Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2019, Vol. 6 Issue (1) : 54-60    https://doi.org/10.15302/J-FASE-2018249
RESEARCH ARTICLE
Comparison of birth weight and umbilical and placental characteristics of cloned and artificial insemination-derived piglets
Zheng AO1,2, Chengfa ZHAO1,2, Yanmin GAN1,2, Xiao WU1,2, Junsong SHI3, Enqin ZHENG1,2, Dewu LIU1,2, Gengyuan CAI1,2, Zhenfang WU1,2(), Zicong LI1,2()
1. National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
2. Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
3. Guangdong Wen’s Breeding Swine Co. Ltd., Yunfu 527400, China
 Download: PDF(1060 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Somatic cell nuclear transfer (SCNT)-derived piglets have significantly higher stillbirth rate and postnatal mortality rate than artificial insemination (AI)-generated piglets. The question whether the low survival rate of SCNT piglets was related to birth weight, umbilical cord or placenta development was investigated. In this study, stillbirth rate, neonatal death rate, birth weight, umbilical cord status, placental parameters and placental gene expression patterns were compared between SCNT and AI piglets. Results showed that mortality rates at birth and during the neonatal stage of SCNT piglets were significantly higher than those of AI piglets. The incidence of abnormal umbilical cord in SCNT and SCNT-liveborn (SCNT-LB) piglets was significantly higher than in AI and AI-liveborn (AI-LB) piglets. Birth weight, placental weight, placental surface area and placental efficiency in SCNT and SCNT-LB piglets were significantly lower than those of AI and AI-LB piglets. Placental expression profiles of imprinting, angiopoiesis and nutrient transport-related genes were defective in SCNT-LB piglets compared with those in AI-LB piglets. Thus, the low survival rate of SCNT piglets may be associated with abnormal umbilical cord and placenta development. These characteristics may have resulted from aberrant expression of angiogenesis, nutrient transport, and imprinting-related genes in the placentas.

Keywords cloned      pig      death      placenta      SCNT      umbilical cord     
Corresponding Author(s): Zhenfang WU,Zicong LI   
Just Accepted Date: 28 December 2018   Online First Date: 18 January 2019    Issue Date: 25 February 2019
 Cite this article:   
Zheng AO,Chengfa ZHAO,Yanmin GAN, et al. Comparison of birth weight and umbilical and placental characteristics of cloned and artificial insemination-derived piglets[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 54-60.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2018249
https://academic.hep.com.cn/fase/EN/Y2019/V6/I1/54
Gene Sequence (5′–3′) Product size/bp GenBank accession no.
BCL-2 F: TTGCCGAGATGTCCAGCCA 255 XM_003121700.4
R: CATCCCAGCCTCCGTTATCCT
BAX F: AAGCGCATTGGAGATGAACT 251 XM_013998624.1
R: CGATCTCGAAGGAAGTCCAG
VEGFA F: GCCTTGCTGCTCTACCTCCA 271 NM_214084
R: TGGCGATGTTGAACTCCTCAGT
VEGFR2 F: GAGTGGCTCTGAGGAACGAG 209 BQ603967
R: ACACAACTCCATGCTGGTCA
PHLDA2 F: TCAAGGTGGACTGCGTGGAG 147 NM_001174057
R: GGCGGTTCTGGAAGTCGATGA
CDKN1C F: TGGACCACGAGGAGCTGAGT 100 HQ679903
R: GGCACGTCCTGCTGGAAGTT
IGF2 F: CGTGGCATCGTGGAAGAGTG 168 X56094
R: CCAGGTGTCATAGCGGAAGAAC
H19 F: GGCCGGAGAATGGGAAAGAAGG 148 AY044827
R: CGCAGTGCTGCGTGGGAACG
PEG3 F: GGAGTGTGCGGAGACCTTCA 118 EF619475
R: CTCGGTGGGATGGGAGTTCT
GRB10 F: GGTCCGTGCATCGTTCAGA 101 NM_001134965
R: TCCAACAAACCAGCCAACCT
SLC2A1 F: GCAGGAGATGAAGGAGGAGAGC 258 EU012358
R: ACGAACAGCGACACGACAGT
SLC2A3 F: GCCCTGAAAGTCCTCGGTTCCT 252 XM_003355585
R: ACACGGCGTTGATGCCAGAGA
SLC38A4 F: CGTGGTCATGGTGCCCAACAAC 118 XM_021092582
R: ACTGCCGTGAAGAGAGCCCTTG
b-actin F: CCACGAGACCACCTTCAACTC 131 DQ845171
R: TGATCTCCTTCTGCATCCTGT
Tab.1  Sequences of primers used for the analysis of gene expression in the placenta
Item No. of litters Total piglets born Stillborn Postnatal death
AI 20 111# 6 (5.4/%) 6 (5.7/%)*
SCNT 13 58 12 (20.7/%) 30 (65.2/%)
P-value 0.002 <0.001
Tab.2  Comparison of stillbirth rate and postnatal death rate between SCNT-derived and AI-derived piglets
Fig.1  Phenotype of normal umbilical cord (NUC) and abnormal umbilical cord (AUC) in newborn piglets. NUCs are light red and spiraled (green arrow). AUCs are dark, are not spiraled, and have severe occlusive thrombus (black arrow).
Item Total piglets Piglets with AUC
AI 111 17 (10.8%)
SCNT 58 23 (39.7%)
P-value <0.001
AI-LB 105 15 (14.2%)
SCNT-LB 46 15 (32.6%)
P-value 0.009
AI-SB 6 2 (33.3%)
SCNT-SB 12 8 (66.7%)
P-value 0.18
Tab.3  Comparison of the frequency of abnormal umbilical cords (AUC) between AI and SCNT piglets
Item Birth weight/g Placental weight/g Placental surface area/cm2 Placental efficiency/(g·g1)#
AI (n = 111) 1430±35 177±5 2530±69 8.41±0.16
SCNT (n = 58) 1040±47 147±6 1850±76 7.17±0.21
P-value <0.001 <0.001 <0.001 <0.001
AI-LB (n = 105) 1440±36 177±6 2530±71 8.43±0.17
SCNT-LB (n = 46) 1130±41 157±6 1950±74 7.36±0.24
P-value <0.001 0.036 <0.001 <0.001
AI-SB (n = 6) 1400±127 180±20 2500±356 7.79±0.29
SCNT-SB (n = 12) 714±127 107±13 1450±203 6.42±0.49
P-value 0.004 0.007 0.012 0.082
Tab.4  Comparison of birth weight and placental parameters between AI and SCNT piglets
Fig.2  Comparison of placental gene expression levels between artificially insemination-derived and somatic cell nuclear transfer-derived liveborn piglets (AI-LB and SCNT-LB, respectively). The expression levels were normalized against β-actin. Values are presented as mean±SEM. Values labeled with asterisk (*) were considered significantly different between two groups (P<0.05).
1 YKuroiwa, P Kasinathan, Y JChoi, RNaeem, KTomizuka, E JSullivan, J GKnott, ADuteau, R AGoldsby, B AOsborne, IIshida, J MRobl. Cloned transchromosomic calves producing human immunoglobulin. Nature Biotechnology, 2002, 20(9): 889–894
https://doi.org/10.1038/nbt727 pmid: 12172556
2 K HCampbell, P Fisher, W CChen, IChoi, R D Kelly, J H Lee, J Xhu. Somatic cell nuclear transfer: past, present and future perspectives. Theriogenology, 2007, 68(S1): S214–S231
https://doi.org/10.1016/j.theriogenology.2007.05.059 pmid: 17610946
3 XYang, S L Smith, X C Tian, H A Lewin, J P Renard, T Wakayama. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nature Genetics, 2007, 39(3): 295–302
https://doi.org/10.1038/ng1973 pmid: 17325680
4 HMatsunari, H Nagashima. Application of genetically modified and cloned pigs in translational research. Journal of Reproduction and Development, 2009, 55(3): 225–230
https://doi.org/10.1262/jrd.20164 pmid: 19571468
5 I EHolm, A K O Alstrup, Y Luo. Genetically modified pig models for neurodegenerative disorders. Journal of Pathology, 2016, 238(2): 267–287
https://doi.org/10.1002/path.4654 pmid: 26446984
6 YLiu, J Li, PLøvendahl, MSchmidt, KLarsen, HCallesen. In vitro manipulation techniques of porcine embryos: a meta-analysis related to transfers, pregnancies and piglets. Reproduction, Fertility, and Development, 2015, 27(3): 429–439
https://doi.org/10.1071/RD13329 pmid: 25482653
7 RGeisert, R Schmitt. Early embryonic survival in the pig: can it be improved? Journal of Animal Science, 2002, 80(S1): E54–E65
8 TLiu, H Dou, XXiang, LLi, Y Li, LLin, XPang, Y Zhang, YChen, JLuan, Y Xu, ZYang, WYang, H Liu, FLi, HWang, H Yang, LBolund, GVajta, YDu. Factors determining the efficiency of porcine somatic cell nuclear transfer: data analysis with over 200000 reconstructed embryos. Cellular Reprogramming, 2015, 17(6): 463–471
https://doi.org/10.1089/cell.2015.0037 pmid: 26655078
9 YHuan, K Hu, BXie, YShi, F Wang, YZhou, SLiu, B Huang, JZhu, ZLiu, Y He, JLi, QKong, Z Liu. Ovulation statuses of surrogate gilts are associated with the efficiency of excellent pig cloning. PLoS One, 2015, 10(11): e0142549
https://doi.org/10.1371/journal.pone.0142549 pmid: 26565717
10 JEstrada, J Sommer, BCollins, BMir, A Martin, AYork, R MPetters, J APiedrahita. Swine generated by somatic cell nuclear transfer have increased incidence of intrauterine growth restriction (IUGR). Cloning and Stem Cells, 2007, 9(2): 229–236
https://doi.org/10.1089/clo.2006.0079 pmid: 17579555
11 MKurome, L Geistlinger, BKessler, VZakhartchenko, NKlymiuk, AWuensch, ARichter, ABaehr, KKraehe, KBurkhardt, KFlisikowski, TFlisikowska, CMerkl, MLandmann, MDurkovic, ATschukes, SKraner, DSchindelhauer, TPetri, AKind, H Nagashima, ASchnieke, RZimmer, EWolf. Factors influencing the efficiency of generating genetically engineered pigs by nuclear transfer: multi-factorial analysis of a large data set. BMC Biotechnology, 2013, 13(1): 43
https://doi.org/10.1186/1472-6750-13-43 pmid: 23688045
12 J YPark, J H Kim, Y J Choi, K C Hwang, S K Cho, H H Park, S S Paik, T Kim, CPark, H TLee, H GSeo, S BPark, SHwang, J HKim. Comparative proteomic analysis of malformed umbilical cords from somatic cell nuclear transfer-derived piglets: implications for early postnatal death. BMC Genomics, 2009, 10(1): 511
https://doi.org/10.1186/1471-2164-10-511 pmid: 19889237
13 MSchmidt, K D Winther, J O Secher, H Callesen. Postmortem findings in cloned and transgenic piglets dead before weaning. Theriogenology, 2015, 84(6): 1014–1023
https://doi.org/10.1016/j.theriogenology.2015.05.037 pmid: 26166169
14 ZAo, D Liu, CZhao, ZYue, J Shi, RZhou, GCai, E Zheng, ZLi, ZWu. Birth weight, umbilical and placental traits in relation to neonatal loss in cloned pigs. Placenta, 2017, 57: 94–101
https://doi.org/10.1016/j.placenta.2017.06.010 pmid: 28864025
15 Tvan der Lende, E FKnol, J ILeenhouwers. Prenatal development as a predisposing factor for perinatal losses in pigs. Reproduction Supplement, 2001, 58: 247–261
pmid: 11980194
16 J LVallet, J R Miles, T M Brown-Brandl, J A Nienaber. Proportion of the litter farrowed, litter size, and progesterone and estradiol effects on piglet birth intervals and stillbirths. Animal Reproduction Science, 2010, 119(1–2): 68–75
https://doi.org/10.1016/j.anireprosci.2009.11.004 pmid: 20031344
17 VRootwelt, O Reksen, WFarstad, TFramstad. Postpartum deaths: piglet, placental, and umbilical characteristics. Journal of Animal Science, 2013, 91(6): 2647–2656
https://doi.org/10.2527/jas.2012-5531 pmid: 23482582
18 B NMilligan, D Fraser, D LKramer. Within-litter birth weight variation in the domestic pig and its relation to pre-weaning survival, weight gain, and variation in weaning weights. Livestock Production Science, 2002, 76(1–2): 181–191
https://doi.org/10.1016/S0301-6226(02)00012-X
19 B NMilligan, D Fraser, D LKramer. Birth weight variation in the domestic pig: effects on offspring survival, weight gain and suckling behaviour. Applied Animal Behaviour Science, 2001, 73(3): 179–191
https://doi.org/10.1016/S0168-1591(01)00136-8 pmid: 11376836
20 AAntonides, A C Schoonderwoerd, R E Nordquist, F J van der Staay. Very low birth weight piglets show improved cognitive performance in the spatial cognitive holeboard task. Frontiers in Behavioral Neuroscience, 2015, 9: 43
https://doi.org/10.3389/fnbeh.2015.00043 pmid: 25774127
21 PChavatte-Palmer, S Camous, HJammes, NLe Cleac’h, MGuillomot, R SLee. Review: placental perturbations induce the developmental abnormalities often observed in bovine somatic cell nuclear transfer. Placenta, 2012, 33(S): S99–S104
https://doi.org/10.1016/j.placenta.2011.09.012 pmid: 22000472
22 J S MCuffe, OHolland, CSalomon, G ERice, A VPerkins. Review: placental derived biomarkers of pregnancy disorders. Placenta, 2017, 54: 104–110
https://doi.org/10.1016/j.placenta.2017.01.119 pmid: 28117143
23 PLoi, M Clinton, IVackova, JFulka Jr, RFeil, C Palmieri, LDella Salda, GPtak. Placental abnormalities associated with post-natal mortality in sheep somatic cell clones. Theriogenology, 2006, 65(6): 1110–1121
https://doi.org/10.1016/j.theriogenology.2005.07.016 pmid: 16154189
24 BVanderWielen, C Zaleski, CCold, EMcPherson. Wisconsin stillbirth services program: a multifocal approach to stillbirth analysis. American Journal of Medical Genetics: Part A, 2011, 155A(5): 1073–1080
https://doi.org/10.1002/ajmg.a.34016 pmid: 21480484
25 M AMiglino, F T V Pereira, J A Visintin, J M Garcia, F V Meirelles, R Rumpf, C EAmbrósio, P CPapa, T CSantos, A FCarvalho, RLeiser, A MCarter. Placentation in cloned cattle: structure and microvascular architecture. Theriogenology, 2007, 68(4): 604–617
https://doi.org/10.1016/j.theriogenology.2007.04.060 pmid: 17568663
26 M EWilson, N J Biensen, C R Youngs, S P Ford. Development of Meishan and Yorkshire littermate conceptuses in either a Meishan or Yorkshire uterine environment to day 90 of gestation and to term. Biology of Reproduction, 1998, 58(4): 905–910
https://doi.org/10.1095/biolreprod58.4.905 pmid: 9546719
27 M RPark, S K Cho, S Y Lee, Y J Choi, J Y Park, D N Kwon, W J Son, S S Paik, T Kim, Y MHan, J HKim. A rare and often unrecognized cerebromeningitis and hemodynamic disorder: a major cause of sudden death in somatic cell cloned piglets. Proteomics, 2005, 5(7): 1928–1939
https://doi.org/10.1002/pmic.200401079 pmid: 15832370
28 MAlonso-Spilsbury, DMota-Rojas, JMartínez-Burnes, EArch, ALópez Mayagoitia, R Ramírez-Necoechea, AOlmos, M ETrujillo. Use of oxytocin in penned sows and its effect on fetal intra-partum asphyxia. Animal Reproduction Science, 2004, 84(1–2): 157–167
https://doi.org/10.1016/j.anireprosci.2003.11.002 pmid: 15302395
29 MAlonso-Spilsbury, DMota-Rojas, DVillanueva-García, JMartínez-Burnes, HOrozco, RRamírez-Necoechea, A LMayagoitia, M ETrujillo. Perinatal asphyxia pathophysiology in pig and human: a review. Animal Reproduction Science, 2005, 90(1–2): 1–30
https://doi.org/10.1016/j.anireprosci.2005.01.007 pmid: 16257594
30 FDeront-Bourdin, J L Blanquiot, C Checchi, SNataf, ABongain. Umbilical vein varix thrombosis. Gynécologie, Obstétrique & Fertilité, 2014, 42(6): 448–450(in French)
https://doi.org/10.1016/j.gyobfe.2014.01.018 pmid: 24852911
31 G CSmith, J A Crossley, D A Aitken, J P Pell, A D Cameron, J M Connor, R Dobbie. First-trimester placentation and the risk of antepartum stillbirth. Journal of the American Medical Association, 2004, 292(18): 2249–2254
https://doi.org/10.1001/jama.292.18.2249 pmid: 15536112
32 JMan, J C Hutchinson, A E Heazell, M Ashworth, IJeffrey, N JSebire. Stillbirth and intrauterine fetal death: role of routine histopathological placental findings to determine cause of death. Ultrasound in Obstetrics & Gynecology, 2016, 48(5): 579–584
https://doi.org/10.1002/uog.16019 pmid: 27781319
33 S JTunster, H D J Creeth, R M John. The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources. Developmental Biology, 2016, 409(1): 251–260
https://doi.org/10.1016/j.ydbio.2015.10.015 pmid: 26476147
34 EAngiolini, A Fowden, PCoan, ISandovici, PSmith, WDean, G Burton, BTycko, WReik, C Sibley, MConstancia. Regulation of placental efficiency for nutrient transport by imprinted genes. Placenta, 2006, 27(SA): S98–S102
35 WReik, M Constância, AFowden, NAnderson, WDean, A Ferguson-Smith, BTycko, CSibley. Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. Journal of Physiology, 2003, 547(Pt 1): 35–44
https://doi.org/10.1113/jphysiol.2002.033274 pmid: 12562908
[1] Ruigao SONG, Yu WANG, Yanfang WANG, Jianguo ZHAO. Base editing in pigs for precision breeding[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 161-170.
[2] Chris PROUDFOOT, Gus MCFARLANE, Bruce WHITELAW, Simon LILLICO. Livestock breeding for the 21st century: the promise of the editing revolution[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 129-135.
[3] Ning WANG, Sile WANG, Yaxian WANG, Yuanxing CAI, Fan YANG, Huayan WANG. SALL4 maintains self-renewal of porcine pluripotent stem cells through downregulation of OTX2[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 81-92.
[4] Yong JIN, Manling ZHANG, Xinrong JU, Shuang LIANG, Qiang XIONG, Lihua ZHAO, Xiaowei NIE, Daorong HOU, Qiang LIU, Junzheng WANG, Chenyu WANG, Xiaokang LI, Lining ZHANG, Xiaorui LIU, Ying WANG, Haiyuan YANG, Yifan DAI, Rongfeng LI. Factors influencing the somatic cell nuclear transfer efficiency in pigs[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 73-80.
[5] Jianwen CHEN, Kaiyuan PAN, Zhen CHEN, Biao DING, Dandan SONG, Wenbin BAO, Yunhai ZHANG. Construction of multiple shRNA vectors targeting PEDV and TGEV and production of transgenic SCNT porcine embryos in vitro[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 66-72.
[6] Chengcheng ZHAO, Junsong SHI, Rong ZHOU, Ranbiao MAI, Lvhua LUO, Xiaoyan HE, Hongmei JI, Gengyuan CAI, Dewu LIU, Enqin ZHENG, Zhenfang WU, Zicong LI. Effects of enucleation method on in vitro and in vivo development rate of cloned pig embryos[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 61-65.
[7] Jianyong HAN, Yi-Liang MIAO, Jinlian HUA, Yan LI, Xue ZHANG, Jilong ZHOU, Na LI, Ying ZHANG, Jinying ZHANG, Zhonghua LIU. Porcine pluripotent stem cells: progress, challenges and prospects[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 8-27.
[8] Qijing LEI, Qin PAN, Shuai YU, Na LI, Shulin CHEN, Kuldip SIDHU, Jinlian HUA. Reprogramming of the pig primordial germ cells into pluripotent stem cells: a brief review[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 28-32.
[9] Lei CHEN, Shilin TIAN, Long JIN, Zongyi GUO, Dan ZHU, Lan JING, Tiandong CHE, Qianzi TANG, Siqing CHEN, Liang ZHANG, Tinghuan ZHANG, Zuohua LIU, Jinyong WANG, Mingzhou LI. Genome-wide analysis reveals selection for Chinese Rongchang pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 319-326.
[10] Haiyan WANG, Qiaoxia ZHANG, Lilin YIN, Xiangdong LIU, Shuhong ZHAO, Mengjin ZHU, Changchun LI. Transcriptomic basis of neutrophil ratio variation induced by poly I:C stimulation in porcine peripheral blood[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 342-352.
[11] Longchao ZHANG, Jingwei YUE, Xin LIU, Jing LIANG, Kebin ZHAO, Hua YAN, Na LI, Lei PU, Yuebo ZHANG, Huibi SHI, Ligang WANG, Lixian WANG. Genome-wide search for candidate genes determining vertebrae number in pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 327-334.
[12] Xingwang WANG, Rongrong DING, Jianping QUAN, Linxue YANG, Ming YANG, Enqin ZHENG, Dewu LIU, Gengyuan CAI, Zhenfang WU, Jie YANG. Genome-wide association analysis reveals genetic loci and candidate genes associated with intramuscular fat in Duroc pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 335-341.
[13] Wen LUO, Bahareldin A. ABDALLA, Qinghua NIE, Xiquan ZHANG. The genetic regulation of skeletal muscle development: insights from chicken studies[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 295-304.
[14] Shaohua WANG,Kun ZHANG,Yunping DAI. Advances in genetic engineering of domestic animals[J]. Front. Agr. Sci. Eng. , 2016, 3(1): 1-10.
[15] Weiya ZHANG,Wei WEI,Yuanyuan ZHAO,Shuhong ZHAO,Xinyun LI. The microRNA, miR-29c, participates in muscle development through targeting the YY1 gene and is associated with postmortem muscle pH in pigs[J]. Front. Agr. Sci. Eng. , 2015, 2(4): 311-317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed