Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (2) : 127-132    https://doi.org/10.1007/s12200-012-0256-z
RESEARCH ARTICLE
High-performance and current crowding-free InGaN-GaN-based LEDs integrated by an electrically-reverse-connected Schottky diode and a Mg-delta doped p-GaN
Sei-Min KIM, Seon-Ho JANG, Ja-Soon JANG()
Department of Electronic Engineering, LED-IT Fusion Technology Research Center (LIFTRC), Yeungnam University, Gyeongbuk 712–749, Korea
 Download: PDF(254 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This work demonstrates high-performance and current crowding-free InGaN/GaN light-emitting diodes (LEDs) using an electrically-reverse-connected Schottky diode (SD) and an Mg-delta (δ) doped layer. Possible mechanism of carrier transport at the interface between transparent conducting electrode (TCE) and p-GaN with the δ-doped layer is also investigated. Results show that the LED with the SD and Mg delta (δ)-doping layer yields lower series resistance, higher output power, and lower reverse leakage current compared to normal LEDs. In addition, unlike the normal LED, there is no occurrence for the current crowding effect in the proposed LED even at high current density of 380 mA/cm2. These remarkable behaviours clearly indicate that the use of the SD and δ-doping in the p-GaN region is very promising to achieve high-brightness and excellent-reliability GaN-based LEDs.

Keywords GaN      light-emitting diode (LED)      Schottky diode (SD)      integration      current crowding     
Corresponding Author(s): JANG Ja-Soon,Email:jsjang@ynu.ac.kr   
Issue Date: 05 June 2012
 Cite this article:   
Sei-Min KIM,Seon-Ho JANG,Ja-Soon JANG. High-performance and current crowding-free InGaN-GaN-based LEDs integrated by an electrically-reverse-connected Schottky diode and a Mg-delta doped p-GaN[J]. Front Optoelec, 2012, 5(2): 127-132.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0256-z
https://academic.hep.com.cn/foe/EN/Y2012/V5/I2/127
Fig.1  (a) and (b) schematic cross-sectional diagram and electrically equivalent circuit of normal LED and -SD LED; (c) possible current injection path ( = + ) of normal LED; and (d) that ( ≈ ) of -SD LED if the resistance of - SD is assumed to be much higher, during the forward operation
Fig.2  Current-voltage () characteristics for -GaN and -doped GaN contacts; and the inset shows a photograph of C-TLM patterns
Fig.3  Plots of experimental and theoretical values of as a function of 1/ using a metal/-/-GaN model. Dot line and solid line mean FE and TE fitting curves. TE is relatively dominant for -GaN contact, while FE is considerably dominant for -doped GaN contact
Fig.4  Current-voltage () characteristics for Al/-GaN SD, and the schematic cross-sectional diagram of the test pattern of the Schottky contact is shown in the inset
Vth/V at 200 mARsnIF/nA at 2 VIR/nA at -5 V
normal LED4.0±0.067.1±0.27.7±0.432±5-42±6
δ-SD LED3.3±0.072.7±0.32.5±0.53±2-6±4
Tab.1  Summary of electrical data obtained from the normal and -SD LED
Fig.5  Output power-current () characteristics of normal LED and -SD LED
Fig.6  Optical emission photographs obtained from (a) normal and (b) -Schottky diode (SD) LED at 380 mA/cm
1 Nakamura S, Senoh S, Iwasa N, Nagahama S. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Japanese Journal of Applied Physics , 1995, 34(Part 2, No. 7A): L797-L799
doi: 10.1143/JJAP.34.L797
2 Pearton S J, Zolper J C, Shul R J, Ren F. GaN: processing, defects, and devices. Journal of Applied Physics , 1999, 86(1): 1-78
doi: 10.1063/1.371145
3 Guo X, Schubert E F. Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates. Applied Physics Letters , 2001, 78(21): 3337
doi: 10.1063/1.1372359
4 Wu J Q. When group-III nitrides go infrared: new properties and perspectives. Journal of Applied Physics , 2009, 106(1): 011101
doi: 10.1063/1.3155798
5 Sheu J K, Chi G C, Jou M J. Low-operation voltage of InGaN/GaN light-emitting diodes by using a Mg-doped Al0.15/Ga0.85/N/GaN superlattice. IEEE Electron Device Letters , 2001, 22(4): 160-162
doi: 10.1109/55.915597
6 Jang J S, Kim D, Seong T Y. Low turn-on voltage and series resistance of polarization-induced InGaN-GaN LEDs by using p-InGaN/p-GaN superlattice. IEEE Photonics Technology Letters , 2006, 18(4): 1536-1538
doi: 10.1109/LPT.2006.877621
7 Jang J S, Sohn S J, Kim D, Seong T Y. Formation of low-resistance transparent Ni/Au ohmic contacts to a polarization field-induced p-InGaN/GaN superlattice. Semiconductor Science and Technology , 2006, 21(5): L37-L39
doi: 10.1088/0268-1242/21/5/L01
8 Liu Y J, Tsai T Y, Yen C H, Chen L Y, Tsai T H, Liu W C. Characteristics of a GaN-based light-emitting diode with an inserted p-GaN/i-InGaN superlattice structure. IEEE Journal of Quantum Electronics , 2010, 46(4): 492-498
doi: 10.1109/JQE.2009.2037337
9 Liu Y J, Guo D F, Chu K Y, Cheng S Y, Liou J K, Chen L Y, Tsai T H, Huang C C, Chen T Y, Hsu C S, Tsai T Y, Liu W C. Improved current-spreading performance of an InGaN-based light-emitting diode with a clear p-GaN/n-GaN barrier junction. Displays , 2011, 32(5): 330-333
doi: 10.1016/j.displa.2011.04.004
10 Jang J S. High output power GaN-based light-emitting diodes using an electrically reverse-connected p-Schottky diode and p-InGaN–GaN superlattice. Applied Physics Letters , 2008, 93(8): 081118
doi: 10.1063/1.2977471
11 Hsu C Y, Lan W H, Wu W S. Effect of thermal annealing of Ni/Au ohmic contact on the leakage current of GaN based light emitting diodes. Applied Physics Letters , 2003, 83(12): 2447
doi: 10.1063/1.1601306
12 Li D S, Chen H, Yu H B, Jia H Q, Huang Q, Zhou J M. Dependence of leakage current on dislocations in GaN-based light-emitting diodes. Journal of Applied Physics , 2004, 96(2): 1111
doi: 10.1063/1.1763234
13 Lin Y J. Application of the thermionic field emission model in the study of a Schottky barrier of Ni on p-GaN from current-voltage measurements. Applied Physics Letters , 2005, 86(12): 122109
doi: 10.1063/1.1890476
14 Pan Y B, Yang Z J, Lu Y, Lu M, Hu C Y, Yu T J, Hu X D, Zhang C Y. Improvement of properties of p-GaN by Mg delta doping. Chinese Physics Letters , 2004, 21(10): 2016
doi: 10.1088/0256-307X/21/10/042
15 Wang H, Liu J, Niu N, Shen G, Zhang S. Enhanced performance of p-GaN by Mg doping. Journal of Crystal Growth , 2007, 304(1): 7-10
doi: 10.1016/j.jcrysgro.2007.01.040
16 Bayram C, Pau J L, McClintock R, Razeghi M. Delta-doping optimization for high quality p-type GaN. Journal of Applied Physics , 2008, 104(8): 083512
doi: 10.1063/1.3000564
17 Park H Y, Jeon K N, Kim K. Mg delta-doping effect on a deep hole center related to electrical activation of a p-type GaN thin film. Transactions on Electrical and Electronic Materials , 2010, 11(1): 37-41
doi: 10.4313/TEEM.2010.11.1.037
18 Marlow G S, Das M B. The effects of contact size and non-zero metal resistance on the determination of specific contact resistance. Solid-State Electronics , 1982, 25(2): 91-94
doi: 10.1016/0038-1101(82)90036-3
19 Jang J S, Seong T Y, Jeon S R. Formation mechanisms of low-resistance and thermally stable Pd∕Ni∕Pd∕Ru Ohmic contacts to Mg-doped Al 0.15Ga0.85N. Applied Physics Letters , 2007, 91(9): 092129
doi: 10.1063/1.2778452
20 Jang J S, Seong T Y. Electronic transport mechanisms of nonalloyed Pt Ohmic contacts to p-GaN. Applied Physics Letters , 2000, 76(19): 2743
doi: 10.1063/1.126462
21 Jang S H,Jang J S. (unpublished)
22 Jang J S, Chang I S, Kim H K, Seong T Y, Lee S H, Park S J. Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN. Applied Physics Letters , 1999, 74(1): 70
doi: 10.1063/1.123954
[1] Chuanzhong YAN, Kebin LIN, Jianxun LU, Zhanhua WEI. Composition engineering to obtain efficient hybrid perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 282-290.
[2] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[3] Peipei DU, Liang GAO, Jiang TANG. Focus on performance of perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 235-245.
[4] Santosh K. GUPTA, Yuanbing MAO. Recent advances, challenges, and opportunities of inorganic nanoscintillators[J]. Front. Optoelectron., 2020, 13(2): 156-187.
[5] Neha JAIN, O. P. SINHA, Sujata PANDEY. Optimization of organic light emitting diode for HAT-CN based nano-structured device by study of injection characteristics at anode/organic interface[J]. Front. Optoelectron., 2019, 12(3): 268-275.
[6] Sakhawat HUSSAIN, Tasnim ZERIN, Md. Ashik KHAN. Design and simulation to improve the structural efficiency of green light emission of GaN/InGaN/AlGaN light emitting diode[J]. Front. Optoelectron., 2017, 10(4): 370-377.
[7] Luhua LAN, Jianhua ZOU, Congbiao JIANG, Benchang LIU, Lei WANG, Junbiao PENG. Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes[J]. Front. Optoelectron., 2017, 10(4): 329-352.
[8] Chong ZHAO, Qixin WAN, Jiangnan DAI, Jun ZHANG, Feng WU, Shuai WANG, Hanling LONG, Jingwen CHEN, Cheng CHEN, Changqing CHEN. Diluted magnetic characteristics of Ni-doped AlN films via ion implantation[J]. Front. Optoelectron., 2017, 10(4): 363-369.
[9] Feng GAO, Yuchun LIU, Yan XIONG, Ping WU, Bin HU, Ling XU. Fabricate organic thermoelectric modules use modified PCBM and PEDOT:PSS materials[J]. Front. Optoelectron., 2017, 10(2): 117-123.
[10] Dong XU, Sheng YIN, Xiangbin ZENG, Song YANG, Xixing WEN. Structural, optical and electrical properties of ZnO: B thin films with different thickness for bifacial a-Si:H/c-Si heterojunction solar cells[J]. Front. Optoelectron., 2017, 10(1): 31-37.
[11] Xiao HU,Xingheng XIA,Lei ZHOU,Lirong ZHANG,Weijing WU. Design of compensation pixel circuit with In-Zn-O thin film transistor for active-matrix organic light-emitting diode 3D display[J]. Front. Optoelectron., 2017, 10(1): 45-50.
[12] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[13] Yanxiong E,Zhibiao HAO,Jiadong YU,Chao WU,Lai WANG,Bing XIONG,Jian WANG,Yanjun HAN,Changzheng SUN,Yi LUO. Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE[J]. Front. Optoelectron., 2016, 9(2): 318-322.
[14] Yangang BI,Jinhai JI,Yang CHEN,Yushan LIU,Xulin ZHANG,Yunfei LI,Ming XU,Yuefeng LIU,Xiaochi HAN,Qiang GAO,Hongbo SUN. Dual-periodic-microstructure-induced color tunable white organic light-emitting devices[J]. Front. Optoelectron., 2016, 9(2): 283-289.
[15] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed