Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2015, Vol. 2 Issue (4) : 311-317    https://doi.org/10.15302/J-FASE-2015075
RESEARCH ARTICLE
The microRNA, miR-29c, participates in muscle development through targeting the YY1 gene and is associated with postmortem muscle pH in pigs
Weiya ZHANG1,Wei WEI1,2,Yuanyuan ZHAO1,Shuhong ZHAO1,Xinyun LI1,*()
1. Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
2. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
 Download: PDF(480 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Previous studies indicated that miR-29c is important for muscle development in mice and human, but its role in pigs is unknown. In this study, we detected the expression of miR-29c in Meishan longissimus lumborum (LL) muscle. The results showed that miR-29c was gradually upregulated during development of skeletal muscle in pig. Moreover, the expression of YY1 and Akt3 genes, which were confirmed to be targeted by miR-29c in mice, was decreased along with muscle development. Furthermore, the expression level of miR-29c was significantly higher in adult Meishan pigs than Large White pigs, while the expression of YY1 and Akt3 genes was significantly lower in Meishan pigs. These results indicated that the expression pattern of miR-29c was opposite to that of YY1 and Akt3 genes in pigs. Also, the luciferase assay indicated that miR-29s can target the YY1 gene in pigs. In addition, we identified a T to C mutation in the primary transcript of miR-29c, which was associated with the postmortem muscle pH in pigs. Based on these results, we concluded that miR-29c is also important in skeletal muscle development of pigs.

Keywords pig      miR-29c      skeletal muscle      expression      SNP     
Corresponding Author(s): Xinyun LI   
Just Accepted Date: 24 November 2015   Online First Date: 16 December 2015    Issue Date: 19 January 2016
 Cite this article:   
Weiya ZHANG,Wei WEI,Yuanyuan ZHAO, et al. The microRNA, miR-29c, participates in muscle development through targeting the YY1 gene and is associated with postmortem muscle pH in pigs[J]. Front. Agr. Sci. Eng. , 2015, 2(4): 311-317.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2015075
https://academic.hep.com.cn/fase/EN/Y2015/V2/I4/311
Fig.1  Identification of the target genes of miR-29c. (a) The potential binding site of ssc-miR-29 in YY1 3′UTR, and the investigation of the conservation of this binding site in different species (http://www.targetscan.org); (b) identification of the target of YY1 gene using dual luciferase reporter system. The 756 bp 3′UTR of YY1 gene was first inserted into the psiCHECK-2 luciferase vector, and then co-transfected into PK-15 cells together with miR-29a, miR-29b or miR-29c, and finally the luciferase activity was detected at 24 h post-transfection; (c) luciferase activity was detected when the mutant miR-29 (2 nt substitution was introduced into the seed sequence of miR-29), pooled miR-29 or NC (negative control) were co-transfected with the luciferase vector inserted with the 765bp 3′UTR of YY1 gene. Results are shown as mean±S.E.M, means are of measurements from three independent individuals. ** Indicates a significant difference (P<0.01); *** indicates a significant difference (P<0.001).
Fig.2  Expression profiles of miR-29c, YY1 and Akt3 during muscle development. (a) The expression of miR-29c in LL muscle of Meishan pigs at E50d, E95d, and adult stage (12 month) was detected by qPCR; (b) the expression YY1 genes in LL muscle of Meishan at three stages was detected by qPCR; (c) the expression Akt3 genes in LL muscle of Meishan at three stages was detected by qPCR. The expression level of E50d was set as 1. Expression of miR-29c was normalized to U6. Expression of Akt3 and YY1 genes were normalized to b-Tubulin. Results are shown as mean±S.E.M., means are of three independent individuals. * Indicates a significant difference (P<0.05); ** indicates a significant difference (P<0.01); *** indicates a significant difference (P<0.001).
Fig.3  Expression profiles of miR-29c, YY1 and Akt3 genes in different breeds. (a) The expression of miR-29c in LL muscle of Meishan and Large White at the adult stage (12 months); (b) the expression of YY1 genes in LL muscle of Meishan and Large White at the adult stage (12 months); (c) the expression of Akt3 genes in LL muscle of Meishan and Large White at the adult stage (12 months).The expression level of Large White was set as 1. Expression of miR-29c was normalized to U6. Expression of YY1 and Akt3 genes was normalized to b-Tubulin. Results are shown as mean±S.E.M., means are of three independent individuals. * Indicates a significant difference (P<0.05); ** indicates a significant difference (P<0.01).
Fig.4  SNP identification in the pre-miR-29b-2/c cluster. (a) The scheme of the SNP site in the pre-miR-29b-2/c cluster on SSC9; (b) the sequence of the T/C SNP. The SNP is labeled by an arrow; (c) the gel photo of the genotype digested using restriction enzyme NcoI. The CC homozygote had one band of 752 bp; the TT homozygote had two bands of 631 and 121 bp; TC heterozygote had bands of 752, 631 and 121 bp. L indicates the DNA ladder; (d) the expression level of miR-29c in TT and CC homozygote. The expression level of miR-29c in CC homozygote was set as 1.0,expression of miR-29c was normalized to U6. * indicates a significant difference (P<0.005)
Genotype No. Muscle pHu value Muscle drip loss/% Intramuscular fat content/% Loin eye area /cm2
CC 46 5.67±0.03a 1.60±0.21 2.27±0.08 46.17±0.91
TC 121 5.57±0.02b 1.69±0.13 2.23±0.05 45.73±0.56
TT 65 5.53±0.03b 1.97±0.17 2.20±0.07 45.71±0.76
P Value
CC-TC 0.0098** 0.7329 0.6749 0.6827
CC-TT 0.0011** 0.1743 0.4975 0.7009
TC-TT 0.2332 0.1873 0.7055 0.9845
Tab.1  Association study of the T/C SNP in the miR-29b-2/c cluster and meat quality traits
1 Brozinick  J T Jr, Roberts  B R, Dohm  G L. Defective signaling through Akt-2 and-3 but not Akt-1 in insulin-resistant human skeletal muscle: potential role in insulin resistance. Diabetes, 2003, 52(4): 935–941
https://doi.org/10.2337/diabetes.52.4.935
2 Wang  L, Zhou  L, Jiang  P, Lu  L, Chen  X, Lan  H, Guttridge  D C, Sun  H, Wang  H. Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis. Molecular Therapy, 2012, 20(6): 1222–1233
https://doi.org/10.1038/mt.2012.35
3 Bartel  D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281–297
https://doi.org/10.1016/S0092-8674(04)00045-5
4 Tiao  M M, Wang  F S, Huang  L T, Chuang  J H, Kuo  H C, Yang  Y L, Huang  Y H. MicroRNA-29a protects against acute liver injury in a mouse model of obstructive jaundice via inhibition of the extrinsic apoptosis pathway. Apoptosis, 2012, 19(1): 30–41 
https://doi.org/10.1007/s10495-013-0909-4
5 Kwiecinski  M, Elfimova  N, Noetel  A, Töx  U, Steffen  H M, Hacker  U, Nischt  R, Dienes  H P, Odenthal  M. Expression of platelet-derived growth factor-C and insulin-like growth factor I in hepatic stellate cells is inhibited by miR-29. Laboratory Investigation, 2012, 92(7): 978–987
https://doi.org/10.1038/labinvest.2012.70
6 Wei  W, He  H B, Zhang  W Y, Zhang  H X, Bai  J B, Liu  H Z, Cao  J H, Chang  K C, Li  X Y, Zhao  S H. MiR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death & Disease, 2013, 4(6): e668
https://doi.org/10.1038/cddis.2013.184
7 Kriegel  A J, Liu  Y, Fang  Y, Ding  X, Liang  M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiological Genomics, 2012, 44(4): 237–244
https://doi.org/10.1152/physiolgenomics.00141.2011
8 Ouyang  Y B, Xu  L, Lu  Y, Sun  X, Yue  S, Xiong  X X, Giffard  R G. Astrocyte-enriched miR-29a targets PUMA and reduces neuronal vulnerability to forebrain ischemia. Wiley Periodicals, 2013, 61: 1784–1794
9 Nijhuis  A, Biancheri  P, Lewi  A, Bishop  C L, Giuffrida  P, Chan  C, Feakins  R, Poulsom  R, Di Sabatino  A, Corazza  G R, MacDonald  T T, Lindsay  J O, Silver  A R. In Crohn’s disease fibrosis reduced expression of the miR-29 family enhances collagen expression in intestinal fibroblasts. Clinical Science, 2014, 127(5): 341–350
https://doi.org/10.1042/CS20140048
10 Bandyopadhyay  S, Friedman  R C, Marquez  R T, Keck  K, Kong  B, Icardi  M S, Brown  K E, Burge  C B, Schmidt  W N, Wang  Y, McCaffrey  A P. Hepatitis C virus infection and hepatic stellate cell activation downregulate miR-29: miR-29 overexpression reduces hepatitis C viral abundance in culture. Journal of Infectious Diseases, 2011, 203(12): 1753–1762
https://doi.org/10.1093/infdis/jir186
11 Morita  S, Horii  T, Kimura  M, Ochiya  T, Tajima  S, Hatada  I. MiR-29 represses the activities of DNA methyltransferases and DNA demethylases. International Journal of Molecular Sciences, 2013, 14(7): 14647–14658
https://doi.org/10.3390/ijms140714647
12 Franceschetti  T, Kessler  C B, Lee  S K, Delany  A M. miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. Journal of Biological Chemistry, 2013, 288(46): 33347–33360
https://doi.org/10.1074/jbc.M113.484568
13 Wang  Y, Zhang  X, Li  H, Yu  J, Ren  X. The role of miRNA-29 family in cancer. European Journal of Cell Biology, 2013, 92(3): 123–128
https://doi.org/10.1016/j.ejcb.2012.11.004
14 Wang  H, Garzon  R, Sun  H, Ladner  K J, Singh  R, Dahlman  J, Cheng  A, Hall  B M, Qualman  S J, Chandler  D S, Croce  C M, Guttridge  D C. NF-κB–YY1–miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 2008, 14(5): 369–381
https://doi.org/10.1016/j.ccr.2008.10.006
15 CaLLara   F R, Moi   M, dos Santos Luan   S. Carcass characteristics and qualitative attributes of pork from immunocastrated animals. Asian-Australas Journal of Animal Science, 2013,26(11): 1630–1636
16 Zhou  L, Wang  L, Lu  L, Jiang  P, Sun  H, Wang  H. A novel target of microRNA-29, Ring1 and YY1-binding protein (Rybp), negatively regulates skeletal myogenesis. Journal of Biological Chemistry, 2012, 287(30): 25255–25265
https://doi.org/10.1074/jbc.M112.357053
17 Kalenik  J L, Chen  D, Bradley  M E. Yeast two-hybrid cloning of a novel zinc finger protein that interacts with the multifunctional transcription factor YY1. Nucleic Acids Research, 1997, 25(4): 843–849
18 Shi  Y, Seto  E, Chang  L S, Shenk  T. Transcriptional repression by YY1, a human GLI-Krüippel-related protein, and relief of repression by adenovirus E1A protein. Cell, 1991, 67(2): 377–388
https://doi.org/10.1016/0092-8674(91)90189-6
19 Lu  L, Zhou  L, Chen  E Z, Sun  K, Jiang  P, Wang  L, Su  X, Sun  H, Wang  H. A Novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network. PLoS ONE, 2012, 7(2): e27596
https://doi.org/10.1371/journal.pone.0027596
20 Monin  G, Sellier  P. Pork of low technological quality with a normal rate of muscle pH fall in the immediate post-mortem period: the case of the Hampshire breed. Meat Science, 1985, 13(1): 49–63 
https://doi.org/10.1016/S0309-1740(85)80004-8
21 Sterten  H, Oksbjerg  N, Frøystein  T, EkkerA S, Kjos N P. Effects of fasting prior to slaughter on pH development and energy metabolism post-mortem in M. longissimus dorsi of pigs. Meat Science,  2010, 84(1): 93–100
22 Cunningham  J T, Rodgers  J T, Arlow  D H, Vazquez  F, Mootha  V K, Puigserver  P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature, 2007, 450(7170): 736–740
https://doi.org/10.1038/nature06322
23 Dummler  B, Tschopp  O, Hynx  D, Yang  Z Z, Dirnhofer  S, Hemmings  B A. Life with a single Isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Molecular and Cellular Biology, 2006, 26(21): 8042–8051
https://doi.org/10.1128/MCB.00722-06
24 Blattler  S M, Cunningham  J T, Verdeguer  F, Chim  H, Haas  W, Liu  H, Romanino  K, Ruegg  M A, Gygi  S P, Shi  Y, Puigserver  P. Yin Yang 1 deficiency in skeletal muscle protects against rapamycin-induced diabetic-like symptoms through activation of insulin/IGF signaling. Cell Metabolism, 2012, 15(4): 505–517
https://doi.org/10.1016/j.cmet.2012.03.008
[1] Supplementary Material Download
[1] Ruigao SONG, Yu WANG, Yanfang WANG, Jianguo ZHAO. Base editing in pigs for precision breeding[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 161-170.
[2] Chris PROUDFOOT, Gus MCFARLANE, Bruce WHITELAW, Simon LILLICO. Livestock breeding for the 21st century: the promise of the editing revolution[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 129-135.
[3] Ning WANG, Sile WANG, Yaxian WANG, Yuanxing CAI, Fan YANG, Huayan WANG. SALL4 maintains self-renewal of porcine pluripotent stem cells through downregulation of OTX2[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 81-92.
[4] Yong JIN, Manling ZHANG, Xinrong JU, Shuang LIANG, Qiang XIONG, Lihua ZHAO, Xiaowei NIE, Daorong HOU, Qiang LIU, Junzheng WANG, Chenyu WANG, Xiaokang LI, Lining ZHANG, Xiaorui LIU, Ying WANG, Haiyuan YANG, Yifan DAI, Rongfeng LI. Factors influencing the somatic cell nuclear transfer efficiency in pigs[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 73-80.
[5] Jianwen CHEN, Kaiyuan PAN, Zhen CHEN, Biao DING, Dandan SONG, Wenbin BAO, Yunhai ZHANG. Construction of multiple shRNA vectors targeting PEDV and TGEV and production of transgenic SCNT porcine embryos in vitro[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 66-72.
[6] Chengcheng ZHAO, Junsong SHI, Rong ZHOU, Ranbiao MAI, Lvhua LUO, Xiaoyan HE, Hongmei JI, Gengyuan CAI, Dewu LIU, Enqin ZHENG, Zhenfang WU, Zicong LI. Effects of enucleation method on in vitro and in vivo development rate of cloned pig embryos[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 61-65.
[7] Zheng AO, Chengfa ZHAO, Yanmin GAN, Xiao WU, Junsong SHI, Enqin ZHENG, Dewu LIU, Gengyuan CAI, Zhenfang WU, Zicong LI. Comparison of birth weight and umbilical and placental characteristics of cloned and artificial insemination-derived piglets[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 54-60.
[8] Jianyong HAN, Yi-Liang MIAO, Jinlian HUA, Yan LI, Xue ZHANG, Jilong ZHOU, Na LI, Ying ZHANG, Jinying ZHANG, Zhonghua LIU. Porcine pluripotent stem cells: progress, challenges and prospects[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 8-27.
[9] Qijing LEI, Qin PAN, Shuai YU, Na LI, Shulin CHEN, Kuldip SIDHU, Jinlian HUA. Reprogramming of the pig primordial germ cells into pluripotent stem cells: a brief review[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 28-32.
[10] Shen LIU, Shengzhe SHANG, Xuezhen YANG, Huihua ZHANG, Dan LU, Ning LI. Construction of a universal recombinant expression vector that regulates the expression of human lysozyme in milk[J]. Front. Agr. Sci. Eng. , 2018, 5(3): 382-389.
[11] Hongyuan ZHAO, Shanshan ZHANG, Feibing WANG, Ning ZHAO, Shaozhen HE, Qingchang LIU, Hong ZHAI. Comparative transcriptome analysis of purple-fleshed sweet potato provides insights into the molecular mechanism of anthocyanin biosynthesis[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 214-225.
[12] Lei CHEN, Shilin TIAN, Long JIN, Zongyi GUO, Dan ZHU, Lan JING, Tiandong CHE, Qianzi TANG, Siqing CHEN, Liang ZHANG, Tinghuan ZHANG, Zuohua LIU, Jinyong WANG, Mingzhou LI. Genome-wide analysis reveals selection for Chinese Rongchang pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 319-326.
[13] Haiyan WANG, Qiaoxia ZHANG, Lilin YIN, Xiangdong LIU, Shuhong ZHAO, Mengjin ZHU, Changchun LI. Transcriptomic basis of neutrophil ratio variation induced by poly I:C stimulation in porcine peripheral blood[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 342-352.
[14] Longchao ZHANG, Jingwei YUE, Xin LIU, Jing LIANG, Kebin ZHAO, Hua YAN, Na LI, Lei PU, Yuebo ZHANG, Huibi SHI, Ligang WANG, Lixian WANG. Genome-wide search for candidate genes determining vertebrae number in pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 327-334.
[15] Xingwang WANG, Rongrong DING, Jianping QUAN, Linxue YANG, Ming YANG, Enqin ZHENG, Dewu LIU, Gengyuan CAI, Zhenfang WU, Jie YANG. Genome-wide association analysis reveals genetic loci and candidate genes associated with intramuscular fat in Duroc pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 335-341.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed