Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (3) : 330-333    https://doi.org/10.1007/s12200-012-0268-8
RESEARCH ARTICLE
All-optical format conversion from RZ-QPSK to NRZ-QPSK
Bingrong ZOU, Yu YU(), Wenhan WU, Shoujin HU, Zheng ZHANG, Xinliang ZHANG
Wuhan National Laboratory for Optoelectronics, College of Optoelectonic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(411 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We proposed and demonstrated an all-optical format conversion from return-to-zero quadrature phase shift keying (RZ-QPSK) to non-return-to-zero QPSK (NRZ-QPSK) at 40 Gb/s using a half bit delay interferometer (DI). Due to the constructive interference in the DI, the format conversion was achieved with the phase information preserved. Q penalty for the format conversion was less than 1.8 dB for I and Q data.

Keywords format conversion      fiber optics communications      modulation     
Corresponding Author(s): YU Yu,Email:yuyu@mail.hust.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Yu YU,Wenhan WU,Xinliang ZHANG, et al. All-optical format conversion from RZ-QPSK to NRZ-QPSK[J]. Front Optoelec, 2012, 5(3): 330-333.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0268-8
https://academic.hep.com.cn/foe/EN/Y2012/V5/I3/330
Fig.1  Experimental setup and operation principle for format conversion from RZ-QPSK to NRZ-QPSK
Fig.2  Measured spectrum for format conversion. (a)-(c) Spectrum of original input RZ-QPSK signal, demodulated and signal; (d) - (f) spectrum of converted NRZ-QPSK signal, demodulated and signal of NRZ-QPSK
Fig.3  Eye diagrams of (a) back to back NRZ-QPSK signals modulated by a regular commercial QPSK modulator and the demodulated; (b) alternative mark inversion (AMI); (c) duobinary (DB) signal of the ; (d) AMI and (e) DB signal of the of original NRZ-QPSK. Eye diagrams of (f) original RZ-QPSK signals and the demodulated; (g) AMI and (h) DB signal of the ; (i) AMI and (j) DB signal of the of original RZ-QPSK. Eye diagrams of (k) converted NRZ-QPSK signals and the demodulated; (l) AMI; (m) DB signal of the ; (n) AMI and (o) DB signal of the of converted NRZ-QPSK
demodulated signalIAMIIDBQAMIQDB
Q penatly1.71 dB1.28 dB1 dB0.74 dB
Tab.1  factor penalty results for the QPSK format conversions for and data
1 Rouskas G, Perros H. A tutorial on optical networks. Advanced lectures on networking , 2002, 2497: 496-500
2 Gnauck A, Winzer P J. Optical phase-shift-keyed transmission. Lightwave Technology, Journal of , 2005, 23(1): 115-130
doi: 10.1109/JLT.2004.840357
3 Winzer P J, Raybon G, Song H, Adamiecki A, Corteselli S, Gnauck A H, Fishman D A, Doerr C R, Chandrasekhar S, Buhl L L, Xia T J, Wellbrock G, Lee W, Basch B, Kawanishi T, Higuma K, Painchaud Y. 100-Gb/s DQPSK transmission: from laboratory experiments to field trials. Journal of Lightwave Technology , 2008, 26(20): 3388-3402
doi: 10.1109/JLT.2008.925710
4 van den Borne D, Jansen S L, Gottwald E, Schmidt E D, Khoe G D, de Waardt H. DQPSK modulation for robust optical transmission. In: Proceedings of 2008 OFC/NFOEC . Berlin: Springer, 2008, OMQ1
5 Yu Y, Zhang X, Huang D, Li L, Fu W. 20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals. Photonics Technology Letters, IEEE , 2007, 19(14): 1027-1029
doi: 10.1109/LPT.2007.898762
6 Yu Y, Zhang X, Huang D. Simultaneous all-optical multi-channel RZ and CSRZ to NRZ format conversion. Optics Communications , 2010, 284(1): 129-135
7 Zhang Z, Yu Y, Zhang X. Simultaneous all-optical demodulation and format conversion for multi-channel (CS) RZ-DPSK signals. Optics Express , 2011, 19(13): 12427-12433
doi: 10.1364/OE.19.012427 pmid:21716481
[1] Yan ZHU, Yining MU, Fanqi TANG, Peng DU, Hang REN. A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam[J]. Front. Optoelectron., 2020, 13(3): 291-302.
[2] Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Front. Optoelectron., 2020, 13(2): 114-128.
[3] Tianliang WANG, Xiaoying LIU. A novel modulation format identification based on amplitude histogram space[J]. Front. Optoelectron., 2019, 12(2): 190-196.
[4] Juhao LI, Zhongying WU, Dawei GE, Jinglong ZHU, Yu TIAN, Yichi ZHANG, Jinyi YU, Zhengbin LI, Zhangyuan CHEN, Yongqi HE. Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection[J]. Front. Optoelectron., 2019, 12(1): 31-40.
[5] Jacqueline GUNTHER, Stefan ANDERSSON-ENGELS. Review of current methods of acousto-optical tomography for biomedical applications[J]. Front. Optoelectron., 2017, 10(3): 211-238.
[6] Liu YANG, Fengguang LUO. Generation and transmission analysis of 4-ary frequency shift keying based on dual-parallel Mach-Zehnder modulator[J]. Front. Optoelectron., 2017, 10(2): 160-165.
[7] Liu YANG,Fengguang LUO. Novel frequency shift keying modulation based on fiber Bragg gratings and intensity modulators[J]. Front. Optoelectron., 2016, 9(4): 616-620.
[8] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[9] Xinliang ZHANG,Zhao WU. Linear optical signal processing with optical filters: a tutorial[J]. Front. Optoelectron., 2016, 9(3): 377-389.
[10] Anjin LIU,Dieter BIMBERG. Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects[J]. Front. Optoelectron., 2016, 9(2): 249-258.
[11] Xiaoping ZHENG,Shangyuan LI,Hanyi ZHANG,Bingkun ZHOU. Researches in microwave photonics based packages for millimeter wave system with wide bandwidth and large dynamic range[J]. Front. Optoelectron., 2016, 9(2): 186-193.
[12] Ming LI,Ninghua ZHU. Recent advances in microwave photonics[J]. Front. Optoelectron., 2016, 9(2): 160-185.
[13] Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Front. Optoelectron., 2015, 8(1): 27-43.
[14] Ming LI,José AZA?A,Ninghua ZHU,Jianping YAO. Recent progresses on optical arbitrary waveform generation[J]. Front. Optoelectron., 2014, 7(3): 359-375.
[15] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed