Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (2) : 23606    https://doi.org/10.1007/s11467-018-0873-0
RESEARCH ARTICLE
A theoretical study of step edge geometry on sapphire(0001) and its effect on ZnO nucleation
Ping Yang, Li-Xin Zhang()
School of Physics, Nankai University, Tianjin 300071, china
 Download: PDF(10115 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Step-edge-induced nucleation plays a key role in controlling the growth of novel nanostructures and low-dimensional materials. However, it is difficult to experimentally determine the step edge structures of complex metal oxides. In this work, we present a detailed theoretical study of the stability of stoichiometric steps on sapphire(0001). Based on first-principles calculations and excess charge computation by Finnis’ approach, a pair of non-polar step edges are determined to be the most stable. By studying the adsorption characteristics of ZnO and combining previous works, we successfully explained how growth temperature and deposition rate affect the in-plane orientation of ZnO grown on sapphire(0001). The knowledge on the step edge structures and nucleation patterns would benefit the study on step-edge-guided nanostructure growth.

Keywords stepped sapphire surface      first-principles      excess charge      step-edge-induced nucleation     
Corresponding Author(s): Li-Xin Zhang   
Issue Date: 29 November 2018
 Cite this article:   
Ping Yang,Li-Xin Zhang. A theoretical study of step edge geometry on sapphire(0001) and its effect on ZnO nucleation[J]. Front. Phys. , 2019, 14(2): 23606.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0873-0
https://academic.hep.com.cn/fop/EN/Y2019/V14/I2/23606
1 I. Akasaki, Nobel Lecture: Fascinated journeys into blue light, Rev. Mod. Phys. 87(4), 1119 (2015)
https://doi.org/10.1103/RevModPhys.87.1119
2 U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98(4), 041301 (2005)
https://doi.org/10.1063/1.1992666
3 M. Yoshimoto, T. Maeda, T. Ohnishi, H. Koinuma, O. Ishiyama, M. Shinohara, M. Kubo, R. Miura, and A. Miyamoto, Atomic-scale formation of ultrasmooth surfaces on sapphire substrates for high-quality thin-film fabrication, Appl. Phys. Lett. 67(18), 2615 (1995)
https://doi.org/10.1063/1.114313
4 C. C. Kim, J. H. Je, P. Ruterana, F. Degave, G. Nouet, M. S. Yi, D. Y. Noh, and Y. Hwu, Microstructures of GaN islands on a stepped sapphire surface, J. Appl. Phys. 91(7), 4233 (2002)
https://doi.org/10.1063/1.1459607
5 C. Munuera, J. Zúñiga-Pérez, J. F. Rommeluere, V. Sallet, R. Triboulet, F. Soria, V. Muñoz-Sanjosé, and C. Ocal, Morphology of ZnO grown by MOCVD on sapphire substrates, J. Cryst. Growth 264(1–3), 70 (2004)
https://doi.org/10.1016/j.jcrysgro.2003.12.056
6 I. Ohkubo, A. Ohtomo, T. Ohnishi, Y. Mastumoto, H. Koinuma, and M. Kawasaki, In-plane and polar orientations of ZnO thin films grown on atomically flat sapphire, Surf. Sci. 443(1–2), L1043 (1999)
https://doi.org/10.1016/S0039-6028(99)01024-9
7 D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O. L. Sanchez, Y. C. Kung, D. Krasnozhon, M. W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, Largearea epitaxial monolayer MoS2, ACS Nano 9(4), 4611 (2015)
https://doi.org/10.1021/acsnano.5b01281
8 J. Y. Son, S. J. Lim, J. H. Cho, W. K. Seong, and H. Kim, Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor, Appl. Phys. Lett. 93(5), 053109 (2008)
https://doi.org/10.1063/1.2967871
9 K. Fujiwara, A. Ishii, T. Ebisuzaki, T. Abe, and K. Ando, Theoretical investigation on the structural properties of ZnO grown on sapphire, e-J. Surf. Sci. Nanotech. 4, 544 (2006)
https://doi.org/10.1380/ejssnt.2006.544
10 C. Yang, Y. R. Li, and J. S. Li, Ab initio total energy study of ZnO adsorption on a sapphire (0001) surface, Phys. Rev. B 70(4), 045413 (2004)
https://doi.org/10.1103/PhysRevB.70.045413
11 J. Ohta, H. Fujioka, M. Oshima, K. Fujiwara, and A. Ishii, Experimental and theoretical investigation on the structural properties of GaN grown on sapphire, Appl. Phys. Lett. 83(15), 3075 (2003)
https://doi.org/10.1063/1.1618379
12 L. Chen, B. Liu, M. Ge, Y. Ma, A. N. Abbas, and C. Zhou, Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode, ACS Nano 9(8), 8368 (2015)
https://doi.org/10.1021/acsnano.5b03043
13 A. Ismach, L. Segev, E. Wachtel, and E. Joselevich, Atomic-step-templated formation of single wall carbon nanotube patterns, Angew. Chem. Int. Ed. 43(45), 6140 (2004)
https://doi.org/10.1002/anie.200460356
14 D. Tsivion, M. Schvartzman, R. Popovitz-Biro, P. von Huth, and E. Joselevich, Guided growth of millimeterlong horizontal nanowires with controlled orientations, Science 333(6045), 1003 (2011)
https://doi.org/10.1126/science.1208455
15 D. Tsivion, M. Schvartzman, R. Popovitz-Biro, and E. Joselevich, Guided growth of horizontal ZnO nanowires with controlled orientations on flat and faceted sapphire surfaces, ACS Nano 6(7), 6433 (2012)
https://doi.org/10.1021/nn3020695
16 L. Pham Van, O. Kurnosikov, and J. Cousty, Evolution of steps on vicinal (0001) surfaces of a-alumina, Surf. Sci. 411(3), 263 (1998)
https://doi.org/10.1016/S0039-6028(98)00329-X
17 O. Kurnosikov, L. Pham Van, and J. Cousty, Hightemperature transformation of vicinal (0001) Al2O3-αsurfaces: An AFM study, Surf. Interface Anal. 29(9), 608 (2000)
https://doi.org/10.1002/1096-9918(200009)29:9<608::AID-SIA906>3.0.CO;2-B
18 F. Cuccureddu, S. Murphy, I. V. Shvets, M. Porcu, H. W. Zandbergen, N. S. Sidorov, and S. I. Bozhko, Surface morphology of c-plane sapphire (a-alumina) produced by high temperature anneal, Surf. Sci. 604(15–16), 1294 (2010)
https://doi.org/10.1016/j.susc.2010.04.017
19 Y. Shiratsuchi, M. Yamamoto, and Y. Kamada, Surface structure of self-organized sapphire(0001) substrates with various inclined angles, Jpn. J. Appl. Phys. 41(Part 1, No. 9), 5719 (2002)
20 B. Qi, B. Agnarsson, S. Ólafsson, H. P. Gíslason, and M. Göthelid, Room temperature deposition of self-assembled Al nanoclusters on stepped sapphire(0001) surface and subsequent nitridation, Thin Solid Films 520(1), 64 (2011)
https://doi.org/10.1016/j.tsf.2011.06.041
21 G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
22 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
23 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
24 S. D. Mo and W. Y. Ching, Electronic and optical properties of α-Al2O3 and comparison to θ-Al2O3, Phys. Rev. B 57(24), 15219 (1998)
https://doi.org/10.1103/PhysRevB.57.15219
25 J. Ahn and J. W. Rabalais, Composition and structure of the Al2O3{0001}-(1×1) surface, Surf. Sci. 388(1–3), 121 (1997)
https://doi.org/10.1016/S0039-6028(97)00383-X
26 T. Kurita, K. Uchida, and A. Oshiyama, Atomic and electronic structures of α-Al2O3 surfaces, Phys. Rev. B 82(15), 155319 (2010)
https://doi.org/10.1103/PhysRevB.82.155319
27 J. Stausholm-Møller, H. H. Kristoffersen, U. Martinez, and B. Hammer, A density functional theory study of atomic steps on stoichiometric rutile TiO2 (110), J. Chem. Phys. 139(23), 234704 (2013)
https://doi.org/10.1063/1.4840515
28 B. Lee and D. R. Trinkle, Energetics of rutile TiO2 vicinal surfaces with<001>steps from the energy density method, J. Phys. Chem. C 119(32), 18203 (2015)
https://doi.org/10.1021/acs.jpcc.5b03623
29 S. M. Kozlov, F. Viñes, N. Nilius, S. Shaikhutdinov, and K. M. Neyman, Absolute surface step energies: Accurate theoretical methods applied to ceria nanoislands, J. Phys. Chem. Lett. 3(15), 1956 (2012)
https://doi.org/10.1021/jz3006942
30 P. W. Tasker, The stability of ionic crystal surfaces, J. Phys. C Solid State Phys. 12(22), 4977 (1979)
https://doi.org/10.1088/0022-3719/12/22/036
31 S. Köstlmeier, C. Elsässer, B. Meyer, and M. W. Finnis, A density functional study of interactions at the metal– ceramic interfaces Al/MgAl2O4 and Ag/MgAl2O4, Phys. Status Solidi (a) 166(1), 417(1998)
https://doi.org/10.1002/(SICI)1521-396X(199803)166:1<417::AID-PSSA417>3.0.CO;2-R
32 V. E. Henrich and S. K. Shaikhutdinov, Atomic geometry of steps on metal-oxide single crystals, Surf. Sci. 574(2–3), 306 (2005)
https://doi.org/10.1016/j.susc.2004.10.047
33 H. Q. Wang, E. I. Altman, and V. E. Henrich, Steps on Fe3O4(100): STM measurements and theoretical calculations, Phys. Rev. B 73(23), 235418 (2006)
https://doi.org/10.1103/PhysRevB.73.235418
34 R. D. Vispute, V. Talyansky, Z. Trajanovic, S. Choopun, M. Downes, R. P. Sharma, T. Venkatesan, M. C. Woods, R. T. Lareau, K. A. Jones, and A. A. Iliadis, High quality crystalline ZnO buffer layers on sapphire(001) by pulsed laser deposition for III–V nitrides, Appl. Phys. Lett. 70(20), 2735 (1997)
https://doi.org/10.1063/1.119006
35 Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization, J. Appl. Phys. 84(7), 3912 (1998)
https://doi.org/10.1063/1.368595
36 J. Coraux, A. T N’Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F.-J. M. zu Heringdorf, R. van Gastel, B. Poelsema, and T. Michely, Growth of graphene on Ir(111), New J. Phys. 11(2), 023006 (2009)
https://doi.org/10.1088/1367-2630/11/2/023006
37 T. Shiota, H. Ito, N. Wakiya, J. Cross, O. Sakurai, and K. Shinozaki, Effect of step edges on the growth of Pt thin films on oxide single-crystal substrates, J. Ceram. Soc. Jpn. 121(1411), 278 (2013)
https://doi.org/10.2109/jcersj2.121.278
38 B. J. Murray, E. C. Walter, and R. M. Penner, Amine vapor sensing with silver mesowires, Nano Lett. 4(4), 665 (2004)
https://doi.org/10.1021/nl049841k
39 D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O. L. Sanchez, Y. C. Kung, D. Krasnozhon, M. W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, Largearea epitaxial monolayer MoS2, ACS Nano 9(4), 4611 (2015)
https://doi.org/10.1021/acsnano.5b01281
[1] Wen-Jin Yin, Xiao-Long Zeng, Bo Wen, Qing-Xia Ge, Ying Xu, Gilberto Teobaldi, Li-Min Liu. The unique carrier mobility of Janus MoSSe/GaN heterostructures[J]. Front. Phys. , 2021, 16(3): 33501-.
[2] Jia Liu, Xian Liao, Jiayu Liang, Mingchao Wang, Qinghong Yuan. Tuning the electronic properties of hydrogen passivated C3N nanoribbons through van der Waals stacking[J]. Front. Phys. , 2020, 15(6): 63503-.
[3] Zhi-Min Liu, Ye Yang, Yue-Shao Zheng, Qin-Jun Chen, Ye-Xin Feng. Isotropic or anisotropic screening in black phosphorous: Can doping tip the balance?[J]. Front. Phys. , 2020, 15(5): 53501-.
[4] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
[5] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[6] Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope[J]. Front. Phys. , 2018, 13(5): 136105-.
[7] Qian Gao (高乾), Hui-Li Wang (王会丽), Li-Fu Zhang (张丽芙), Shuang-Lin Hu (胡双林), Zhen-Peng Hu (胡振芃). Computational study on the half-metallicity in transition metal–oxide-incorporated 2D g-C3N4 nanosheets[J]. Front. Phys. , 2018, 13(3): 138108-.
[8] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[9] Kun Peng Dou (豆坤鵬),Chao-Cheng Kaun (關肇正). Conductance switching of a phthalocyanine molecule on an insulating surface[J]. Front. Phys. , 2017, 12(4): 127303-.
[10] Yi-Han Cheng,Chuan-Yu Zhang,Juan Ren,Kai-Yu Tong. Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers[J]. Front. Phys. , 2016, 11(5): 113101-.
[11] Ming Yang, Xiao-Long Zhang, Wu-Ming Liu. Tunable topological quantum states in three- and two-dimensional materials[J]. Front. Phys. , 2015, 10(2): 108102-.
[12] Wei Li, Chandan Setty, X. H. Chen, Jiangping Hu. Electronic and magnetic structures of chain structured iron selenide compounds[J]. Front. Phys. , 2014, 9(4): 465-471.
[13] Fen LI, Ji-jun ZHAO, Li-xian SUN. Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles[J]. Front. Phys. , 2011, 6(2): 214-219.
[14] Zhi-wei ZHANG (张志伟), Jian-chen LI (李建忱), Qing JIANG (蒋青). Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review[J]. Front. Phys. , 2011, 6(2): 162-176.
[15] Feng-jie MA(马锋杰), Zhong-yi LU(卢仲毅), Tao XIANG(向涛). Electronic structures of ternary iron arsenides A Fe 2 As 2 ( A = Ba, Ca, or Sr)[J]. Front. Phys. , 2010, 5(2): 150-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed