Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (2) : 91-95    https://doi.org/10.15302/J-FASE-2014005
LETTER
Genome-wide association study of the backfat thickness trait in two pig populations
Dandan ZHU1,Xiaolei LIU1,Rothschild MAX2,Zhiwu ZHANG3,Shuhong ZHAO1,Bin FAN1,*()
1. Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
2. Department of Animal Science, Iowa State University, Ames, IA 50011, USA
3. Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
 Download: PDF(557 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Backfat thickness is a good predictor of carcass lean content, an economically important trait, and a main breeding target in pig improvement. In this study, the candidate genes and genomic regions associated with the tenth rib backfat thickness trait were identified in two independent pig populations, using a genome-wide association study of porcine 60K SNP genotype data applying the compressed mixed linear model (CMLM) statistical method. For each population, 30 most significant single-nucleotide polymorphisms (SNPs) were selected and SNP annotation implemented using Sus scrofa Build 10.2. In the first population, 25 significant SNPs were distributed on seven chromosomes, and SNPs on SSC1 and SSC7 showed great significance for fat deposition. The most significant SNP (ALGA0006623) was located on SSC1, upstream of the MC4R gene. In the second population, 27 significant SNPs were recognized by annotation, and 12 SNPs on SSC12 were related to fat deposition. Two haplotype blocks, M1GA0016251-MARC0075799 and ALGA0065251-MARC0014203-M1GA0016298-ALGA0065308, were detected in significant regions where the PIPNC1 and GH1 genes were identified as contributing to fat metabolism. The results indicated that genetic mechanism regulating backfat thickness is complex, and that genome-wide associations can be affected by populations with different genetic backgrounds.

Keywords backfat thickness      SNP chip      genome-wide association study      compressed mixed linear model      pig     
Corresponding Author(s): Bin FAN   
Online First Date: 22 September 2014    Issue Date: 10 October 2014
 Cite this article:   
Dandan ZHU,Xiaolei LIU,Rothschild MAX, et al. Genome-wide association study of the backfat thickness trait in two pig populations[J]. Front. Agr. Sci. Eng. , 2014, 1(2): 91-95.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014005
https://academic.hep.com.cn/fase/EN/Y2014/V1/I2/91
Fig.1  Cluster analysis plotted by first versus second principal components (PC) for the two pig populations
Fig.2  Manhattan plots of genome-wide association studies with tenth rib backfat thickness in two pig populations. (a) Pots for population 1; (b)?plots for population 2. SNPs on each chromosome are labeled with a different color on the X-axis as indicated, and the Y-axis is the negative log base 10 of the P-values. SNPs with tighter associations with the trait will have a larger Y-coordinate value.
Fig.3  Haplotypes on a 1.78 Mb region on SSC12 containing all the significant SNPs associated with tenth rib backfat thickness for pigs in Population 2 obtained with the HAPLOVIEW program. The solid lines indicate the two blocks identified.
1 Kim K S, Larsen N, Short T, Plastow G, Rothschild M F. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mammalian Genome, 2000, 11(2): 131–135
https://doi.org/10.1007/s003350010025 pmid: 10656927
2 Fan B, Du Z Q, Rothschild M F. The fat mass and obesity-associated (FTO) gene is associated with intramuscular fat content and growth rate in the pig. Animal Biotechnology, 2009, 20(2): 58–70
https://doi.org/10.1080/10495390902800792 pmid: 19370455
3 Bidanel J P, Milan D, Iannuccelli N, Amigues Y, Boscher M Y, Bourgeois F, Caritez J C, Gruand J, Le Roy P, Lagant H, Quintanilla R, Renard C, Gellin J, Ollivier L, Chevalet C. Detection of quantitative trait loci for growth and fatness in pigs. Genetics Selection Evolution, 2001, 33(3): 289–309
https://doi.org/10.1186/1297-9686-33-3-289 pmid: 11403749
4 Malek M, Dekkers J C, Lee H K, Baas T J, Rothschild M F. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition. Mammalian Genome, 2001, 12(8): 630–636
https://doi.org/10.1007/s003350020018 pmid: 11471058
5 Ramos A M, Crooijmans R P, Affara N A, Amaral A J, Archibald A L, Beever J E, Bendixen C, Churcher C, Clark R, Dehais P, Hansen M S, Hedegaard J, Hu Z L, Kerstens H H, Law A S, Megens H J, Milan D, Nonneman D J, Rohrer G A, Rothschild M F, Smith T P, Schnabel R D, Van Tassell C P, Taylor J F, Wiedmann R T, Schook L B, Groenen M A. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS ONE, 2009, 4(8): e6524
https://doi.org/10.1371/journal.pone.0006524 pmid: 19654876
6 Do D N, Ostersen T, Strathe A B, Mark T, Jensen J, Kadarmideen H N. Genome-wide association and systems genetic analyses of residual feed intake, daily feed consumption, backfat and weight gain in pigs. BMC Genetics, 2014, 15(1): 27
https://doi.org/10.1186/1471-2156-15-27 pmid: 24533460
7 Fan B, Onteru S K, Du Z Q, Garrick D J, Stalder K J, Rothschild M F. Genome-wide association study identifies Loci for body composition and structural soundness traits in pigs. PLoS ONE, 2011, 6(2): e14726
https://doi.org/10.1371/journal.pone.0014726 pmid: 21383979
8 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, de Bakker P I, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, 81(3): 559–575
https://doi.org/10.1086/519795 pmid: 17701901
9 Zhang Z, Ersoz E, Lai C Q, Todhunter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J, Arnett D K, Ordovas J M, Buckler E S. Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 2010, 42(4): 355–360
https://doi.org/10.1038/ng.546 pmid: 20208535
10 Pearson T A, Manolio T A. How to interpret a genome-wide association study. The Journal of the American Medical Association, 2008, 299(11): 1335–1344
https://doi.org/10.1001/jama.299.11.1335 pmid: 18349094
11 Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21(2): 263–265
https://doi.org/10.1093/bioinformatics/bth457 pmid: 15297300
12 Li M, Wu H, Luo Z, Xia Y, Guan J, Wang T, Gu Y, Chen L, Zhang K, Ma J, Liu Y, Zhong Z, Nie J, Zhou S, Mu Z, Wang X, Qu J, Jing L, Wang H, Huang S, Yi N, Wang Z, Xi D, Wang J, Yin G, Wang L, Li N, Jiang Z, Lang Q, Xiao H, Jiang A, Zhu L, Jiang Y, Tang G, Mai M, Shuai S, Li N, Li K, Wang J, Zhang X, Li Y, Chen H, Gao X, Plastow G S, Beck S, Yang H, Wang J, Wang J, Li X, Li R. An atlas of DNA methylomes in porcine adipose and muscle tissues. Nature Communications, 2012, 3: 850
https://doi.org/10.1038/ncomms1854 pmid: 22617290
13 Yue G, Stratil A, Cepica S, Schr?ffel JJr, Schr?ffelova D, Fontanesi L, Cagnazzo M, Moser G, Bartenschlager H, Reiner G, Geldermann H. Linkage and QTL mapping for Sus scrofa chromosome 7. Journal of Animal Breeding and Genetics, 2003, 120(s1): 56–65
https://doi.org/10.1046/j.0931-2668.2003.00424.x
14 Mu?oz M, Alves E, Corominas J, Folch J M, Casellas J, Noguera J L, Silió L, Fernández A I. Survey of SSC12 regions affecting fatty acid composition of intramuscular fat using high-density SNP data. Frontiers in Genetics, 2011, 2: 101
pmid: 22303395
15 Wabitsch M. Overweight and obesity in European children: definition and diagnostic procedures, risk factors and consequences forlater health outcome. European Journal of Pediatrics, 2000, 159(S1): S8–S13
https://doi.org/10.1007/PL00014368 pmid: 10653322
[1] Ruigao SONG, Yu WANG, Yanfang WANG, Jianguo ZHAO. Base editing in pigs for precision breeding[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 161-170.
[2] Chris PROUDFOOT, Gus MCFARLANE, Bruce WHITELAW, Simon LILLICO. Livestock breeding for the 21st century: the promise of the editing revolution[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 129-135.
[3] Caiyun LIU, Francisco PINTO, C. Mariano COSSANI, Sivakumar SUKUMARAN, Matthew P. REYNOLDS. Spectral reflectance indices as proxies for yield potential and heat stress tolerance in spring wheat: heritability estimates and marker-trait associations[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 296-308.
[4] Ning WANG, Sile WANG, Yaxian WANG, Yuanxing CAI, Fan YANG, Huayan WANG. SALL4 maintains self-renewal of porcine pluripotent stem cells through downregulation of OTX2[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 81-92.
[5] Yong JIN, Manling ZHANG, Xinrong JU, Shuang LIANG, Qiang XIONG, Lihua ZHAO, Xiaowei NIE, Daorong HOU, Qiang LIU, Junzheng WANG, Chenyu WANG, Xiaokang LI, Lining ZHANG, Xiaorui LIU, Ying WANG, Haiyuan YANG, Yifan DAI, Rongfeng LI. Factors influencing the somatic cell nuclear transfer efficiency in pigs[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 73-80.
[6] Jianwen CHEN, Kaiyuan PAN, Zhen CHEN, Biao DING, Dandan SONG, Wenbin BAO, Yunhai ZHANG. Construction of multiple shRNA vectors targeting PEDV and TGEV and production of transgenic SCNT porcine embryos in vitro[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 66-72.
[7] Chengcheng ZHAO, Junsong SHI, Rong ZHOU, Ranbiao MAI, Lvhua LUO, Xiaoyan HE, Hongmei JI, Gengyuan CAI, Dewu LIU, Enqin ZHENG, Zhenfang WU, Zicong LI. Effects of enucleation method on in vitro and in vivo development rate of cloned pig embryos[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 61-65.
[8] Zheng AO, Chengfa ZHAO, Yanmin GAN, Xiao WU, Junsong SHI, Enqin ZHENG, Dewu LIU, Gengyuan CAI, Zhenfang WU, Zicong LI. Comparison of birth weight and umbilical and placental characteristics of cloned and artificial insemination-derived piglets[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 54-60.
[9] Jianyong HAN, Yi-Liang MIAO, Jinlian HUA, Yan LI, Xue ZHANG, Jilong ZHOU, Na LI, Ying ZHANG, Jinying ZHANG, Zhonghua LIU. Porcine pluripotent stem cells: progress, challenges and prospects[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 8-27.
[10] Qijing LEI, Qin PAN, Shuai YU, Na LI, Shulin CHEN, Kuldip SIDHU, Jinlian HUA. Reprogramming of the pig primordial germ cells into pluripotent stem cells: a brief review[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 28-32.
[11] Lei CHEN, Shilin TIAN, Long JIN, Zongyi GUO, Dan ZHU, Lan JING, Tiandong CHE, Qianzi TANG, Siqing CHEN, Liang ZHANG, Tinghuan ZHANG, Zuohua LIU, Jinyong WANG, Mingzhou LI. Genome-wide analysis reveals selection for Chinese Rongchang pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 319-326.
[12] Haiyan WANG, Qiaoxia ZHANG, Lilin YIN, Xiangdong LIU, Shuhong ZHAO, Mengjin ZHU, Changchun LI. Transcriptomic basis of neutrophil ratio variation induced by poly I:C stimulation in porcine peripheral blood[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 342-352.
[13] Longchao ZHANG, Jingwei YUE, Xin LIU, Jing LIANG, Kebin ZHAO, Hua YAN, Na LI, Lei PU, Yuebo ZHANG, Huibi SHI, Ligang WANG, Lixian WANG. Genome-wide search for candidate genes determining vertebrae number in pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 327-334.
[14] Xingwang WANG, Rongrong DING, Jianping QUAN, Linxue YANG, Ming YANG, Enqin ZHENG, Dewu LIU, Gengyuan CAI, Zhenfang WU, Jie YANG. Genome-wide association analysis reveals genetic loci and candidate genes associated with intramuscular fat in Duroc pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 335-341.
[15] Wen LUO, Bahareldin A. ABDALLA, Qinghua NIE, Xiquan ZHANG. The genetic regulation of skeletal muscle development: insights from chicken studies[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 295-304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed