Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2013, Vol. 8 Issue (4) : 461-466    https://doi.org/10.1007/s11467-013-0339-3
RESEARCH ARTICLE
Robustness of critical points in a complex adaptive system: Effects of hedge behavior
Yuan Liang梁源1,2, Ji-Ping Huang黄吉平1()
1. Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China; 2. Department of Physics, College of Science, Donghua University, Shanghai 201602, China
 Download: PDF(582 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In our recent papers, we have identified a class of phase transitions in the market-directed resourceallocation game, and found that there exists a critical point at which the phase transitions occur. The critical point is given by a certain resource ratio. Here, by performing computer simulations and theoretical analysis, we report that the critical point is robust against various kinds of human hedge behavior where the numbers of herds and contrarians can be varied widely. This means that the critical point can be independent of the total number of participants composed of normal agents, herds and contrarians, under some conditions. This finding means that the critical points we identified in this complex adaptive system (with adaptive agents) may also be an intensive quantity, similar to those revealed in traditional physical systems (with non-adaptive units).

Keywords complex adaptive system      phase transition      resource allocation      hedge behavior      agentbased simulation     
Corresponding Author(s): Ji-Ping Huang黄吉平,Email:jphuang@fudan.edu.cn   
Issue Date: 01 August 2013
 Cite this article:   
Yuan Liang梁源,Ji-Ping Huang黄吉平. Robustness of critical points in a complex adaptive system: Effects of hedge behavior[J]. Front. Phys. , 2013, 8(4): 461-466.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0339-3
https://academic.hep.com.cn/fop/EN/Y2013/V8/I4/461
1 W. Wang, Y. Chen, and J. P. Huang, Heterogeneous preferences, decision-Making capacity and phase transitions in a complex adaptive system, Proc. Natl. Acad. Sci. USA , 2009, 106(21): 8423
doi: 10.1073/pnas.0811782106 pmid:19435846
2 L. Zhao, G. Yang, W. Wang, Y. Chen, J. P. Huang, H. Ohashi, and H. E. Stanley, Herd behavior in a complex adaptive system, Proc. Natl. Acad. Sci. USA , 2011, 108(37): 15058
doi: 10.1073/pnas.1105239108 pmid:21876133
3 Y. Liang, K. N. An, G. Yang, and J. P. Huang, Contrarian behavior in a complex adaptive system, Phys. Rev. E , 2013, 87(1): 012809
doi: 10.1103/PhysRevE.87.012809
4 L. Guo, Y. F. Chang, and X. Cai, The evolution of opinions on scalefree networks, Front. Phys. China , 2006, 1(4): 506
doi: 10.1007/s11467-006-0054-4
5 J. Zhou and Z. H. Liu, Epidemic spreading in complex networks, Front. Phys. China , 2008, 3(3): 331
doi: 10.1007/s11467-008-0027-x
6 J. L. Ma and F. T. Ma, Solitary wave solutions of nonlinear financial markets: Data-modeling-concept-practicing, Front. Phys. China , 2007, 2(3): 368
doi: 10.1007/s11467-007-0047-y
7 J. Q. Fang, Q. Bi, and Y. Li, Advances in theoretical models of network science, Front. Phys. China , 2007, 2(1): 109
doi: 10.1007/s11467-007-0006-7
8 J. H. Holland, Adaptation in Natural and Artificial Systems, Cambridge, MA: MIT Press , 1992
9 W. B. Arthur, Inductive reasoning and bounded rationality (The El Farol problem), Am. Econ. Assoc. Papers Proc. , 1994, 84: 406
10 D. Challet and Y. C. Zhang, Emergence of cooperation and organization in an evolutionary game, Physica A , 1997, 246(3–4): 407
doi: 10.1016/S0378-4371(97)00419-6
11 N. F. Johnson, P. Jefferies, and P. M. Hui, Financial Market Complexity, Oxford: Oxford University Press, 2003
doi: 10.1093/acprof:oso/9780198526650.001.0001
12 L. Tesfatsion, Agent-based computational economics: Modeling economies as complex adaptive systems, Inform. Sci. , 2003, 149(4): 263
doi: 10.1016/S0020-0255(02)00280-3
13 J. D. Farmer and D. Foley, The economy needs agent-based modeling, Nature , 2009, 460(7256): 685
doi: 10.1038/460685a1 pmid:9661896
14 L. X. Zhong, D. F. Zheng, B. Zheng, and P. M. Hui, Effects of contrarians in the minority game, Phys. Rev. E , 2005, 72(2): 026134
doi: 10.1103/PhysRevE.72.026134 pmid:16196671
15 Q. Li, L. A. Braunstein, S. Havlin, and H. E. Stanley, Strategy of competition between two groups based on an inflexible contrarian opinion model, Phys. Rev. E , 2011, 84(6): 066101
pmid:22304149
[1] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[2] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[3] Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications[J]. Front. Phys. , 2021, 16(1): 13301-.
[4] Lu Qi, Guo-Li Wang, Shutian Liu, Shou Zhang, Hong-Fu Wang. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice[J]. Front. Phys. , 2021, 16(1): 12503-.
[5] Jin-Bo Wang, Rao Huang, Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles[J]. Front. Phys. , 2019, 14(6): 63604-.
[6] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
[7] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[8] Gui-Lei Zhu, Xin-You Lü, Shang-Wu Bin, Cai You, Ying Wu. Entanglement and excited-state quantum phase transition in an extended Dicke model[J]. Front. Phys. , 2019, 14(5): 52602-.
[9] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[10] Zhi Lin, Wanli Liu. Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices[J]. Front. Phys. , 2018, 13(5): 136402-.
[11] Jian Lv, Xin Yang, Dan Xu, Yu-Xin Huang, Hong-Bo Wang, Hui Wang. High-pressure polymorphs of LiPN2: A first-principles study[J]. Front. Phys. , 2018, 13(5): 136104-.
[12] Xia Huang, Jin Dong, Wen-Jing Jia, Zhi-Gang Zheng, Can Xu. Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling[J]. Front. Phys. , 2018, 13(5): 130506-.
[13] Kai-Tong Wang, Fuming Xu, Yanxia Xing, Hong-Kang Zhao. Evolution of individual quantum Hall edge states in the presence of disorder[J]. Front. Phys. , 2018, 13(4): 137306-.
[14] Zhi Lin, Jun Zhang, Ying Jiang. Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method[J]. Front. Phys. , 2018, 13(4): 136401-.
[15] Ning Liang, Fan Zhong. Renormalization group theory for temperature-driven first-order phase transitions in scalar models[J]. Front. Phys. , 2017, 12(6): 126403-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed