (DOM) in sediment from Taihu Lake using multiple techniques
Yuan ZHANG,Yan ZHANG,Tao YU
Front.Environ.Sci.Eng.    2014, 8 (5): 666-674.   https://doi.org/10.1007/s11783-013-0608-y
Abstract   HTML   PDF (521KB)

Dissolved organic matter (DOM) plays an important role in heavy metal speciation and distribution in the aquatic environment especially for eutrophic lakes which have higher DOM concentration. Taihu Lake is the third largest freshwater and a high eutrophic lake in the downstream of the Yangtze River, China. In the lake, frequent breakout of algae blooms greatly increased the concentration of different organic matters in the lake sediment. In this study, sediment samples were collected from various part of Taihu Lake to explore the spatial difference in the binding potential of DOM with Cu. The titration experiment was adopted to quantitatively characterize the interaction between Cu(II) and DOM extracted from Taihu Lake sediments using ion selective electrode (ISE) and fluorescence quenching technology. The ISE results showed that the exogenous DOM had higher binding ability than endogenous DOM, and DOM derived from aquatic macrophytes had a higher binding ability than that derived from algae. The fluorescence quenching results indicated that humic substances played a key role in the complexation between DOM and Cu(II) in the lake. However, because of the frequent breakout of algae blooms, protein-like matters are also main component like humic matters in Taihu Lake. Therefore, the metals bound by protein-like substances should be caused concern as protein-like substances in DOM were unstable and they will release bound metal when decomposed.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(11) WebOfScience(19)
Bacterial inactivation, DNA damage, and faster ATP degradation induced by ultraviolet disinfection
Chao Yang, Wenjun Sun, Xiuwei Ao
Front. Environ. Sci. Eng.    2020, 14 (1): 13-.   https://doi.org/10.1007/s11783-019-1192-6
Abstract   HTML   PDF (740KB)

• Long amplicon is more effective to test DNA damage induced by UV.

• ATP in bacteria does not degrade instantly but does eventually after UV exposure.

• After medium pressure UV exposure, ATP degraded faster.

The efficacy of ultraviolet (UV) disinfection has been validated in numerous studies by using culture-based methods. However, the discovery of viable but non-culturable bacteria has necessitated the investigation of UV disinfection based on bacterial viability parameters. We used quantitative polymerase chain reaction (qPCR) to investigate DNA damage and evaluated adenosine triphosphate (ATP) to indicate bacterial viability. The results of qPCR effectively showed the DNA damage induced by UV when using longer gene amplicons, in that sufficiently long amplicons of both 16S and gadA indicated that the UV induced DNA damages. The copy concentrations of the long amplicons of 16S and gadA decreased by 2.38 log/mL and 1.88 log/mL, respectively, after exposure to 40 mJ/cm2 low-pressure UV. After UV exposure, the ATP level in the bacteria did not decrease instantly. Instead it decreased gradually at a rate that was positively related to the UV fluence. For low-pressure UV, this rate of decrease was slow, but for medium pressure UV, this rate of decrease was relatively high when the UV fluence reached 40 mJ/cm2. At the same UV fluence, the ATP level in the bacteria decreased at a faster rate after exposure to medium-pressure UV.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(24)
Occurrence and migration of microplastics and plasticizers in different wastewater and sludge treatment units in municipal wastewater treatment plant
Sen Dong, Peng Gao, Benhang Li, Li Feng, Yongze Liu, Ziwen Du, Liqiu Zhang
Front. Environ. Sci. Eng.    2022, 16 (11): 142-null.   https://doi.org/10.1007/s11783-022-1577-9
Abstract   HTML   PDF (3526KB)

● Reduce the quantifying MPs time by using Nile red staining.

● The removal rate of MPs and PAEs in wastewater and sludge were investigated.

● MPs and PAEs were firstly analyzed during thermal hydrolysis treatment.

● The removal of PAEs from wastewater and sludge was mainly biodegradation.

Microplastics (MPs) and plasticizers, such as phthalate esters (PAEs), were frequently detected in municipal wastewater treatment plants (MWTP). Previous research mainly studied the removal of MPs and PAEs in wastewater. However, the occurrence of MPs and PAEs in the sludge was generally ignored. To comprehensively investigate the occurrence and the migration behaviors of MPs and PAEs in MWTP, a series of representative parameters including the number, size, color, shape of MPs, and the concentrations of PAEs in wastewater and sludge were systematically investigated. In this study, the concentrations of MPs in the influent and effluent were 15.46±0.37 and 0.30±0.14 particles/L. The MP removal efficiency of 98.1% was achieved and about 73.8% of MPs were accumulated in the sludge in the MWTP. The numbers of MPs in the sludge before and after digestion were 4.40±0.14 and 0.31±0.01 particles/g (dry sludge), respectively. Fourier Transform Infrared Spectroscopy (ATR FT-IR) analysis showed that the main types of MPs were polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), and polystyrene (PS). Six PAEs, including phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), ortho dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), and bis(2-ethyl) hexyl phthalate (DEHP), were detected in the MWTP. The concentrations of total PAEs (ΣPAEs) in the influent and effluent were 76.66 and 6.28 µg/L, respectively. The concentrations of ΣPAEs in the sludge before and after digestion were 152.64 and 31.70 µg/g, respectively. In the process of thermal hydrolysis, the number and size of MPs decreased accompanied by the increase of the plasticizer concentration.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(8)
Scientific and technological innovations of wastewater treatment in China
Hui Huang, Rui Ma, Hongqiang Ren
Front. Environ. Sci. Eng.    2024, 18 (6): 72-null.   https://doi.org/10.1007/s11783-024-1832-3
Abstract   HTML   PDF (5024KB)

● Wastewater treatment targets and processes change with demands.

● Research hotspots in wastewater treatment were described using bibliometrics.

● Five pathways for technology development were proposed.

● Material genetics, synthetic biology, artificial intelligence were highlighted.

The “dual-carbon” strategy promotes the development of the wastewater treatment sector and is an important tool for leading science and technology innovations. Based on the global climate change and the new policies introduced by China, this paper described the new needs for the development of wastewater treatment science and technology. It offered a retrospective analysis of the historical trajectory of scientific and technological advancements in this field. Utilizing bibliometrics, it delineated the research hotspots within wastewater treatment, notably highlighting materials genomics, artificial intelligence, and synthetic biology. Furthermore, it posited that, in the future, the field of wastewater treatment should follow the paths of technological innovations with multi-dimensional needs, such as carbon reduction, pollution reduction, health, standardisation, and intellectualisation. The purpose of this paper was to provide references and suggestions for scientific and technological innovations in the field of wastewater treatment, and to contribute to the common endeavor of moving toward a Pollution-Free Planet.

Table and Figures | Reference | Related Articles | Metrics
Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges and opportunities
Haiyan Yang, Shangping Xu, Derek E. Chitwood, Yin Wang
Front. Environ. Sci. Eng.    2020, 14 (5): 79-.   https://doi.org/10.1007/s11783-020-1254-9
Abstract   HTML   PDF (601KB)

• CWF is a sustainable POU water treatment method for developing areas.

• CWF manufacturing process is critical for its filtration performance.

• Simultaneous increase of flow rate and pathogen removal is a challenge.

• Control of pore size distribution holds promises to improve CWF efficiency.

• Novel coatings of CWFs are a promising method to improve contaminant removal.

Drinking water source contamination poses a great threat to human health in developing countries. Point-of-use (POU) water treatment techniques, which improve drinking water quality at the household level, offer an affordable and convenient way to obtain safe drinking water and thus can reduce the outbreaks of waterborne diseases. Ceramic water filters (CWFs), fabricated from locally sourced materials and manufactured by local labor, are one of the most socially acceptable POU water treatment technologies because of their effectiveness, low-cost and ease of use. This review concisely summarizes the critical factors that influence the performance of CWFs, including (1) CWF manufacturing process (raw material selection, firing process, silver impregnation), and (2) source water quality. Then, an in-depth discussion is presented with emphasis on key research efforts to address two major challenges of conventional CWFs, including (1) simultaneous increase of filter flow rate and bacterial removal efficiency, and (2) removal of various concerning pollutants, such as viruses and metal(loid)s. To promote the application of CWFs, future research directions can focus on: (1) investigation of pore size distribution and pore structure to achieve higher flow rates and effective pathogen removal by elucidating pathogen transport in porous ceramic and adjusting manufacture parameters; and (2) exploration of new surface modification approaches with enhanced interaction between a variety of contaminants and ceramic surfaces.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(18)
Dual-reaction-center catalytic process continues Fenton’s story
Chao Lu, Kanglan Deng, Chun Hu, Lai Lyu
Front. Environ. Sci. Eng.    2020, 14 (5): 82-.   https://doi.org/10.1007/s11783-020-1261-x
Abstract   HTML   PDF (1875KB)

• Dual-reaction-center (DRC) system breaks through bottleneck of Fenton reaction.

• Utilization of intrinsic electrons of pollutants is realized in DRC system.

• DRC catalytic process well continues Fenton’s story.

Triggered by global water quality safety issues, the research on wastewater treatment and water purification technology has been greatly developed in recent years. The Fenton technology is particularly powerful due to the rapid attack on pollutants by the generated hydroxyl radicals (•OH). However, both heterogeneous and homogeneous Fenton/Fenton-like technologies follow the classical reaction mechanism, which depends on the oxidation and reduction of the transition metal ions at single sites. So even after a century of development, this reaction still suffers from its inherent bottlenecks in practical application. In recent years, our group has been focusing on studying a novel heterogeneous Fenton catalytic process, and we developed the dual-reaction-center (DRC) system for the first time. In the DRC system, H2O2 and O2 can be efficiently reduced to reactive oxygen species (ROS) in electron-rich centers, while pollutants are captured and oxidized by the electron-deficient centers. The obtained electrons from pollutants are diverted to the electron-rich centers through bonding bridges. This process breaks through the classic Fenton mechanism, and improves the performance and efficiency of pollutant removal in a wide pH range. Here, we provide a brief overview of Fenton’s story and focus on combing the discovery and development of the DRC technology and mechanism in recent years. The construction of the DRC and its performance in the pollutant degradation and interfacial reaction process are described in detail. We look forward to bringing a new perspective to continue Fenton’s story through research and development of DRC technology.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(34)
Bioinspired and biomimetic membranes for water purification and chemical separation: A review
Elham Abaie, Limeimei Xu, Yue-xiao Shen
Front. Environ. Sci. Eng.    2021, 15 (6): 124-.   https://doi.org/10.1007/s11783-021-1412-8
Abstract   HTML   PDF (4406KB)

•The history of biological and artificial water channels is reviewed.

•A comprehensive channel characterization platform is introduced.

•Rationale designs and fabrications of biomimetic membranes are summarized.

•The advantages, limitations, and challenges of biomimetic membranes are discussed.

•The prospect and scalable solutions of biomimetic membranes are discussed.

Bioinspired and biomimetic membranes that contain biological transport channels or attain their structural designs from biological systems have been through a remarkable development over the last two decades. They take advantage of the exceptional transport properties of those channels, thus possess both high permeability and selectivity, and have emerged as a promising solution to existing membranes. Since the discovery of biological water channel proteins aquaporins (AQPs), extensive efforts have been made to utilize them to make separation membranes–AQP-based membranes, which have been commercialized. The exploration of AQPs’ unique structures and transport properties has resulted in the evolution of biomimetic separation materials from protein-based to artificial channel-based membranes. However, large-scale, defect-free biomimetic membranes are not available yet. This paper reviews the state-of-the-art biomimetic membranes and summarizes the latest research progress, platform, and methodology. Then it critically discusses the potential routes of this emerging area toward scalable applications. We conclude that an appropriate combination of bioinspired concepts and molecular engineering with mature polymer industry may lead to scalable polymeric membranes with intrinsic selective channels, which will gain the merit of both desired selectivity and scalability.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(23)
The effect of texture and irrigation on the soil moisture vertical-temporal variability in an urban artificial landscape: a case study of Olympic Forest Park in Beijing
Xiaofeng ZHANG,Xu ZHANG,Guanghe LI
Front. Environ. Sci. Eng.    2015, 9 (2): 269-278.   https://doi.org/10.1007/s11783-014-0672-y
Abstract   HTML   PDF (1845KB)

Soil moisture variability in natural landscapes has been widely studied; however, less attention has been paid to its variability in the urban landscapes with respect to the possible influence of texture stratification and irrigation management. Therefore, a case study was carried out in the Beijing Olympic Forest Park to continuously monitor the soil in three typical profiles from 26 April to 11 November 2010. The texture stratification significantly affected the vertical distribution of moisture in the non-irrigated profile where moisture was mostly below field capacity. In the profile where irrigation was sufficient to maintain moisture above field capacity, gravity flow led to increased moisture with depth and thus eliminated the influence of texture. In the non-irrigated sites, the upper layer (above 80 cm) exhibited long-term moisture persistence with the time scale approximating the average rainfall interval. However, a coarse-textured layer weakened the influence of rainfall, and a fine-textured layer weakened the influence of evapotranspiration, both of which resulted in random noise-like moisture series in the deeper layers. At the irrigated site, frequent irrigation neutralized the influence of evapotranspiration in the upper layer (above 60 cm) and overshadowed the influence of rainfall in the deeper layer. As a result, the moisture level in the upper layer also behaved as a random noise-like series; whereas due to deep transpiration, the moisture of the deep layer had a persistence time-scale longer than a month, consistent with characteristic time-scales found for deep transpiration.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(4) WebOfScience(7)
Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications
Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang
Front. Environ. Sci. Eng.    2020, 14 (2): 31-.   https://doi.org/10.1007/s11783-019-1210-8
Abstract   HTML   PDF (1520KB)

• Principles and methods for fluorescence EEM are systematically outlined.

• Fluorophore peak/region/component and energy information can be extracted from EEM.

• EEM can fingerprint the physical/chemical/biological properties of DOM in MBRs.

• EEM is useful for tracking pollutant transformation and membrane retention/fouling.

• Improvements are still needed to overcome limitations for further studies.

The membrane bioreactor (MBR) technology is a rising star for wastewater treatment. The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter (DOM) in the system. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy, a powerful tool for the rapid and sensitive characterization of DOM, has been extensively applied in MBR studies; however, only a limited portion of the EEM fingerprinting information was utilized. This paper revisits the principles and methods of fluorescence EEM, and reviews the recent progress in applying EEM to characterize DOM in MBR studies. We systematically introduced the information extracted from EEM by considering the fluorescence peak location/intensity, wavelength regional distribution, and spectral deconvolution (giving fluorescent component loadings/scores), and discussed how to use the information to interpret the chemical compositions, physiochemical properties, biological activities, membrane retention/fouling behaviors, and migration/transformation fates of DOM in MBR systems. In addition to conventional EEM indicators, novel fluorescent parameters are summarized for potential use, including quantum yield, Stokes shift, excited energy state, and fluorescence lifetime. The current limitations of EEM-based DOM characterization are also discussed, with possible measures proposed to improve applications in MBR monitoring.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(95)
Recent advances in the electrochemical oxidation water treatment: Spotlight on byproduct control
Yang Yang
Front. Environ. Sci. Eng.    2020, 14 (5): 85-.   https://doi.org/10.1007/s11783-020-1264-7
Abstract   HTML   PDF (744KB)

• Byproduct formation mechanisms during electrochemical oxidation water treatment.

• Control byproduct formation by quenchers.

• Process optimization to suppress byproduct formation.

Electrochemical oxidation (EO) is a promising technique for decentralized wastewater treatment, owing to its modular design, high efficiency, and ease of automation and transportation. The catalytic destruction of recalcitrant, non-biodegradable pollutants (per- and poly-fluoroalkyl substances (PFAS), pharmaceuticals, and personal care products (PPCPs), pesticides, etc.) is an appropriate niche for EO. EO can be more effective than homogeneous advanced oxidation processes for the degradation of recalcitrant chemicals inert to radical-mediated oxidation, because the potential of the anode can be made much higher than that of hydroxyl radicals (EOH = 2.7 V vs. NHE), forcing the direct transfer of electrons from pollutants to electrodes. Unfortunately, at such high anodic potential, chloride ions, which are ubiquitous in natural water systems, will be readily oxidized to chlorine and perchlorate. Perchlorate is a to-be-regulated byproduct, and chlorine can react with matrix organics to produce organic halogen compounds. In the past ten years, novel electrode materials and processes have been developed. However, spotlights were rarely focused on the control of byproduct formation during EO processes in a real-world context. When we use EO techniques to eliminate target contaminants with concentrations at μg/L-levels, byproducts at mg/L-levels might be produced. Is it a good trade-off? Is it possible to inhibit byproduct formation without compromising the performance of EO? In this mini-review, we will summarize the recent advances and provide perspectives to address the above questions.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(61)
Enhancing the efficiency of nitrogen removing bacterial population to a wide range of C:N ratio (1.5:1 to 14:1) for simultaneous C & N removal
Shaswati Saha, Rohan Gupta, Shradhanjali Sethi, Rima Biswas
Front. Environ. Sci. Eng.    2022, 16 (8): 101-null.   https://doi.org/10.1007/s11783-022-1522-y
Abstract   HTML   PDF (2288KB)

• Simultaneous C & N removal in Methammox occurs at wide C:N ratio.

• Biological Nitrogen Removal at wide C:N ratio of 1.5:1 to 14:1 is not reported.

• Ammonia removal shifted from mixotrophy to heterotrophy at high C:N ratio.

• Acetogenic population compensated for ammonia oxidizers at high C:N ratio.

• Methanogens increase the plasticity of nitrogen removers at high C:N ratio.

High C:N ratio in the wastewater limits biological nitrogen removal (BNR), especially in anammox based technologies. The present study attempts to improve the COD tolerance of the BNR process by associating methanogens with nitrogen removing bacterial (NRB) populations. The new microbial system coined as ‘Methammox’, was investigated for simultaneous removal of COD (C) and ammonia (N) at C:N ratio 1.5:1 to 14:1. The ammonia removal rate (11.5 mg N/g VSS/d) and the COD removal rates (70.6 mg O/g VSS/d) of Methammox was close to that of the NRB (11.1 mg N/g VSS/d) and the methanogenic populations (77.9 mg O/g VSS/d), respectively. The activities established that these two populations existed simultaneously and independently in ‘Methammox’. Further studies in biofilm reactor fetched a balanced COD and ammonia removal (55%–60%) at a low C:N ratio (≤2:1) and high C:N ratio (≥9:1). The population abundance of methanogens was reasonably constant, but the nitrogen removal shifted from mixotrophy to heterotrophy as the C:N ratio shifted from low (C:N≤2:1) to high (C:N≥9:1). The reduced autotrophic NRB (ammonia- and nitrite-oxidizing bacteria and Anammox) population at a high C:N ratio was compensated by the fermentative group that could carry out denitrification heterotrophically. The functional plasticity of the Methammox system to adjust to a broad C:N ratio opens new frontiers in biological nitrogen removal of high COD containing wastewaters.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(3)
Effect of nitrobenzene on the performance and bacterial community in an expanded granular sludge bed reactor treating high-sulfate organic wastewater
Jun Li, Wentao Li, Gan Luo, Yan Li, Aimin Li
Front. Environ. Sci. Eng.    2019, 13 (1): 6-.   https://doi.org/10.1007/s11783-019-1090-y
Abstract   HTML   PDF (1066KB)

Less than 50 mg/L nitrobenzene brought little effect on anaerobic sulfate reduction.

Kinetics of sulfate reduction under different nitrobenzene contents was studied.

Increased nitrobenzene contents greatly changed the bacterial community structure.

Genus Desulfovibrio played the key role in anaerobic sulfate reduction process.

Nitrobenzene (NB) is frequently found in wastewaters containing sulfate and may affect biological sulfate reduction process, but information is limited on the responses of sulfate reduction efficiency and microbial community to the increased NB contents. In this study, a laboratory-scale expanded granular sludge bed reactor was operated continuously to treat high-sulfate organic wastewater with increased NB contents. Results successfully demonstrated that the presence of more than 50 mg/L NB depressed sulfate reduction and such inhibition was partly reversible. Bath experiments showed that the maximum specific desulfuration activity (SDA) decreased from 135.80 mg SO42?/gVSS/d to 30.78 mg SO42?/gVSS/d when the NB contents increased from none to 400 mg/L. High-throughput sequencing showed that NB also greatly affected bacterial community structure. Bacteroidetes dominated in the bioreactor. The abundance of Proteobacteria increased with NB addition while Firmicutes presented an opposite trend. Proteobacteria gradually replaced Firmicutes for the dominance in response to the increase of influent NB concentrations. The genus Desulfovibrio was the dominant sulfate-reducing bacteria (SRB) with absence or presence of NB, but was inhibited under high content of NB. The results provided better understanding for the biological sulfate reduction under NB stress.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(1) WebOfScience(11)
Biofiltration and disinfection codetermine the bacterial antibiotic resistome in drinking water: A review and meta-analysis
Kun Wan, Wenfang Lin, Shuai Zhu, Shenghua Zhang, Xin Yu
Front. Environ. Sci. Eng.    2020, 14 (1): 10-.   https://doi.org/10.1007/s11783-019-1189-1
Abstract   HTML   PDF (1315KB)

• Published data was used to analyze the fate of ARGs in water treatment.

• Biomass removal leads to the reduction in absolute abundance of ARGs.

• Mechanism that filter biofilm maintain ARB/ARGs was summarized.

• Potential BAR risks caused by biofiltration and chlorination were proposed.

The bacterial antibiotic resistome (BAR) is one of the most serious contemporary medical challenges. The BAR problem in drinking water is receiving growing attention. In this study, we focused on the distribution, changes, and health risks of the BAR throughout the drinking water treatment system. We extracted the antibiotic resistance gene (ARG) data from recent publications and analyzed ARG profiles based on diversity, absolute abundance, and relative abundance. The absolute abundance of ARG was found to decrease with water treatment processes and was positively correlated with the abundance of 16S rRNA (r2 = 0.963, p<0.001), indicating that the reduction of ARG concentration was accompanied by decreasing biomass. Among treatment processes, biofiltration and chlorination were discovered to play important roles in shaping the bacterial antibiotic resistome. Chlorination exhibited positive effects in controlling the diversity of ARG, while biofiltration, especially granular activated carbon filtration, increased the diversity of ARG. Both biofiltration and chlorination altered the structure of the resistome by affecting relative ARG abundance. In addition, we analyzed the mechanism behind the impact of biofiltration and chlorination on the bacterial antibiotic resistome. By intercepting influent ARG-carrying bacteria, biofilters can enrich various ARGs and maintain ARGs in biofilm. Chlorination further selects bacteria co-resistant to chlorine and antibiotics. Finally, we proposed the BAR health risks caused by biofiltration and chlorination in water treatment. To reduce potential BAR risk in drinking water, membrane filtration technology and water boiling are recommended at the point of use.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(16)
Recent advances, challenges, and perspectives on carbon capture
Shihan Zhang, Yao Shen, Chenghang Zheng, Qianqian Xu, Yifang Sun, Min Huang, Lu Li, Xiongwei Yang, Hao Zhou, Heliang Ma, Zhendong Li, Yuanhang Zhang, Wenqing Liu, Xiang Gao
Front. Environ. Sci. Eng.    2024, 18 (6): 75-null.   https://doi.org/10.1007/s11783-024-1835-0
Abstract   HTML   PDF (11128KB)

�?Recent advances in promising CCUS technologies are assessed.

�?Research status and trends in CCUS are visually analyzed.

�?Carbon capture remains a hotspot of CCUS research.

�?State-of-the-art capture technologies is summarized.

�?Perspective research of carbon capture is proposed

Carbon capture, utilization and storage (CCUS) technologies play an essential role in achieving Net Zero Emissions targets. Considering the lack of timely reviews on the recent advancements in promising CCUS technologies, it is crucial to provide a prompt review of the CCUS advances to understand the current research gaps pertained to its industrial application. To that end, this review first summarized the developmental history of CCUS technologies and the current large-scale demonstrations. Then, based on a visually bibliometric analysis, the carbon capture remains a hotspot in the CCUS development. Noting that the materials applied in the carbon capture process determines its performance. As a result, the state-of-the-art carbon capture materials and emerging capture technologies were comprehensively summarized and discussed. Gaps between state-of-art carbon capture process and its ideal counterpart are analyzed, and insights into the research needs such as material design, process optimization, environmental impact, and technical and economic assessments are provided.

Table and Figures | Reference | Related Articles | Metrics
Quorum sensing regulation methods and their effects on biofilm in biological waste treatment systems: A review
Zhuqiu Sun, Jinying Xi, Chunping Yang, Wenjie Cong
Front. Environ. Sci. Eng.    2022, 16 (7): 87-.   https://doi.org/10.1007/s11783-021-1495-2
Abstract   HTML   PDF (487KB)

• Quorum sensing enhancement and inhibition methods are summarized.

• Effects of quorum sensing regulation on biofilm are reviewed.

• Current knowledge gaps and research challenges are proposed.

Quorum sensing (QS) plays an important role in microbial aggregation control. Recently, the optimization of biological waste treatment systems by QS regulation gained an increasing attention. The effects of QS regulation on treatment performances and biofilm were frequently investigated. To understand the state of art of QS regulation, this review summarizes the methods of QS enhancement and QS inhibition in biological waste treatment systems. Typical QS enhancement methods include adding exogenous QS molecules, adding QS accelerants and cultivating QS bacteria, while typical QS inhibition methods include additions of quorum quenching (QQ) bacteria, QS-degrading enzymes, QS-degrading oxidants, and QS inhibitors. The specific improvements after applying these QS regulation methods in different treatment systems are concluded. In addition, the effects of QS regulation methods on biofilm in biological waste treatment systems are reviewed in terms of biofilm formation, extracellular polymeric substances production, microbial viability, and microbial community. In the end, the knowledge gaps in current researches are analyzed, and the requirements for future study are suggested.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(33)
Characteristics of plankton Hg bioaccumulations based on a global data set and the implications for aquatic systems with aggravating nutrient imbalance
Zhike Li, Jie Chi, Zhenyu Wu, Yiyan Zhang, Yiran Liu, Lanlan Huang, Yiren Lu, Minhaz Uddin, Wei Zhang, Xuejun Wang, Yan Lin, Yindong Tong
Front. Environ. Sci. Eng.    2022, 16 (3): 37-null.   https://doi.org/10.1007/s11783-021-1471-x
Abstract   HTML   PDF (1554KB)

• Hg bioaccumulation by phytoplankton varies among aquatic ecosystems.

• Active Hg uptake may exist for the phytoplankton in aquatic ecosystems.

• Impacts of nutrient imbalance on food chain Hg transfer should be addressed.

The bioaccumulation of mercury (Hg) in aquatic ecosystem poses a potential health risk to human being and aquatic organism. Bioaccumulations by plankton represent a crucial process of Hg transfer from water to aquatic food chain. However, the current understanding of major factors affecting Hg accumulation by plankton is inadequate. In this study, a data set of 89 aquatic ecosystems worldwide, including inland water, nearshore water and open sea, was established. Key factors influencing plankton Hg bioaccumulation (i.e., plankton species, cell sizes and biomasses) were discussed. The results indicated that total Hg (THg) and methylmercury (MeHg) concentrations in plankton in inland waters were significantly higher than those in nearshore waters and open seas. Bioaccumulation factors for the logarithm of THg and MeHg of phytoplankton were 2.4–6.0 and 2.6–6.7 L/kg, respectively, in all aquatic ecosystems. They could be further biomagnified by a factor of 2.1–15.1 and 5.3–28.2 from phytoplankton to zooplankton. Higher MeHg concentrations were observed with the increases of cell size for both phyto- and zooplankton. A contrasting trend was observed between the plankton biomasses and BAFMeHg, with a positive relationship for zooplankton and a negative relationship for phytoplankton. Plankton physiologic traits impose constraints on the rates of nutrients and contaminants obtaining process from water. Nowadays, many aquatic ecosystems are facing rapid shifts in nutrient compositions. We suggested that these potential influences on the growth and composition of plankton should be incorporated in future aquatic Hg modeling and ecological risk assessments.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(9)
An antibiotic composite electrode for improving the sensitivity of electrochemically active biofilm biosensor
Shuyi Wang, Xiang Qi, Yong Jiang, Panpan Liu, Wen Hao, Jinbin Han, Peng Liang
Front. Environ. Sci. Eng.    2022, 16 (8): 97-null.   https://doi.org/10.1007/s11783-022-1518-7
Abstract   HTML   PDF (1512KB)

• Antibiotic azithromycin employed in graphite electrode for EAB biosensor.

• Azithromycin at 0.5% dosage increased the sensitivity for toxic formaldehyde.

• Azithromycin increased the relative abundance of Geobacter.

• Azithromycin regulated thickness of electroactive biofilm.

Extensive research has been carried out for improved sensitivity of electroactive biofilm-based sensor (EAB-sensor), which is recognized as a useful tool in water quality early-warning. Antibiotic that is employed widely to treat infection has been proved feasible in this study to regulate the EAB and to increase the EAB-biosensor’s sensitivity. A novel composite electrode was prepared using azithromycin (AZM) and graphite powder (GP), namely AZM@GP electrode, and was employed as the anode in EAB-biosensor. Different dosages of AZM, i.e., 2 mg, 4 mg, and 8 mg, referred to as 0.25%, 0.5% and 1% AZM@GP were under examination. Results showed that EAB-biosensor was greatly benefited from appropriate dosage of AZM (0.5% AZM@GP) with reduced start-up time period, comparatively higher voltage output, more readable electrical signal and increased inhibition rate (30%-65% higher than control sensor with GP electrode) when exposing to toxic formaldehyde. This may be attributed to the fact that AZM inhibited the growth of non-EAM without much influence on the physiologic or metabolism activities of EAM under proper dosage. Further investigation of the biofilm morphology and microbial community analysis suggested that the biofilm formation was optimized with reduced thickness and enriched Geobacter with 0.5% AZM@GP dosage. This novel electrode is easily fabricated and equipped, and therefore would be a promising way to facilitate the practical application of EAB-sensors.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(6)
Redox reactions of iron and manganese oxides in complex systems
Jianzhi Huang, Huichun Zhang
Front. Environ. Sci. Eng.    2020, 14 (5): 76-.   https://doi.org/10.1007/s11783-020-1255-8
Abstract   HTML   PDF (1089KB)

• Mechanisms of redox reactions of Fe- and Mn-oxides were discussed.

• Oxidative reactions of Mn- and Fe-oxides in complex systems were reviewed.

• Reductive reaction of Fe(II)/iron oxides in complex systems was examined.

• Future research on examining the redox reactivity in complex systems was suggested.

Conspectus Redox reactions of Fe- and Mn-oxides play important roles in the fate and transformation of many contaminants in natural environments. Due to experimental and analytical challenges associated with complex environments, there has been a limited understanding of the reaction kinetics and mechanisms in actual environmental systems, and most of the studies so far have only focused on simple model systems. To bridge the gap between simple model systems and complex environmental systems, it is necessary to increase the complexity of model systems and examine both the involved interaction mechanisms and how the interactions affected contaminant transformation. In this Account, we primarily focused on (1) the oxidative reactivity of Mn- and Fe-oxides and (2) the reductive reactivity of Fe(II)/iron oxides in complex model systems toward contaminant degradation. The effects of common metal ions such as Mn2+ , Ca2+, Ni2+, Cr3+ and Cu2+, ligands such as small anionic ligands and natural organic matter (NOM), and second metal oxides such as Al, Si and Ti oxides on the redox reactivity of the systems are briefly summarized.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(31)
Influences and mechanisms of nanofullerene on the horizontal transfer of plasmid-encoded antibiotic resistance genes between E. coli strains
Qingkun Ji, Caihong Zhang, Dan Li
Front. Environ. Sci. Eng.    2020, 14 (6): 108-.   https://doi.org/10.1007/s11783-020-1287-0
Abstract   HTML   PDF (1595KB)

• Sub-inhibitory levels of nC60 promote conjugative transfer of ARGs.

• nC60 can induce ROS generation, oxidative stress and SOS response.

• nC60 can increase cell membrane permeability and alter gene expression.

• Results provide evidence of nC60 promoting antibiotic resistance dissemination.

The spread and development of antibiotic resistance globally have led to severe public health problems. It has been shown that some non-antibiotic substances can also promote the diffusion and spread of antibiotic resistance genes (ARGs). Nanofullerene (nC60) is a type of nanomaterial widely used around the world, and some studies have discovered both the biological toxicity and environmental toxicity of nC60. In this study, cellular and molecular biology techniques were employed to investigate the influences of nC60 at sub-minimum inhibitory concentrations (sub-MICs) on the conjugation of ARGs between the E. coli strains. Compared with the control group, nC60 significantly increased the conjugation rates of ARGs by 1.32‒10.82 folds within the concentration range of 7.03‒1800 mg/L. This study further explored the mechanism of this phenomenon, finding that sub-MICs of nC60 could induce the production of reactive oxygen species (ROS), trigger SOS-response and oxidative stress, affect the expression of outer membrane proteins (OMPs) genes, increase membrane permeability, and thus promote the occurrence of conjugation. This research enriches our understanding of the environmental toxicity of nC60, raises our risk awareness toward nC60, and may promote the more rational employment of nC60 materials.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(10)
Impacts of methanol fuel on vehicular emissions: A review
Chung Song Ho, Jianfei Peng, UnHyok Yun, Qijun Zhang, Hongjun Mao
Front. Environ. Sci. Eng.    2022, 16 (9): 121-null.   https://doi.org/10.1007/s11783-022-1553-4
Abstract   HTML   PDF (2940KB)

● Methanol effectively reduces CO, HC, CO2, PM, and PN emissions of gasoline vehicles.

● Elemental composition of methanol directly affects the reduction of emissions.

● Several physicochemical properties of methanol help reduce vehicle emissions.

The transport sector is a significant energy consumer and a major contributor to urban air pollution. At present, the substitution of cleaner fuel is one feasible way to deal with the growing energy demand and environmental pollution. Methanol has been recognized as a good alternative to gasoline due to its good combustion performance. In the past decades, many studies have investigated exhaust emissions using methanol-gasoline blends. However, the conclusions derived from different studies vary significantly, and the explanations for the effects of methanol blending on exhaust emissions are also inconsistent. This review summarizes the characteristics of CO, HC, NOx, CO2, and particulate emissions from methanol-gasoline blended fuels and pure methanol fuel. CO, HC, CO2, particle mass (PM), and particle number (PN) emissions decrease when methanol-blended fuel is used in place of gasoline fuel. NOx emission either decreases or increases depending on the test conditions, i.e., methanol content. Furthermore, this review synthesizes the mechanisms by which methanol-blended fuel influences pollutant emissions. This review provides insight into the pollutant emissions from methanol-blended fuel, which will aid policymakers in making energy strategy decisions that take urban air pollution, climate change, and energy security into account.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(9)
Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins
Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li
Front. Environ. Sci. Eng.    2020, 14 (1): 9-.   https://doi.org/10.1007/s11783-019-1188-2
Abstract   HTML   PDF (1873KB)

• Explaintheadsorption, uptake and transmembrane transport of PAHs by bacteria.

• Analyze functional regulation of membrane proteins inthe transmembrane transport.

• Proteomics technology such as iTRAQ labeling was used to access expressed proteins.

• Single cell analysis technology wereused to study the morphological structure.

In recent years, increasing research has been conducted on transmembrane transport processes and the mechanisms behind the microbial breakdown of polycyclic aromatic hydrocarbons (PAHs), including the role of membrane proteins in transmembrane transport and the mode of transmission. This article explains the adsorption, uptake and transmembrane transport of PAHs by bacteria, the regulation of membrane protein function during the transmembrane transport. There are three different regulation mechanisms for uptake, depending on the state and size of the oil droplets relative to the size of the microbial cells, which are (i) direct adhesion, (ii) emulsification and pseudosolubilization, and (iii) interfacial uptake. Furthermore, two main transmembrane transport modes are introduced, which are (i) active transport and (ii) passive uptake and active efflux mechanism. Meanwhile, introduce the proteomics and single cell analysis technology used to address these areas of research, such as Isobaric tags for relative and absolute quantitation (iTRAQ) technology and Nano Secondary ion mass spectrometry (Nano-SIMS). Additionally, analyze the changes in morphology and structure and the characteristics of microbial cell membranes in the process of transmembrane transport. Finally, recognize the microscopic mechanism of PAHs biodegradation in terms of cell and membrane proteins are of great theoretical and practical significance for understanding the factors that influence the efficient degradation of PAHs contaminants in soil and for remediating the PAHs contamination in this area with biotechnology.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(21)
Cadmium removal mechanistic comparison of three Fe-based nanomaterials: Water-chemistry and roles of Fe dissolution
Xiaoge Huang, Lihao Chen, Ziqi Ma, Kenneth C. Carroll, Xiao Zhao, Zailin Huo
Front. Environ. Sci. Eng.    2022, 16 (12): 151-null.   https://doi.org/10.1007/s11783-022-1586-8
Abstract   HTML   PDF (17714KB)

● nZVI, S-nZVI, and nFeS were systematically compared for Cd(II) removal.

● Cd(II) removal by nZVI involved coprecipitation, complexation, and reduction.

● The predominant reaction for Cd(II) removal by S-nZVI and nFeS was replacement.

● A simple pseudo-second-order kinetic can adequately fit Fe(II) dissolution.

Cadmium (Cd) is a common toxic heavy metal in the environment. Taking Cd(II) as a target contaminant, we systematically compared the performances of three Fe-based nanomaterials (nano zero valent iron, nZVI; sulfidated nZVI, S-nZVI; and nano FeS, nFeS) for Cd immobilization under anaerobic conditions. Effects of nanomaterials doses, initial pH, co-existing ions, and humic acid (HA) were examined. Under identical conditions, at varied doses or initial pH, Cd(II) removal by three materials followed the order of S-nZVI > nFeS > nZVI. At pH 6, the Cd(II) removal within 24 hours for S-nZVI, nFeS, and nZVI (dose of 20 mg/L) were 93.50%, 89.12% and 4.10%, respectively. The fast initial reaction rate of nZVI did not lead to a high removal capacity. The Cd removal was slightly impacted or even improved with co-existing ions (at 50 mg/L or 200 mg/L) or HA (at 2 mg/L or 20 mg/L). Characterization results revealed that nZVI immobilized Cd through coprecipitation, surface complexation, and reduction, whereas the mechanisms for sulfidated materials involved replacement, coprecipitation, and surface complexation, with replacement as the predominant reaction. A strong linear correlation between Cd(II) removal and Fe(II) dissolution was observed, and we proposed a novel pseudo-second-order kinetic model to simulate Fe(II) dissolution.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(9)
Municipal wastewater treatment in China: Development history and future perspectives
Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong
Front. Environ. Sci. Eng.    2019, 13 (6): 88-.   https://doi.org/10.1007/s11783-019-1172-x
Abstract   HTML   PDF (1489KB)

The history of China’s municipal wastewater management is revisited.

The remaining challenges in wastewater sector in China are identified.

New concept municipal wastewater treatment plants are highlighted.

An integrated plant of energy, water and fertilizer recovery is envisaged.

China has the world’s largest and still growing wastewater sector and water market, thus its future development will have profound influence on the world. The high-speed development of China’s wastewater sector over the past 40 years has forged its global leading treatment capacity and innovation ability. However, many problems were left behind, including underdeveloped sewers and sludge disposal facilities, low sustainability of the treatment processes, questionable wastewater treatment plant (WWTP) effluent discharge standards, and lacking global thinking on harmonious development between wastewater management, human society and the nature. Addressing these challenges calls for fundamental changes in target design, policy and technologies. In this mini-review, we revisit the development history of China’s municipal wastewater management and identify the remaining challenges. Also, we highlight the future needs of sustainable development and exploring China’s own wastewater management path, and outlook the future from several aspects including targets of wastewater management, policies and technologies, especially the new concept WWTP. Furthermore, we envisage the establishment of new-generation WWTPs with the vision of turning WWTP from a site of pollutant removal into a plant of energy, water and fertilizer recovery and an integrated part urban ecology in China.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(244)
(Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration
Wenlu Li, John D. Fortner
Front. Environ. Sci. Eng.    2020, 14 (5): 77-.   https://doi.org/10.1007/s11783-020-1256-7
Abstract   HTML   PDF (1189KB)

• The fabrication of monodisperse, (super)paramagnetic nanoparticles is summarized.

• Monolayer and bilayer surface coating structures are described.

• Mono/bilayer coated nanoparticles showed high sorption capacities for U, As, and Cr.

Over the past few decades, engineered, (super)paramagnetic nanoparticles have drawn extensive research attention for a broad range of applications based on their tunable size and shape, surface chemistries, and magnetic properties. This review summaries our recent work on the synthesis, surface modification, and environmental application of (super)paramagnetic nanoparticles. By utilizing high-temperature thermo-decomposition methods, first, we have broadly demonstrated the synthesis of highly monodispersed, (super)paramagnetic nanoparticles, via the pyrolysis of metal carboxylate salts in an organic phase. Highly uniform magnetic nanoparticles with various size, composition, and shape can be precisely tuned by controlled reaction parameters, such as the initial precursors, heating rate, final reaction temperature, reaction time, and the additives. These materials can be further rendered water stable via functionalization with surface mono/bi-layer coating structure using a series of tunable ionic/non-ionic surfactants. Finally, we have demonstrated platform potential of these materials for heavy metal ions sensing, sorption, and separation from the aqueous phase.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(18)