Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 63505    https://doi.org/10.1007/s11467-022-1187-9
RESEARCH ARTICLE
HSH-carbon: A novel sp2−sp3 carbon allotrope with an ultrawide energy gap
Jia-Qi Liu, Qian Gao, Zhen-Peng Hu()
School of Physics, Nankai University, Tianjin 300071, China
 Download: PDF(9740 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An sp2-sp3 hybrid carbon allotrope named HSH-carbon is proposed by the first-principles calculations. The structure of HSH-carbon can be regarded as a template polymerization of [1.1.1]propellane molecules in a hexagonal lattice, as well as, an AA stacking of recently reported HSH-C10 consisting of carbon trigonal bipyramids. Based on calculations, the stability of this structure is demonstrated in terms of the cohesive energy, phonon dispersion, Born−Huang stability criteria, and ab initio molecular dynamics. HSH-carbon is predicted to be a semiconductor with an indirect energy gap of 3.56 eV at the PBE level or 4.80 eV at the HSE06 level. It is larger than the gap of Si and close to the gap of c-diamond, which indicates HSH-carbon is potentially an ultrawide bandgap semiconductor. The effective masses of carriers in the VB and CB edge are comparable with wide bandgap semiconductors such as GaN and ZnO. The elastic behavior of HSH-carbon such as bulk modulus, Young’s modulus and shear modulus is comparable with that of T-carbon and much smaller than that of c-diamond, which suggests that HSH-carbon would be much easier to be processed than c-diamond in practice.

Keywords first-principles calculation      novel carbon allotropes      pentagonal ring     
Corresponding Author(s): Zhen-Peng Hu   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 18 August 2022
 Cite this article:   
Jia-Qi Liu,Qian Gao,Zhen-Peng Hu. HSH-carbon: A novel sp2−sp3 carbon allotrope with an ultrawide energy gap[J]. Front. Phys. , 2022, 17(6): 63505.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1187-9
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/63505
Structure information
Space group P6/mmm
a (Å) 6.422
b (Å) 6.422
c (Å) 3.450
α (deg) 90.000
β (deg) 90.000
γ (deg) 120.000
Wyckoff Position C1(4h) (0.333, 0.667, 0.215)
C3(6k) (0.441, 0.559, 0.500)
dC−C (Å) C1−C1, C1−C3, C3−C3 1.484, 1.547, 1.318
Tab.1  Structure data of HSH-carbon.
Fig.1  (a) Top view and (b) side view of HSH-carbon. The solid lines represent the periodical boundary.
Fig.2  (a) The total energy per atom as a function of volume per atom for T-carbon, c-diamond and HSH-carbon, respectively. (b) The phonon dispersion and phonon density of states of HSH-carbon. Average potential energy fluctuation of HSH-carbon during ab initio NpT ensemble simulations under the temperature of (c) 500 K and (d) 800 K with top and side views of structures at the end of the simulations as the inset.
Fig.3  (a) The electronic band structure and its corresponding Brillouin zone path. (b) Projected density of states (PDOS) with Fermi level shifted to 0 eV, with local density of states for the highest branch of valence bands (VB, isosurface value of 0.08 e/Å3) and the lowest branch of conduction bands (CB, isosurface value of 0.18 e/Å3) at Γ point as the inset. (c) The electron localization function (ELF) of HSH-carbon (isosurface value of 0.863). (d) The ELF of a partial methylated [1.1.1]propellane molecule (isosurface value of 0.863). The solid lines in the structure represent the periodical boundary. The isosurfaces of VB, CB and ELF are obtained with Device Studio [36].
Effective mass along K-path (in units of free electron mass m0)
CB edge K→M K→Г Г→M Г→K
2.90 2.41 0.481, −2.34 0.485, −2.37
VB edge A→L A→H Г→M Г→K
−1.60 −1.60 −0.898 −0.903
Tab.2  Effective mass of carriers−electrons and holes of HSH-carbon.
Material Reference B (GPa) E (GPa) G (GPa) ν
c-diamond Ref. [11] 464 1100 522 0.070
T-carbon Ref. [11] 169 185 70 0.318
HSH-carbon This work 170 120 43 0.384
Tab.3  Elastic properties, including bulk modulus (B), Young’s modulus (E), shear modulus (G) and Poisson’s ratio ( ν) of c-diamond, T-carbon and HSH-carbon based on Voigt−Reuss−Hill (VRH) approximation.
Fig.4  Projection of 3D representation in a plane along the ?001 ? orientation of (a) Young’s modulus, (b) shear modulus, (c) linear compressibility and (d) Poisson’s ratio of HSH-carbon. For figures with multiple curves, blue and red represent the maximum, minimum of the quantities, respectively.
Elastic properties HSH-carbon
Young’s modulus, E (GPa) Emax 530.76
Emin 69.03
AE=Emax/Emin 7.69
Shear modulus, G (GPa) Gmax 60.42
Gmin 18.64
AG=Gmax/Gmin 3.24
Linear compressibility, β βmax 2.07
βmin 1.70
Poisson’s ratio, ν νmax 0.85
νmin 0.01
Aν=νmax/νmin 85.00
Tab.4  Elastic properties and anisotropy of HSH-carbon.
1 Eastmond R., R. Johnson T., R. M. Walton D.. Silylation as a protective method for terminal alkynes in oxidative couplings: A general synthesis of the parent polyynes H(C≡C)nH (n = 4–10, 12). Tetrahedron , 1972, 28( 17): 4601
https://doi.org/10.1016/0040-4020(72)80041-3
2 Karpfen A.. Ab initio studies on polymers (I): The linear infinite polyyne. J. Phys. C , 1979, 12( 16): 3227
https://doi.org/10.1088/0022-3719/12/16/011
3 D. L. Chung D.. Review graphite. J. Mater. Sci. , 2002, 37( 8): 1475
https://doi.org/10.1023/A:1014915307738
4 S. Novoselov K., K. Geim A., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science , 2004, 306( 5696): 666
https://doi.org/10.1126/science.1102896
5 W. Kroto H., R. Heath J., C. O’Brien S., F. Curl R., E. Smalley R.. C60: Buckminsterfullerene. Nature , 1985, 318( 6042): 162
https://doi.org/10.1038/318162a0
6 Iijima S.. Helical microtubules of graphitic carbon. Nature , 1991, 354( 6348): 56
https://doi.org/10.1038/354056a0
7 S. Zhao Z., Xu B., F. Zhou X., M. Wang L., Wen B., L. He J., Y. Liu Z., T. Wang H., J. Tian Y.. Novel superhard carbon: C-centered orthorhombic C8. Phys. Rev. Lett. , 2011, 107( 21): 215502
https://doi.org/10.1103/PhysRevLett.107.215502
8 M. Haley M., C. Brand S., J. Pak J.. Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures. Angew. Chem. Int. Ed. Engl. , 1997, 36( 8): 836
https://doi.org/10.1002/anie.199708361
9 J. Li Y., Xu L., B. Liu H., L. Li Y.. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. , 2014, 43( 8): 2572
https://doi.org/10.1039/C3CS60388A
10 Diederich F., Kivala M.. All-carbon scaffolds by rational design. Adv. Mater. , 2010, 22( 7): 803
https://doi.org/10.1002/adma.200902623
11 S. Zhang R., W. Jiang J.. The art of designing carbon allotropes. Front. Phys. , 2019, 14( 1): 13401
https://doi.org/10.1007/s11467-018-0836-5
12 Tong W., Wei Q., Y. Yan H., G. Zhang M., M. Zhu X.. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes. Front. Phys. , 2020, 15( 6): 63501
https://doi.org/10.1007/s11467-020-0970-8
13 Zhang N., Y. Wu J., Y. Yu T., Q. Lv J., Liu H., P. Xu X.. Theory, preparation, properties and catalysis application in 2D graphynes-based materials. Front. Phys. , 2021, 16( 2): 23201
https://doi.org/10.1007/s11467-020-0992-2
14 L. Sheng X., B. Yan Q., Ye F., R. Zheng Q., Su G.. T-carbon: A novel carbon allotrope. Phys. Rev. Lett. , 2011, 106( 15): 155703
https://doi.org/10.1103/PhysRevLett.106.155703
15 Z. Qin G., R. Hao K., B. Yan Q., Hu M., Su G.. Exploring T-carbon for energy applications. Nanoscale , 2019, 11( 13): 5798
https://doi.org/10.1039/C8NR09557D
16 C. Bai L., P. Sun P., Liu B., S. Liu Z., Zhou K.. Mechanical behaviors of T-carbon: A molecular dynamics study. Carbon , 2018, 138 : 357
https://doi.org/10.1016/j.carbon.2018.07.046
17 W. Yi X., Zhang Z., W. Liao Z., J. Dong X., Y. You J., Su G.. T-carbon: Experiments, properties, potential applications and derivatives. Nano Today , 2022, 42 : 101346
https://doi.org/10.1016/j.nantod.2021.101346
18 H. Zhang S., Zhou J., Wang Q., S. Chen X., Kawazoe Y., Jena P.. Penta-graphene: A new carbon allotrope. Proc. Natl Acad. Sci. , 2015, 112( 8): 2372
https://doi.org/10.1073/pnas.1416591112
19 P. Ewels C., Rocquefelte X., W. Kroto H., J. Rayson M., R. Briddon P., I. Heggie M.. Predicting experimentally stable allotropes: Instability of penta-graphene. Proc. Natl Acad. Sci. USA , 2015, 112( 51): 15609
https://doi.org/10.1073/pnas.1520402112
20 Fujii Y., Maruyama M., T. Cuong N., Okada S.. Pentadiamond: A hard carbon allotrope of a pentagonal network of sp2 and sp3 C atoms. Phys. Rev. Lett. , 2020, 125( 1): 016001
https://doi.org/10.1103/PhysRevLett.125.016001
21 V. Brazhkin V. V. Kondrin M. G. Kvashnin A. Mazhnik E. R. Oganov A., Comment on “Pentadiamond: A hard carbon allotrope of a pentagonal network of sp2 and sp3 atoms” , arXiv: 2007.08912 ( 2020)
22 Gao Q., Zhang L., Zheng C., Lei S., Li S., Hu Z.. HSH-C10: A new quasi-2D carbon allotrope with a honeycomb-star-honeycomb lattice. Chin. Chem. Lett. , 2022, 33( 8): 3941
https://doi.org/10.1016/j.cclet.2021.11.027
23 Kresse G., Furthmüller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B , 1996, 54( 16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
24 E. Blöchl P.. Projector augmented-wave method. Phys. Rev. B , 1994, 50( 24): 17953
https://doi.org/10.1103/PhysRevB.50.17953
25 P. Perdew J., Burke K., Ernzerhof M.. Generalized gradient approximation made simple. Phys. Rev. Lett. , 1996, 77( 18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
26 Togo A., Tanaka I.. First principles phonon calculations in materials science. Scr. Mater. , 2015, 108 : 1
https://doi.org/10.1016/j.scriptamat.2015.07.021
27 Y. Zhang J., Wang R., Zhu X., F. Pan A., X. Han C., Li X., Dan Z., S. Ma C., J. Wang W., B. Su H., M. Niu C.. Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol. Nat. Commun. , 2017, 8( 1): 683
https://doi.org/10.1038/s41467-017-00817-9
28 Born M., Huang K.. Dynamical theory of crystal lattices. Am. J. Phys. , 1955, 23( 7): 474
https://doi.org/10.1119/1.1934059
29 Born M.. On the stability of crystal lattices (I). Math. Proc. Cambridge Philos. Soc. , 2008, 36( 2): 160
https://doi.org/10.1017/S0305004100017138
30 M. Wang L.. Relationship between intrinsic breakdown field and bandgap of materials. 25th International Conference on Microelectronics , 2006, 576
https://doi.org/10.1109/ICMEL.2006.1651032
31 Nava F., Canali C., Jacoboni C., Reggiani L., F. Kozlov S.. Electron effective masses and lattice scattering in natural diamond. Solid State Commun. , 1980, 33( 4): 475
https://doi.org/10.1016/0038-1098(80)90447-0
32 N. Xu Y., Y. Ching W.. Electronic, optical, and structural properties of some wurtzite crystals. Phys. Rev. B , 1993, 48( 7): 4335
https://doi.org/10.1103/PhysRevB.48.4335
33 H. Chung D.. Elastic moduli of single crystal and polycrystalline MgO. Phil. Mag. , 1963, 8( 89): 833
https://doi.org/10.1080/14786436308213840
34 L. Anderson O.. A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids , 1963, 24( 7): 909
https://doi.org/10.1016/0022-3697(63)90067-2
35 Marmier A., A. D. Lethbridge Z., I. Walton R., W. Smith C., C. Parker S., E. Evans K.. ElAM: A computer program for the analysis and representation of anisotropic elastic properties. Comput. Phys. Commun. , 2010, 181( 12): 2102
https://doi.org/10.1016/j.cpc.2010.08.033
36 Hongzhiwei Technology, Device Studio, Version 2021A (2021), www.hzwtech.com/en/software-prosubsub/221.html
[1] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[2] Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301-.
[3] Mingyun Huang, Xingxing Jiang, Yueshao Zheng, Zhengwei Xu, Xiong-Xiong Xue, Keqiu Chen, Yexin Feng. Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties[J]. Front. Phys. , 2022, 17(5): 53504-.
[4] Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations[J]. Front. Phys. , 2022, 17(5): 53500-.
[5] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
[6] Wen-Jin Yin, Xiao-Long Zeng, Bo Wen, Qing-Xia Ge, Ying Xu, Gilberto Teobaldi, Li-Min Liu. The unique carrier mobility of Janus MoSSe/GaN heterostructures[J]. Front. Phys. , 2021, 16(3): 33501-.
[7] Zhi-Min Liu, Ye Yang, Yue-Shao Zheng, Qin-Jun Chen, Ye-Xin Feng. Isotropic or anisotropic screening in black phosphorous: Can doping tip the balance?[J]. Front. Phys. , 2020, 15(5): 53501-.
[8] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
[9] Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope[J]. Front. Phys. , 2018, 13(5): 136105-.
[10] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[11] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[12] Kun Peng Dou (豆坤鵬),Chao-Cheng Kaun (關肇正). Conductance switching of a phthalocyanine molecule on an insulating surface[J]. Front. Phys. , 2017, 12(4): 127303-.
[13] Ming Yang, Xiao-Long Zhang, Wu-Ming Liu. Tunable topological quantum states in three- and two-dimensional materials[J]. Front. Phys. , 2015, 10(2): 108102-.
[14] Wei Li, Chandan Setty, X. H. Chen, Jiangping Hu. Electronic and magnetic structures of chain structured iron selenide compounds[J]. Front. Phys. , 2014, 9(4): 465-471.
[15] Zhi-wei ZHANG (张志伟), Jian-chen LI (李建忱), Qing JIANG (蒋青). Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review[J]. Front. Phys. , 2011, 6(2): 162-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed