|
|
Computational study on the half-metallicity in transition metal–oxide-incorporated 2D g-C3N4 nanosheets |
Qian Gao (高乾)1, Hui-Li Wang (王会丽)1, Li-Fu Zhang (张丽芙)1, Shuang-Lin Hu (胡双林)2( ), Zhen-Peng Hu (胡振芃)1( ) |
1. School of Physics, Nankai University, Tianjin 300071, China 2. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China |
|
|
Abstract In this study, based on the first-principles calculations, we systematically investigated the electronic and magnetic properties of the transition metal–oxide-incorporated 2D g-C3N4 nanosheet (labeled C3N4– TM–O, TM= Sc–Mn). The results suggest that the TM–O binds to g-C3N4 nanosheets strongly for all systems. We found that the 2D C3N4–TM–O framework is ferromagnetic for TM= Sc, Ti, V, Cr, while it is antiferromagnetic for TM= Mn. All the ferromagnetic systems exhibit the half-metallic property. Furthermore, Monte Carlo simulations based on the Heisenberg model suggest that the Curie temperatures (Tc) of the C3N4–TM–O (TM= Sc, Ti, V, Cr) framework are 169 K, 68 K, 203 K, and 190 K, respectively. Based on Bader charge analysis, we found that the origin of the half-metallicity at Fermi energy can be partially attributed to the transfer of electrons from TM atoms to the g-C3N4 nanosheet. In addition, we found that not only electrons but also holes can induce half-metallicity for 2D g-C3N4 nanosheets, which may help to understand the origin of half-metallicity for graphitic carbon nitride.
|
Keywords
half-metallicity
first-principles
g-C3N4
Curie-temperature
|
Corresponding Author(s):
Shuang-Lin Hu (胡双林),Zhen-Peng Hu (胡振芃)
|
Issue Date: 24 April 2018
|
|
1 |
R. A. de Groot, F. M. Mueller, P. G. Engen, and K. H. J. Buschow, New class of materials: Half-metallic ferromagnets,Phys. Rev. Lett. 50(25), 2024 (1983)
https://doi.org/10.1103/PhysRevLett.50.2024
|
2 |
I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Slater-Pauling behavior and origin of the halfmetallicity of the full-Heusler alloys, Phys. Rev. B 66(17), 174429 (2002)
https://doi.org/10.1103/PhysRevB.66.174429
|
3 |
K. Schwarz, CrO2 predicted as a half-metallic ferromagnet, J. Phys. F Met. Phys. 16(9), L211 (1986)
https://doi.org/10.1088/0305-4608/16/9/002
|
4 |
M. Sakamaki, T. Konishi, and Y. Ohta, K2Cr8O16 predicted as a half-metallic ferromagnet: Scenario for a metal-insulator transition, Phys. Rev. B 80(2), 024416 (2009)
https://doi.org/10.1103/PhysRevB.80.024416
|
5 |
J. H. Park, E. Vescovo, H. J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Direct evidence for a half-metallic ferromagnet, Nature 392(6678), 794 (1998)
https://doi.org/10.1038/33883
|
6 |
Q. Yao, M. Lu, Y. Du, F. Wu, K. Deng, and E. Kan, Designing half-metallic ferromagnetism by a new strategy: An example of superhalogen modified graphitic C3N4, J. Mater. Chem. C 6(7), 1709 (2018)
https://doi.org/10.1039/C7TC05087A
|
7 |
X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8(1), 76 (2009)
https://doi.org/10.1038/nmat2317
|
8 |
W.J. Ong, L.L. Tan, Y. H. Ng, S.T. Yong, and S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159 (2016)
https://doi.org/10.1021/acs.chemrev.6b00075
|
9 |
F. Wu, Y. Liu, G. Yu, D. Shen, Y. Wang, and E. Kan, Visible-light-absorption in graphitic C3N4 bilayer: Enhanced by interlayer coupling, J. Phys. Chem. Lett. 3(22), 3330 (2012)
https://doi.org/10.1021/jz301536k
|
10 |
X. Li and J. Yang, Low-dimensional half-metallic materials: Theoretical simulations and design, WIREs. Comput. Mol. Sci. 7(4), e1314 (2017)
https://doi.org/10.1002/wcms.1314
|
11 |
X. Li and X. Wu, Two-dimensional monolayer designs for spintronics applications, WIREs. Comput. Mol. Sci. 6(4), 441 (2016)
https://doi.org/10.1002/wcms.1259
|
12 |
P. Qiu, H. Chen, C. Xu, N. Zhou, F. Jiang, X. Wang, and Y. Fu, Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst, J. Mater. Chem. A 3(48), 24237 (2015)
https://doi.org/10.1039/C5TA08406G
|
13 |
X. She, H. Xu, Y. Xu, J. Yan, J. Xia, L. Xu, Y. Song, Y. Jiang, Q. Zhang, and H. Li, Exfoliated graphene-like carbon nitride in organic solvents: Enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+, J. Mater. Chem. A 2(8), 2563 (2014)
https://doi.org/10.1039/c3ta13768f
|
14 |
Q. Y. Lin, L. Li, S. J. Liang, M. H. Liu, J. H. Bi, and L. Wu, Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities, Appl. Catal. B 163, 135 (2015)
https://doi.org/10.1016/j.apcatb.2014.07.053
|
15 |
Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, and L. Qu, Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution, ACS Nano 10(2), 2745 (2016)
https://doi.org/10.1021/acsnano.5b07831
|
16 |
D. Gao, Y. Liu, P. Liu, M. Si, and D. Xue, Atomically thin B doped g-C3N4 nanosheets: High-temperature ferromagnetism and calculated half-metallicity, Sci. Rep. 6(1), 35768 (2016)
https://doi.org/10.1038/srep35768
|
17 |
I. Choudhuri, G. Bhattacharyya, S. Kumar, and B. Pathak, Metal-free half-metallicity in a high energy phase C-doped gh-C3N4 system: A high Curie temperature planar system, J. Mater. Chem. C 4(48), 11530 (2016)
https://doi.org/10.1039/C6TC04163A
|
18 |
Y. Zhang, Z. Wang, and J. Cao, Prediction of magnetic anisotropy of 5d transition metal-doped g-C3N4, J. Mater. Chem. C 2(41), 8817 (2014)
https://doi.org/10.1039/C4TC01239A
|
19 |
D. Ghosh, G. Periyasamy, B. Pandey, and S. K. Pati, Computational studies on magnetism and the optical properties of transition metal embedded graphitic carbon nitride sheets, J. Mater. Chem. C 2(37), 7943 (2014)
https://doi.org/10.1039/C4TC01385A
|
20 |
I. Choudhuri, S. Kumar, A. Mahata, K. S. Rawat, and B. Pathak, Transition-metal embedded carbon nitride monolayers: high-temperature ferromagnetism and half-metallicity, Nanoscale 8(29), 14117 (2016)
https://doi.org/10.1039/C6NR03282F
|
21 |
D. Gao, Q. Xu, J. Zhang, Z. Yang, M. Si, Z. Yan, and D. Xue, Defect-related ferromagnetism in ultrathin metalfree g-C3N4 nanosheets, Nanoscale 6(5), 2577 (2014)
https://doi.org/10.1039/c3nr04743a
|
22 |
D. Ghosh, G. Periyasamy, and S. K. Pati, Transition metal embedded two-dimensional C3N4–graphene nanocomposite: A multifunctional material, J. Phys. Chem. C 118(28), 15487 (2014)
https://doi.org/10.1021/jp503367v
|
23 |
A. J. Du, S. Sanvito, and S. C. Smith, First-principles prediction of metal-free magnetism and intrinsic halfmetallicity in graphitic carbon nitride, Phys. Rev. Lett. 108(19), 197207 (2012)
https://doi.org/10.1103/PhysRevLett.108.197207
|
24 |
J. S. Lee, X. Wang, H. Luo, and S. Dai, Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids, Adv. Mater. 22(9), 1004 (2010)
https://doi.org/10.1002/adma.200903403
|
25 |
H. Li, W. Chen, X. Shen, J. Liu, X. Huang, and G. Yu, Adsorbing the 3d-transition metal atoms to effectively modulate the electronic and magnetic behaviors of zigzag SiC nanoribbons, Phys. Chem. Chem. Phys. 19(5), 3694 (2017)
https://doi.org/10.1039/C6CP06717D
|
26 |
I. Choudhuri, P. Garg, and B. Pathak, TM@gt- C3N3 monolayers: High-temperature ferromagnetism and high anisotropy, J. Mater. Chem. C 4(35), 8253 (2016)
https://doi.org/10.1039/C6TC03030K
|
27 |
J. Zhou and Q. Sun, Magnetism of phthalocyaninebased organometallic single porous sheet, J. Am. Chem. Soc. 133(38), 15113 (2011)
https://doi.org/10.1021/ja204990j
|
28 |
Q. Sun, Y. Dai, Y. Ma, X. Li, W. Wei, and B. Huang, Two-dimensional metalloporphyrin monolayers with intriguing electronic and spintronic properties, J. Mater. Chem. C 3(26), 6901 (2015)
https://doi.org/10.1039/C5TC01493J
|
29 |
F. Wu, R. Tjornhammar, E. Kan, and Z. Li, A firstprinciples study on the electronic structure of onedimensional [TM(Bz)]∞ polymer (TM= Y, Zr, Nb, Mo, and Tc), Front. Phys. 4(3), 403 (2009)
https://doi.org/10.1007/s11467-009-0054-2
|
30 |
D. Wang, Z. Yang, L. C. Xu, X. Liu, R. Liu, and X. Li, The magnetic and half-metal properties of iron clusters adsorbed on armchair graphene nanoribbon, Comput. Theor. Chem. 1062, 84 (2015)
https://doi.org/10.1016/j.comptc.2015.03.019
|
31 |
K. Pi, K. M. McCreary, W. Bao, W. Han, Y. F. Chiang, Y. Li, S. W. Tsai, C. N. Lau, and R. K. Kawakami, Electronic doping and scattering by transition metals on graphene, Phys. Rev. B 80(7), 075406 (2009)
https://doi.org/10.1103/PhysRevB.80.075406
|
32 |
X. Lu, K. Xu, S. Tao, Z. Shao, X. Peng, W. Bi, P. Chen, H. Ding, W. Chu, C. Wu, and Y. Xie, Engineering the electronic structure of two-dimensional subnanopore nanosheets using molecular titanium-oxide incorporation for enhanced photocatalytic activity, Chem. Sci. 7(2), 1462 (2016)
https://doi.org/10.1039/C5SC03551A
|
33 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
34 |
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
|
35 |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
36 |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
|
37 |
V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+ Umethod, J. Phys.: Condens. Matter 9(4), 767 (1997)
https://doi.org/10.1088/0953-8984/9/4/002
|
38 |
P. M. Panchmatia, B. Sanyal, and P. M. Oppeneer, GGA+ Umodeling of structural, electronic, and magnetic properties of iron porphyrin-type molecules, Chem. Phys. 343(1), 47 (2008)
https://doi.org/10.1016/j.chemphys.2007.10.030
|
39 |
H. J. Xiang, S. H. Wei, and M. H. Whangbo, Origin of the structural and magnetic anomalies of the layered compound SrFeO2: A density functional investigation, Phys. Rev. Lett. 100(16), 167207 (2008)
https://doi.org/10.1103/PhysRevLett.100.167207
|
40 |
X. Li, X. Wu, and J. Yang, Room-temperature halfmetallicity in La(Mn, Zn)AsO alloy via element substitutions, J. Am. Chem. Soc. 136(15), 5664 (2014)
https://doi.org/10.1021/ja412317s
|
41 |
Q. Gao, S. Hu, Y. Du, and Z. Hu, The origin of the enhanced photocatalytic activity of carbon nitride nanotubes: A first-principles study, J. Mater. Chem. A 5(10), 4827 (2017)
https://doi.org/10.1039/C6TA09747B
|
42 |
Y. Chen, B. Wang, S. Lin, Y. Zhang, and X. Wang, Activation of n→π* transitions in two-dimensional conjugated polymers for visible light photocatalysis, J. Phys. Chem. C 118(51), 29981 (2014)
https://doi.org/10.1021/jp510187c
|
43 |
E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman, Improved grid-based algorithm for Bader charge allocation, J. Comput. Chem. 28(5), 899 (2007)
https://doi.org/10.1002/jcc.20575
|
44 |
G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36(3), 354 (2006)
https://doi.org/10.1016/j.commatsci.2005.04.010
|
45 |
F. Wu, C. Huang, H. Wu, C. Lee, K. Deng, E. Kan, and P. Jena, Atomically thin transition-metal dinitrides: High-temperature ferromagnetism and half-metallicity, Nano Lett. 15(12), 8277 (2015)
https://doi.org/10.1021/acs.nanolett.5b03835
|
46 |
M. Zhao, A. Wang, and X. Zhang, Half-metallicity of a kagome spin lattice: The case of a manganese bisdithiolene monolayer, Nanoscale 5(21), 10404 (2013)
https://doi.org/10.1039/c3nr03323f
|
47 |
H. K. Singh, P. Kumar, and U. V. Waghmare, Theoretical prediction of a stable 2D crystal of vanadium porphyrin: A half-metallic ferromagnet, J. Phys. Chem. C 119(45), 25657 (2015)
https://doi.org/10.1021/acs.jpcc.5b09763
|
48 |
W. Li, L. Sun, J. Qi, P. Jarillo-Herrero, M. Dinca, and J. Li, High temperature ferromagnetism in π-conjugated two-dimensional metal-organic frameworks, Chem. Sci. 8(4), 2859 (2017)
https://doi.org/10.1039/C6SC05080H
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|