|
|
High-performance and current crowding-free InGaN-GaN-based LEDs integrated by an electrically-reverse-connected Schottky diode and a Mg-delta doped p-GaN |
Sei-Min KIM, Seon-Ho JANG, Ja-Soon JANG( ) |
Department of Electronic Engineering, LED-IT Fusion Technology Research Center (LIFTRC), Yeungnam University, Gyeongbuk 712–749, Korea |
|
|
Abstract This work demonstrates high-performance and current crowding-free InGaN/GaN light-emitting diodes (LEDs) using an electrically-reverse-connected Schottky diode (SD) and an Mg-delta (δ) doped layer. Possible mechanism of carrier transport at the interface between transparent conducting electrode (TCE) and p-GaN with the δ-doped layer is also investigated. Results show that the LED with the SD and Mg delta (δ)-doping layer yields lower series resistance, higher output power, and lower reverse leakage current compared to normal LEDs. In addition, unlike the normal LED, there is no occurrence for the current crowding effect in the proposed LED even at high current density of 380 mA/cm2. These remarkable behaviours clearly indicate that the use of the SD and δ-doping in the p-GaN region is very promising to achieve high-brightness and excellent-reliability GaN-based LEDs.
|
Keywords
GaN
light-emitting diode (LED)
Schottky diode (SD)
integration
current crowding
|
Corresponding Author(s):
JANG Ja-Soon,Email:jsjang@ynu.ac.kr
|
Issue Date: 05 June 2012
|
|
1 |
Nakamura S, Senoh S, Iwasa N, Nagahama S. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Japanese Journal of Applied Physics , 1995, 34(Part 2, No. 7A): L797-L799 doi: 10.1143/JJAP.34.L797
|
2 |
Pearton S J, Zolper J C, Shul R J, Ren F. GaN: processing, defects, and devices. Journal of Applied Physics , 1999, 86(1): 1-78 doi: 10.1063/1.371145
|
3 |
Guo X, Schubert E F. Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates. Applied Physics Letters , 2001, 78(21): 3337 doi: 10.1063/1.1372359
|
4 |
Wu J Q. When group-III nitrides go infrared: new properties and perspectives. Journal of Applied Physics , 2009, 106(1): 011101 doi: 10.1063/1.3155798
|
5 |
Sheu J K, Chi G C, Jou M J. Low-operation voltage of InGaN/GaN light-emitting diodes by using a Mg-doped Al0.15/Ga0.85/N/GaN superlattice. IEEE Electron Device Letters , 2001, 22(4): 160-162 doi: 10.1109/55.915597
|
6 |
Jang J S, Kim D, Seong T Y. Low turn-on voltage and series resistance of polarization-induced InGaN-GaN LEDs by using p-InGaN/p-GaN superlattice. IEEE Photonics Technology Letters , 2006, 18(4): 1536-1538 doi: 10.1109/LPT.2006.877621
|
7 |
Jang J S, Sohn S J, Kim D, Seong T Y. Formation of low-resistance transparent Ni/Au ohmic contacts to a polarization field-induced p-InGaN/GaN superlattice. Semiconductor Science and Technology , 2006, 21(5): L37-L39 doi: 10.1088/0268-1242/21/5/L01
|
8 |
Liu Y J, Tsai T Y, Yen C H, Chen L Y, Tsai T H, Liu W C. Characteristics of a GaN-based light-emitting diode with an inserted p-GaN/i-InGaN superlattice structure. IEEE Journal of Quantum Electronics , 2010, 46(4): 492-498 doi: 10.1109/JQE.2009.2037337
|
9 |
Liu Y J, Guo D F, Chu K Y, Cheng S Y, Liou J K, Chen L Y, Tsai T H, Huang C C, Chen T Y, Hsu C S, Tsai T Y, Liu W C. Improved current-spreading performance of an InGaN-based light-emitting diode with a clear p-GaN/n-GaN barrier junction. Displays , 2011, 32(5): 330-333 doi: 10.1016/j.displa.2011.04.004
|
10 |
Jang J S. High output power GaN-based light-emitting diodes using an electrically reverse-connected p-Schottky diode and p-InGaN–GaN superlattice. Applied Physics Letters , 2008, 93(8): 081118 doi: 10.1063/1.2977471
|
11 |
Hsu C Y, Lan W H, Wu W S. Effect of thermal annealing of Ni/Au ohmic contact on the leakage current of GaN based light emitting diodes. Applied Physics Letters , 2003, 83(12): 2447 doi: 10.1063/1.1601306
|
12 |
Li D S, Chen H, Yu H B, Jia H Q, Huang Q, Zhou J M. Dependence of leakage current on dislocations in GaN-based light-emitting diodes. Journal of Applied Physics , 2004, 96(2): 1111 doi: 10.1063/1.1763234
|
13 |
Lin Y J. Application of the thermionic field emission model in the study of a Schottky barrier of Ni on p-GaN from current-voltage measurements. Applied Physics Letters , 2005, 86(12): 122109 doi: 10.1063/1.1890476
|
14 |
Pan Y B, Yang Z J, Lu Y, Lu M, Hu C Y, Yu T J, Hu X D, Zhang C Y. Improvement of properties of p-GaN by Mg delta doping. Chinese Physics Letters , 2004, 21(10): 2016 doi: 10.1088/0256-307X/21/10/042
|
15 |
Wang H, Liu J, Niu N, Shen G, Zhang S. Enhanced performance of p-GaN by Mg doping. Journal of Crystal Growth , 2007, 304(1): 7-10 doi: 10.1016/j.jcrysgro.2007.01.040
|
16 |
Bayram C, Pau J L, McClintock R, Razeghi M. Delta-doping optimization for high quality p-type GaN. Journal of Applied Physics , 2008, 104(8): 083512 doi: 10.1063/1.3000564
|
17 |
Park H Y, Jeon K N, Kim K. Mg delta-doping effect on a deep hole center related to electrical activation of a p-type GaN thin film. Transactions on Electrical and Electronic Materials , 2010, 11(1): 37-41 doi: 10.4313/TEEM.2010.11.1.037
|
18 |
Marlow G S, Das M B. The effects of contact size and non-zero metal resistance on the determination of specific contact resistance. Solid-State Electronics , 1982, 25(2): 91-94 doi: 10.1016/0038-1101(82)90036-3
|
19 |
Jang J S, Seong T Y, Jeon S R. Formation mechanisms of low-resistance and thermally stable Pd∕Ni∕Pd∕Ru Ohmic contacts to Mg-doped Al 0.15Ga0.85N. Applied Physics Letters , 2007, 91(9): 092129 doi: 10.1063/1.2778452
|
20 |
Jang J S, Seong T Y. Electronic transport mechanisms of nonalloyed Pt Ohmic contacts to p-GaN. Applied Physics Letters , 2000, 76(19): 2743 doi: 10.1063/1.126462
|
21 |
Jang S H,Jang J S. (unpublished)
|
22 |
Jang J S, Chang I S, Kim H K, Seong T Y, Lee S H, Park S J. Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN. Applied Physics Letters , 1999, 74(1): 70 doi: 10.1063/1.123954
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|