|
|
Emerging single-photon detection technique for high-performance photodetector |
Jinxiu Liu1, Zhenghan Peng1,2, Chao Tan1, Lei Yang1, Ruodan Xu3, Zegao Wang1( ) |
1. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China 2. Department of Materials Science and Engineering, Stanford University, California 94305, USA 3. Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China |
|
|
Abstract Single-photon detections (SPDs) represent a highly sensitive light detection technique capable of detecting individual photons at extremely low light intensity levels. This technology mainly relies on the mainstream SPDs, such as photomultiplier tubes (PMTs), avalanche photodiodes (SAPD), superconducting nanowire single-photon detectors (SNSPDs), superconducting transition-edge sensor (TES), and hybrid lead halide perovskite. However, the complexity and high manufacturing cost, coupled with the requirement of special conditions like a low-temperature environment, pose significant challenges to the wide adoption of SPDs. To address the challenges faced by SPDs, significant efforts have been devoted to enhancing their performance. In this review, we first summarize the principles and technical challenges of several SPDs. Conductors, superconductors, semiconductors, 3D bulk materials, 2D film materials, 1D nanowires, and 0D quantum dots have all been discussed for single-photon detectors. Methods such as special optical structure, waveguide integration, and strain engineering have been employed to elevate the performance of single-photon detectors. These techniques enhance light absorption and modulate the band structure of the material, thereby improving the single-photon sensitivity. By providing an overview of the current situation and future challenges of SPDs, this review aims to propose potential solutions for photon detection technology.
|
Keywords
single-photon detection
superconductor
semiconductor
low dimensional materials
optical structure
waveguide integration
strain engineering
|
Corresponding Author(s):
Zegao Wang
|
Issue Date: 16 July 2024
|
|
1 |
F. Yan Y., Zhou L., Zhong W., and B. Sheng Y., Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys. 16(1), 11501 (2021)
https://doi.org/10.1007/s11467-020-1005-1
|
2 |
P. Chen J., Zhang C., Liu Y., Jiang C., F. Zhao D., J. Zhang W., X. Chen F., Li H., X. You L., Wang Z., Chen Y., B. Wang X., Zhang Q., and W. Pan J., Quantum key distribution over 658 km fiber with distributed vibration sensing, Phys. Rev. Lett. 128(18), 180502 (2022)
https://doi.org/10.1103/PhysRevLett.128.180502
|
3 |
Ma Y., Z. Ma Y., Q. Zhou Z., F. Li C., and C. Guo G., One-hour coherent optical storage in an atomic frequency comb memory, Nat. Commun. 12(1), 2381 (2021)
https://doi.org/10.1038/s41467-021-22706-y
|
4 |
Grein M.Kerman A.Dauler E.Willis M.Romkey B. Molnar R.Robinson B.Murphy D.Boroson D., An optical receiver for the Lunar Laser Communication Demonstration based on photon-counting superconducting nanowires, SPIE, Vol. 9492 CSI, 2015
|
5 |
Wang B., Y. Zheng M., J. Han J., Huang X., P. Xie X., Xu F., Zhang Q., and W. Pan J., Non-line-of-sight imaging with picosecond temporal resolution, Phys. Rev. Lett. 127(5), 053602 (2021)
https://doi.org/10.1103/PhysRevLett.127.053602
|
6 |
P. Li Z., T. Ye J., Huang X., Y. Jiang P., Cao Y., Hong Y., Yu C., Zhang J., Zhang Q., Z. Peng C., Xu F., and W. Pan J., Single-photon imaging over 200 km, Optica 8(3), 344 (2021)
https://doi.org/10.1364/OPTICA.408657
|
7 |
He W., Feng Z., Lin J., Shen S., Chen Q., Gu G., Zhou B., and Zhang P., Adaptive depth imaging with single-photon detectors, IEEE Photonics J. 9(2), 7801812 (2017)
https://doi.org/10.1109/JPHOT.2017.2670139
|
8 |
Scholes S., Mora-Martín G., Zhu F., Gyongy I., Soan P., and Leach J., Fundamental limits to depth imaging with single-photon detector array sensors, Sci. Rep. 13(1), 176 (2023)
https://doi.org/10.1038/s41598-022-27012-1
|
9 |
Wang Y., Huang K., Fang J., Yan M., Wu E., and Zeng H., Mid-infrared single-pixel imaging at the single-photon level, Nat. Commun. 14(1), 1073 (2023)
https://doi.org/10.1038/s41467-023-36815-3
|
10 |
Rajendran K., Petersilka M., Henning A., R. Shanblatt E., Schmidt B., G. Flohr T., Ferrero A., Baffour F., E. Diehn F., Yu L., Rajiah P., G. Fletcher J., Leng S., and H. McCollough C., First clinical photon-counting detector CT system: Technical evaluation, Radiology 303(1), 130 (2022)
https://doi.org/10.1148/radiol.212579
|
11 |
S. Kowligy A., Timmers H., J. Lind A., Elu U., C. Cruz F., G. Schunemann P., Biegert J., and A. Diddams S., Infrared electric field sampled frequency comb spectroscopy, Sci. Adv. 5(6), eaaw8794 (2019)
https://doi.org/10.1126/sciadv.aaw8794
|
12 |
Pupeza I., Huber M., Trubetskov M., Schweinberger W., A. Hussain S., Hofer C., Fritsch K., Poetzlberger M., Vamos L., Fill E., Amotchkina T., V. Kepesidis K., Apolonski A., Karpowicz N., Pervak V., Pronin O., Fleischmann F., Azzeer A., Žigman M., and Krausz F., Field-resolved infrared spectroscopy of biological systems, Nature 577(7788), 52 (2020)
https://doi.org/10.1038/s41586-019-1850-7
|
13 |
Niclass C., Favi C., Kluter T., Monnier F., and Charbon E., Single-photon synchronous detection, IEEE J. Solid-State Circuits 44(7), 1977 (2009)
https://doi.org/10.1109/JSSC.2009.2021920
|
14 |
Zhang B., Q. Guan Y., Xia L., Dong D., Chen Q., Xu C., Wu C., Huang H., Zhang L., Kang L., Chen J., and Wu P., An all-day lidar for detecting soft targets over 100 km based on superconducting nanowire single-photon detectors, Supercond. Sci. Technol. 34(3), 034005 (2021)
https://doi.org/10.1088/1361-6668/abd576
|
15 |
Chen Q., Ge R., Zhang L., Li F., Zhang B., Jin F., Han H., Dai Y., He G., Fei Y., Wang X., Wang H., Jia X., Zhao Q., Tu X., Kang L., Chen J., and Wu P., Mid-infrared single photon detector with superconductor Mo0.8Si0.2 nanowire, Sci. Bull. (Beijing) 66(10), 965 (2021)
https://doi.org/10.1016/j.scib.2021.02.024
|
16 |
T. Jaeckel F., Roy A., Wulf D., Zhang S., Zhou Y., S. Adams J., R. Bandler S., A. Chervenak J., M. Datesman A., E. Eckart M., J. Ewin A., V. Ambarish C., M. Finkbeiner F., Kelley R., A. Kilbourne C., R. Miniussi A., S. Porter F., E. Sadleir J., Sakai K., J. Smith S., Wakeham N., Wassell E., Christensen N., Yoon W., M. Morgan K., R. Schmidt D., S. Swetz D., N. Ullom J., Gruenke R., Hu L., McCammon D., McPheron M., Meyer M., and L. Nelms K., Energy calibration of high-resolution X-ray TES microcalorimeters with 3 eV optical photons, IEEE Trans. Appl. Supercond. 29(5), 1 (2019)
https://doi.org/10.1109/TASC.2019.2899856
|
17 |
Incoronato A., Cusini I., Pasquinelli K., and Zappa F., Single-shot pulsed-LiDAR SPAD sensor with on-chip peak detection for background rejection, IEEE J. Sel. Top. Quantum Electron. 28, 3804210 (2022)
https://doi.org/10.1109/JSTQE.2022.3180687
|
18 |
C. Shan G., Q. Yin Z., H. Shek C., and Huang W., Single photon sources with single semiconductor quantum dots, Front. Phys. 9(2), 170 (2014)
https://doi.org/10.1007/s11467-013-0360-6
|
19 |
Martyniuk P., Wang P., Rogalski A., Gu Y., Jiang R., Wang F., and Hu W., Infrared avalanche photodiodes from bulk to 2D materials, Light Sci. Appl. 12(1), 212 (2023)
https://doi.org/10.1038/s41377-023-01259-3
|
20 |
Gallivanoni A., Rech I., and Ghioni M., Progress in quenching circuits for single photon avalanche diodes, IEEE Trans. Nucl. Sci. 57, 3815 (2010)
https://doi.org/10.1109/TNS.2010.2074213
|
21 |
Maccarone A., Acconcia G., Steinlehner U., Labanca I., Newborough D., Rech I., and S. Buller G., Custom-technology single-photon avalanche diode linear detector array for underwater depth imaging, Sensors (Basel) 21(14), 4850 (2021)
https://doi.org/10.3390/s21144850
|
22 |
Lee H., Choi H., and Yun I., Junction engineering-based modeling and optimization of deep junction silicon single-photon avalanche diodes for device scaling, IEEE Trans. Electron Dev. 69(9), 4970 (2022)
https://doi.org/10.1109/TED.2022.3190262
|
23 |
Sanzaro M., Calandri N., Ruggeri A., and Tosi A., InGaAs/InP SPAD with monolithically integrated zinc-diffused resistor, IEEE J. Quantum Electron. 52(7), 1 (2016)
https://doi.org/10.1109/JQE.2016.2567063
|
24 |
Telesca F., Signorelli F., and Tosi A., Temperature-dependent photon detection efficiency model for InGaAs/InP SPADs, Opt. Express 30(3), 4504 (2022)
https://doi.org/10.1364/OE.444536
|
25 |
Tian Y., Li Q., Ding W., Wu D., Lin Z., Feng X., Zhang H., Yu X., and Zhao Y., High speed and high sensitivity InGaAs/InAlAs single photon avalanche diodes for photon counting communication, J. Lightwave Technol. 40(15), 5245 (2022)
https://doi.org/10.1109/JLT.2022.3174962
|
26 |
Meng X., Xie S., Zhou X., Calandri N., Sanzaro M., Tosi A., H. Tan C., and S. Ng J., InGaAs/InAlAs single photon avalanche diode for 1550 nm photons, R. Soc. Open Sci. 3(3), 150584 (2016)
https://doi.org/10.1098/rsos.150584
|
27 |
Rothman J., Physics and limitations of HgCdTe APDs: A review, J. Electron. Mater. 47(10), 5657 (2018)
https://doi.org/10.1007/s11664-018-6475-3
|
28 |
H. Haitz R., Model for the electrical behavior of a microplasma, J. Appl. Phys. 35(5), 1370 (1964)
https://doi.org/10.1063/1.1713636
|
29 |
K. Liao S., L. Yong H., Liu C., L. Shentu G., D. Li D., Lin J., Dai H., Q. Zhao S., Li B., Y. Guan J., Chen W., H. Gong Y., Li Y., H. Lin Z., S. Pan G., S. Pelc J., M. Fejer M., Z. Zhang W., Y. Liu W., Yin J., G. Ren J., B. Wang X., Zhang Q., Z. Peng C., and W. Pan J., Long-distance free-space quantum key distribution in daylight towards inter-satellite communication, Nat. Photonics 11(8), 509 (2017)
https://doi.org/10.1038/nphoton.2017.116
|
30 |
T. Rakher M., Ma L., Slattery O., Tang X., and Srinivasan K., Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion, Nat. Photonics 4(11), 786 (2010)
https://doi.org/10.1038/nphoton.2010.221
|
31 |
S. Lee Y., M. Liao Y., L. Wu P., E. Chen C., J. Teng Y., Y. Hung Y., and W. Shi J., In0.52Al0.48As based single photon avalanche diodes with stepped E-field in multiplication layers and high efficiency beyond 60%, IEEE J. Sel. Top. Quantum Electron. 28(2), 1 (2022)
https://doi.org/10.1109/JSTQE.2021.3114130
|
32 |
Wu D., Guo J., Wang C., Ren X., Chen Y., Lin P., Zeng L., Shi Z., J. Li X., X. Shan C., and Jie J., Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation, ACS Nano 15(6), 10119 (2021)
https://doi.org/10.1021/acsnano.1c02007
|
33 |
Wu D., Guo C., Zeng L., Ren X., Shi Z., Wen L., Chen Q., Zhang M., J. Li X., X. Shan C., and Jie J., Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection, Light Sci. Appl. 12(1), 5 (2023)
https://doi.org/10.1038/s41377-022-01047-5
|
34 |
Wu D., Guo J., Du J., Xia C., Zeng L., Tian Y., Shi Z., Tian Y., J. Li X., H. Tsang Y., and Jie J., Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction, ACS Nano 13(9), 9907 (2019)
https://doi.org/10.1021/acsnano.9b03994
|
35 |
Zeng L., Wu D., Jie J., Ren X., Hu X., P. Lau S., Chai Y., and H. Tsang Y., Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm, Adv. Mater. 32(52), 2004412 (2020)
https://doi.org/10.1002/adma.202004412
|
36 |
Zeng L., Han W., E. Wu S., Wu D., P. Lau S., and H. Tsang Y., Graphene/PtSe2/pyramid Si van der Waals Schottky junction for room-temperature broadband infrared light detection, IEEE Trans. Electron Dev. 69(11), 6212 (2022)
https://doi.org/10.1109/TED.2022.3208854
|
37 |
Zeng S., Zhao M., Li F., Yang Z., Wu H., Tan C., Sun Q., Yang L., Lei L., and Wang Z., Crystalline orientation-tunable growth of hexagonal and tetragonal 2H-PtSe2 single-crystal flakes, Adv. Funct. Mater. 34(6), 2308681 (2024)
https://doi.org/10.1002/adfm.202308681
|
38 |
Zeng L., Han W., Ren X., Li X., Wu D., Liu S., Wang H., P. Lau S., H. Tsang Y., X. Shan C., and Jie J., Uncooled mid-infrared sensing enabled by chip-integrated low-temperature-grown 2D PdTe2 Dirac semimetal, Nano Lett. 23(17), 8241 (2023)
https://doi.org/10.1021/acs.nanolett.3c02396
|
39 |
Zavvari M. and Ahmadi V., Self-quenched quantum dot avalanche photodetector for mid-infrared single photon detection, Infrared Phys. Technol. 62, 7 (2014)
https://doi.org/10.1016/j.infrared.2013.10.005
|
40 |
J. Gansen E., A. Rowe M., B. Greene M., Rosenberg D., E. Harvey T., Y. Su M., H. Hadfield R., W. Nam S., and P. Mirin R., Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor, Nat. Photonics 1(10), 585 (2007)
https://doi.org/10.1038/nphoton.2007.173
|
41 |
Luo W., Weng Q., Long M., Wang P., Gong F., Fang H., Luo M., Wang W., Wang Z., Zheng D., Hu W., Chen X., and Lu W., Room-temperature single-photon detector based on single nanowire, Nano Lett. 18(9), 5439 (2018)
https://doi.org/10.1021/acs.nanolett.8b01795
|
42 |
Tan C., Yang Z., Wu H., Yang Y., Yang L., and Wang Z., Electrically tunable interlayer recombination and tunneling behavior in WSe2/MoS2 heterostructure for broadband photodetector, Nanoscale 16(12), 6241 (2024)
https://doi.org/10.1039/D3NR06144B
|
43 |
Ye Z., Tan C., Huang X., Ouyang Y., Yang L., Wang Z., and Dong M., Emerging MoS2 wafer-scale technique for integrated circuits, Nano-Micro Lett. 15(1), 38 (2023)
https://doi.org/10.1007/s40820-022-01010-4
|
44 |
Tan C., Tao R., Yang Z., Yang L., Huang X., Yang Y., Qi F., and Wang Z., Tune the photoresponse of monolayer MoS2 by decorating CsPbBr3 perovskite nanoparticles, Chin. Chem. Lett. 34(7), 107979 (2023)
https://doi.org/10.1016/j.cclet.2022.107979
|
45 |
Lopez-Sanchez O., Lembke D., Kayci M., Radenovic A., and Kis A., Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotechnol. 8(7), 497 (2013)
https://doi.org/10.1038/nnano.2013.100
|
46 |
Zhang Y., Liu T., Meng B., Li X., Liang G., Hu X., and J. Wang Q., Broadband high photoresponse from pure monolayer graphene photodetector, Nat. Commun. 4(1), 1811 (2013)
https://doi.org/10.1038/ncomms2830
|
47 |
Roy K., Ahmed T., Dubey H., P. Sai T., Kashid R., Maliakal S., Hsieh K., Shamim S., and Ghosh A., Number-resolved single-photon detection with ultralow noise van der Waals hybrid, Adv. Mater. 30(2), 1704412 (2018)
https://doi.org/10.1002/adma.201704412
|
48 |
Liu Y., Gong T., Zheng Y., Wang X., Xu J., Ai Q., Guo J., Huang W., Zhou S., Liu Z., Lin Y., L. Ren T., and Yu B., Ultra-sensitive and plasmon-tunable graphene photodetectors for micro-spectrometry, Nanoscale 10(42), 20013 (2018)
https://doi.org/10.1039/C8NR04996C
|
49 |
Gao A., Lai J., Wang Y., Zhu Z., Zeng J., Yu G., Wang N., Chen W., Cao T., Hu W., Sun D., Chen X., Miao F., Shi Y., and Wang X., Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures, Nat. Nanotechnol. 14(3), 217 (2019)
https://doi.org/10.1038/s41565-018-0348-z
|
50 |
Cheng R., Wright J., G. Xing H., Jena D., and X. Tang H., Epitaxial niobium nitride superconducting nanowire single-photon detectors, Appl. Phys. Lett. 117(13), 132601 (2020)
https://doi.org/10.1063/5.0018818
|
51 |
Hu P., Li H., You L., Wang H., Xiao Y., Huang J., Yang X., Zhang W., Wang Z., and Xie X., Detecting single infrared photons toward optimal system detection efficiency, Opt. Express 28(24), 36884 (2020)
https://doi.org/10.1364/OE.410025
|
52 |
Yang X., You L., Zhang L., Lv C., Li H., Liu X., Zhou H., and Wang Z., Comparison of superconducting nanowire single-photon detectors made of NbTiN and NbN thin films, IEEE Trans. Appl. Supercond. 28(1), 2200106 (2018)
https://doi.org/10.1109/TASC.2017.2776288
|
53 |
Vetter A., Ferrari S., Rath P., Alaee R., Kahl O., Kovalyuk V., Diewald S., N. Goltsman G., Korneev A., Rockstuhl C., and H. P. Pernice W., Cavity-enhanced and ultrafast superconducting single-photon detectors, Nano Lett. 16(11), 7085 (2016)
https://doi.org/10.1021/acs.nanolett.6b03344
|
54 |
Z. Xu G., J. Zhang W., X. You L., M. Xiong J., Q. Sun X., Huang H., Ou X., M. Pan Y., L. Lv C., Li H., Wang Z., and M. Xie X., Superconducting microstrip single-photon detector with system detection efficiency over 90% at 1550 nm, Photon. Res. 9(6), 958 (2021)
https://doi.org/10.1364/PRJ.419514
|
55 |
Ejrnaes M., Cirillo C., Salvoni D., Chianese F., Bruscino C., Ercolano P., Cassinese A., Attanasio C., P. Pepe G., and Parlato L., Single photon detection in NbRe superconducting microstrips, Appl. Phys. Lett. 121(26), 262601 (2022)
https://doi.org/10.1063/5.0131336
|
56 |
Esmaeil Zadeh I., Chang J., W. N. Los J., Gyger S., W. Elshaari A., Steinhauer S., N. Dorenbos S., and Zwiller V., Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications, Appl. Phys. Lett. 118(19), 190502 (2021)
https://doi.org/10.1063/5.0045990
|
57 |
Zhang W., You L., Li H., Huang J., Lv C., Zhang L., Liu X., Wu J., Wang Z., and Xie X., NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature, Sci. China Phys. Mech. Astron. 60(12), 120314 (2017)
https://doi.org/10.1007/s11433-017-9113-4
|
58 |
Korzh B., Y. Zhao Q., P. Allmaras J., Frasca S., M. Autry T., A. Bersin E., D. Beyer A., M. Briggs R., Bumble B., Colangelo M., M. Crouch G., E. Dane A., Gerrits T., E. Lita A., Marsili F., Moody G., Pena C., Ramirez E., D. Rezac J., Sinclair N., J. Stevens M., E. Velasco A., B. Verma V., E. Wollman E., Xie S., Zhu D., D. Hale P., Spiropulu M., L. Silverman K., P. Mirin R., W. Nam S., G. Kozorezov A., D. Shaw M., and K. Berggren K., Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector, Nat. Photonics 14(4), 250 (2020)
https://doi.org/10.1038/s41566-020-0589-x
|
59 |
Zhang W., Jia Q., You L., Ou X., Huang H., Zhang L., Li H., Wang Z., and Xie X., Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering, Phys. Rev. Appl. 12(4), 044040 (2019)
https://doi.org/10.1103/PhysRevApplied.12.044040
|
60 |
Fukuda D., Single-photon measurement techniques with a superconducting transition edge sensor, in: IEICE Transactions on Electronics 2019, E102. C, pp 230–234
|
61 |
E. Lita A., V. Reddy D., B. Verma V., P. Mirin R., and W. Nam S., Development of superconducting single-photon and photon-number resolving detectors for quantum applications, J. Lightwave Technol. 40(23), 7578 (2022)
https://doi.org/10.1109/JLT.2022.3195000
|
62 |
Irwin K.Hilton G., Transition-edge sensors, in: Cryogenic Particle Detection, Berlin: Springer, 2005, pp 63–150
|
63 |
Geng Y., Z. Li P., Q. Zhong J., Zhang W., Wang Z., Miao W., Ren Y., and C. Shi S., Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model, Chin. Phys. B 30(9), 098501 (2021)
https://doi.org/10.1088/1674-1056/ac11ce
|
64 |
de Wit M., Gottardi L., Taralli E., Nagayoshi K., L. Ridder M., Akamatsu H., P. Bruijn M., D’Andrea M., van der Kuur J., Ravensberg K., Vaccaro D., Visser S., R. Gao J., and W. A. den Herder J., High aspect ratio transition edge sensors for X-ray spectrometry, J. Appl. Phys. 128(22), 224501 (2020)
https://doi.org/10.1063/5.0029669
|
65 |
L. Ridder M., Khosropanah P., A. Hijmering R., Suzuki T., P. Bruijn M., F. C. Hoevers H., R. Gao J., and R. Zuiddam M., Fabrication of low-noise TES arrays for the SAFARI instrument on SPICA, J. Low Temp. Phys. 184(1−2), 60 (2016)
https://doi.org/10.1007/s10909-015-1381-z
|
66 |
Chen J., Li J., Xu X., Wang Z., Guo S., Jiang Z., Gao H., Zhong Q., Zhong Y., Zeng J., and Wang X., Electroplating deposition of bismuth absorbers for X-ray superconducting transition edge sensors, Materials (Basel) 14(23), 7169 (2021)
https://doi.org/10.3390/ma14237169
|
67 |
Taralli E., Gottardi L., Nagayoshi K., Ridder M., Visser S., Khosropanah P., Akamatsu H., van der Kuur J., Bruijn M., and R. Gao J., Characterization of high aspect-ratio TiAu TES X-ray microcalorimeter array under AC bias, J. Low Temp. Phys. 199(1-2), 80 (2020)
https://doi.org/10.1007/s10909-019-02254-y
|
68 |
Xu X., Rajteri M., Li J., Zhang S., Monticone E., Chen J., Pepe C., Gao H., Li W., Li X., Li Q., Gao Y., Liu Z., and Wang X., Investigation of the superconducting Ti/PdAu bilayer films for transition edge sensors, IEEE Trans. Appl. Supercond. 32(4), 1 (2022)
https://doi.org/10.1109/TASC.2022.3153233
|
69 |
Xu X.Li J. Wang X.Zhong Q.Zhong Y.Cao W.Li W. Chen J.Zhao Z.Gao Y.Liu Z.He Q., in: 2020 Conference on Precision Electromagnetic Measurements (CPEM), pp 1–2
|
70 |
Xu X., Rajteri M., Li J., Zhang S., Chen J., Monticone E., Zhong Q., Gao H., Li W., Li X., Li Q., Zhong Y., Cao W., Wang S., Gao Y., Liu Z., and Wang X., Influence of the interface composition to the superconductivity of Ti/PdAu films, Nanomaterials (Basel) 11(1), 39 (2020)
https://doi.org/10.3390/nano11010039
|
71 |
Shirazi F.Gau E.A. Hossen M.Becker D.Schmidt D. Swetz D.Bennett D.Braun D.Kislat F.Gard J. Mates J.Weber J.Rodriguez Cavero N.Chun S.Lisalda L. West A.Dev B.Ferrer F.Bose R.Ullom J. Krawczynski H., 511-CAM mission: A pointed 511 keV gamma-ray telescope with a focal plane detector made of stacked transition edge sensor microcalorimeter arrays, J. Astron. Telesc. Instrum. Syst. 9(2), 024006 (2023)
|
72 |
Kikuchi T., Fujii G., Hayakawa R., Smith R., Hirayama F., Sato Y., Kohjiro S., Ukibe M., Ohno M., Sato A., and Yamamori H., Gamma-ray transition edge sensor with a thick SiO2/SixNy/SiO2 membrane, Appl. Phys. Lett. 119(22), 222602 (2021)
https://doi.org/10.1063/5.0063640
|
73 |
Ohno M.Irimatsugawa T.Takahashi HOtani CYasumune TTakasaki KIto C. Ohnishi T.-I. Koyama S.Hatakeyama S.M. T. Damayanthi R., Superconducting transition edge sensor for gamma-ray spectroscopy, in: IEICE Transactions on Electronics 2017, E100. C, pp 283–290
|
74 |
Cabrera B., M. Clarke R., Colling P., J. Miller A., Nam S., and W. Romani R., Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors, Appl. Phys. Lett. 73(6), 735 (1998)
https://doi.org/10.1063/1.121984
|
75 |
Hattori K., Konno T., Miura Y., Takasu S., and Fukuda D., An optical transition-edge sensor with high energy resolution, Supercond. Sci. Technol. 35(9), 095002 (2022)
https://doi.org/10.1088/1361-6668/ac7e7b
|
76 |
Fukuda D., Fujii G., Numata T., Amemiya K., Yoshizawa A., Tsuchida H., Fujino H., Ishii H., Itatani T., Inoue S., and Zama T., Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling, Opt. Express 19(2), 870 (2011)
https://doi.org/10.1364/OE.19.000870
|
77 |
E. Lita A., J. Miller A., and W. Nam S., Counting near-infrared single-photons with 95% efficiency, Opt. Express 16(5), 3032 (2008)
https://doi.org/10.1364/OE.16.003032
|
78 |
Deng Z.Ling L.Deng Y.Han C.Yu L. Cao G.Wang Y., A novel visible light communication system prototype based on SiPM receiver, in: Proceedings of the 4th International Conference on Telecommunications and Communication Engineering, 2019
|
79 |
J. D. Martinez N., Gehl M., T. Derose C., L. Starbuck A., T. Pomerene A., L. Lentine A., C. Trotter D., and S. Davids P., Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode, Opt. Express 25(14), 16130 (2017)
https://doi.org/10.1364/OE.25.016130
|
80 |
A. Kalashnikov D., H. Tan S., V. Chekhova M., and A. Krivitsky L., Accessing photon bunching with a photon number resolving multi-pixel detector, Opt. Express 19(10), 9352 (2011)
https://doi.org/10.1364/OE.19.009352
|
81 |
Ghioni M., Gulinatti A., Rech I., Zappa F., and Cova S., Progress in silicon single-photon avalanche diodes, IEEE J. Sel. Top. Quantum Electron. 13(4), 852 (2007)
https://doi.org/10.1109/JSTQE.2007.902088
|
82 |
S. Lee Y., M. Liao Y., L. Wu P., E. Chen C., J. Teng Y., Y. Hung Y., and W. Shi J., In0.52Al0.48As based single photon avalanche diodes with stepped E-field in multiplication layers and high efficiency beyond 60%, IEEE J. Selected Topics Quantum Electron. 28(2), 3802107 (2022)
https://doi.org/10.1109/JSTQE.2021.3114130
|
83 |
Ding W., Feng X., Tian Y., Li Q., Yu X., Lin Z., Zhang H., Zeng X., and Zhao Y., InGaAs/InAlAs single photon avalanche photodiodes for X-ray detection, IEEE Sens. J. 23(18), 21254 (2023)
https://doi.org/10.1109/JSEN.2023.3301498
|
84 |
Marsili F., B. Verma V., A. Stern J., Harrington S., E. Lita A., Gerrits T., Vayshenker I., Baek B., D. Shaw M., P. Mirin R., and W. Nam S., Detecting single infrared photons with 93% system efficiency, Nat. Photonics 7(3), 210 (2013)
https://doi.org/10.1038/nphoton.2013.13
|
85 |
B. Verma V., Korzh B., Bussières F., D. Horansky R., D. Dyer S., E. Lita A., Vayshenker I., Marsili F., D. Shaw M., Zbinden H., P. Mirin R., and W. Nam S., High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films, Opt. Express 23(26), 33792 (2015)
https://doi.org/10.1364/OE.23.033792
|
86 |
V. Reddy D., R. Nerem R., W. Nam S., P. Mirin R., and B. Verma V., Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm, Optica 7(12), 1649 (2020)
https://doi.org/10.1364/OPTICA.400751
|
87 |
Chang J., W. N. Los J., O. Tenorio-Pearl J., Noordzij N., Gourgues R., Guardiani A., R. Zichi J., F. Pereira S., P. Urbach H., Zwiller V., N. Dorenbos S., and Esmaeil Zadeh I., Detecting telecom single photons with 99.5−2.07+0.5% system detection efficiency and high time resolution, APL Photonics 6(3), 036114 (2021)
https://doi.org/10.1063/5.0039772
|
88 |
Korzh B.Y. Zhao Q.Frasca S.Zhu D.Ramirez E. Bersin E.Colangelo M.E. Dane A.D. Beyer A.Allmaras J. E. Wollman E.K. Berggren K.D. Shaw M., in: 2018 Conference on Lasers and Electro-Optics (CLEO), pp 1–3
|
89 |
Taralli E.de Wit M.Gottardi L.Nagayoshi K.Visser S. L. Ridder M.Akamatsu H.Vaccaro D.P. Bruijn M.R. Gao J. W. den Herder J., Small size transition-edge sensors for future X-ray applications, J. Low Temp. Phys. 209(3–4), 256 (2022)
|
90 |
Xu X., Rajteri M., Li J., Zhang S., Pepe C., Chen J., Gao H., Li Q., Li W., Li X., Zhang M., Ouyang Y., and Wang X., Investigation of Ti/Au transition-edge sensors for single-photon detection, J. Low Temp. Phys. 209(3−4), 372 (2022)
https://doi.org/10.1007/s10909-022-02818-5
|
91 |
Guerra M., Manso M., Longelin S., Pessanha S., and L. Carvalho M., Performance of three different Si X-ray detectors for portable XRF spectrometers in cultural heritage applications, J. Instrum. 7(10), C10004 (2012)
https://doi.org/10.1088/1748-0221/7/10/C10004
|
92 |
Brombal L., Donato S., Brun F., Delogu P., Fanti V., Oliva P., Rigon L., Di Trapani V., Longo R., and Golosio B., Large-area single-photon-counting CdTe detector for synchrotron radiation computed tomography: A dedicated pre-processing procedure, J. Synchrotron Radiat. 25(4), 1068 (2018)
https://doi.org/10.1107/S1600577518006197
|
93 |
M. Ivanov Y., M. Kanevsky V., F. Dvoryankin V., V. Artemov V., N. Polyakov A., A. Kudryashov A., M. Pashaev E., and J. Horvath Z., The possibilities of using semi-insulating CdTe crystals as detecting material for X-ray imaging radiography, physica status solidi (c) 0(3), 840 (2003)
https://doi.org/10.1002/pssc.200306258
|
94 |
Szeles C., CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications, physica status solidi (b) 241(3), 783 (2004)
https://doi.org/10.1002/pssb.200304296
|
95 |
Wu H., Ge Y., Niu G., and Tang J., Metal halide perovskites for X-ray detection and imaging, Matter 4(1), 144 (2021)
https://doi.org/10.1016/j.matt.2020.11.015
|
96 |
Zhou Y., Chen J., M. Bakr O., and F. Mohammed O., Metal halide perovskites for X-ray imaging scintillators and detectors, ACS Energy Lett. 6(2), 739 (2021)
https://doi.org/10.1021/acsenergylett.0c02430
|
97 |
Wu Y., Feng J., Yang Z., Liu Y., and Liu S., Halide perovskite: A promising candidate for next-generation X-ray detectors, Adv. Sci. (Weinh.) 10(1), 2205536 (2023)
https://doi.org/10.1002/advs.202205536
|
98 |
Sakhatskyi K., Turedi B., J. Matt G., Wu E., Sakhatska A., Bartosh V., N. Lintangpradipto M., Naphade R., Shorubalko I., F. Mohammed O., Yakunin S., M. Bakr O., and V. Kovalenko M., Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity, Nat. Photonics 17(6), 510 (2023)
https://doi.org/10.1038/s41566-023-01207-y
|
99 |
Shrestha S.Tsai H.Nie W., A perspective on the device physics of lead halide perovskite semiconducting detector for gamma and X-ray sensing, Appl. Phys. Lett. 122(8), 080501 (2023)
|
100 |
Zhang F., Herman C., He Z., De Geronimo G., Vernon E., and Fried J., Characterization of the H3D ASIC readout system and 6.0 cm3 3-D position sensitive CdZnTe detectors, IEEE Trans. Nucl. Sci. 59(1), 236 (2012)
https://doi.org/10.1109/TNS.2011.2175948
|
101 |
Wang F., Zhang T., Xie R., Wang Z., and Hu W., How to characterize figures of merit of two-dimensional photodetectors, Nat. Commun. 14(1), 2224 (2023)
https://doi.org/10.1038/s41467-023-37635-1
|
102 |
A. Wolff M., Vogel S., Splitthoff L., and Schuck C., Superconducting nanowire single-photon detectors integrated with tantalum pentoxide waveguides, Sci. Rep. 10(1), 17170 (2020)
https://doi.org/10.1038/s41598-020-74426-w
|
103 |
Zhou Z., Lv J., Tan C., Yang L., and Wang Z., Emerging frontiers of 2D transition metal dichalcogenides in photovoltaics solar cell, Adv. Funct. Mater. 34, 2316175 (2024)
https://doi.org/10.1002/adfm.202316175
|
104 |
Z. Xu G., J. Zhang W., X. You L., M. Xiong J., Q. Sun X., Huang H., Ou X., M. Pan Y., L. Lv C., Li H., Wang Z., and M. Xie X., Superconducting microstrip single-photon detector with system detection efficiency over 90% at 1550 nm, Photon. Res. 9(6), 958 (2021)
https://doi.org/10.1364/PRJ.419514
|
105 |
Wang H., Hu P., Xiao Y., Zhang X., Zhou H., Zhang W., Li H., You L., and Wang Z., Multispectral superconducting nanowire single-photon detector based on thickness-modulated optical film stack, IEEE Photonics J. 14(2), 6816304 (2022)
https://doi.org/10.1109/JPHOT.2022.3151962
|
106 |
Das S., Pandey D., Thomas J., and Roy T., The role of graphene and other 2D materials in solar photovoltaics, Adv. Mater. 31(1), 1802722 (2019)
https://doi.org/10.1002/adma.201802722
|
107 |
Salvoni D., Ejrnaes M., Gaggero A., Mattioli F., Martini F., G. Ahmad H., Di Palma L., Satariano R., Y. Yang X., You L., Tafuri F., P. Pepe G., Massarotti D., Montemurro D., and Parlato L., , Phys. Rev. Applied 18(1), 014006 (2022)
https://doi.org/10.1103/PhysRevApplied.18.014006
|
108 |
Geng Y.Zhang W.Z. Li P.Q. Zhong J.Wang Z. Miao W.Ren Y.F. Wang J.J. Yao Q.C. Shi S., Improving energy detection efficiency of Ti-based superconducting transition-edge sensors with optical cavity, J. Low Temp. Phys. 199(1–2), 556 (2020)
|
109 |
Hu X., Wu D., Zhang H., Li W., Chen D., Wang L., Xiao X., and Yu S., High-speed and high-power germanium photodetector with a lateral silicon nitride waveguide, Photon. Res. 9(5), 749 (2021)
https://doi.org/10.1364/PRJ.417601
|
110 |
Thomson D., Zilkie A., E. Bowers J., Komljenovic T., T. Reed G., Vivien L., Marris-Morini D., Cassan E., Virot L., M. Fédéli J., M. Hartmann J., H. Schmid J., X. Xu D., Boeuf F., O’Brien P., Z. Mashanovich G., and Nedeljkovic M., Roadmap on silicon photonics, J. Opt. 18(7), 073003 (2016)
https://doi.org/10.1088/2040-8978/18/7/073003
|
111 |
R. Karim M., Al Kayed N., Jahan N., S. Alam M., and M. A. Rahman B., Study of highly coherent mid-infrared supercontinuum generation in CMOS compatible Si-rich SiN tapered waveguide, J. Lightwave Technol. 40(13), 4300 (2022)
https://doi.org/10.1109/JLT.2022.3157792
|
112 |
C. Hsu W., Nujhat N., Kupp B., F. Jr Conley J., and X. Wang A., On-chip wavelength division multiplexing filters using extremely efficient gate-driven silicon microring resonator array, Sci. Rep. 13(1), 5269 (2023)
https://doi.org/10.1038/s41598-023-32313-0
|
113 |
Schuler S., E. Muench J., Ruocco A., Balci O., Thourhout D., Sorianello V., Romagnoli M., Watanabe K., Taniguchi T., Goykhman I., C. Ferrari A., and Mueller T., High-responsivity graphene photodetectors integrated on silicon microring resonators, Nat. Commun. 12(1), 3733 (2021)
https://doi.org/10.1038/s41467-021-23436-x
|
114 |
Mu J., Dijkstra M., Korterik J., Offerhaus H., and M. García-Blanco S., High-gain waveguide amplifiers in Si3N4 technology via double-layer monolithic integration, Photon. Res. 8(10), 1634 (2020)
https://doi.org/10.1364/PRJ.401055
|
115 |
J. Blumenthal D., Heideman R., Geuzebroek D., Leinse A., and Roeloffzen C., Silicon nitride in silicon photonics, Proc. IEEE 106(12), 2209 (2018)
https://doi.org/10.1109/JPROC.2018.2861576
|
116 |
Rönn J., Zhang W., Autere A., Leroux X., Pakarinen L., Alonso-Ramos C., Säynätjoki A., Lipsanen H., Vivien L., Cassan E., and Sun Z., Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides, Nat. Commun. 10(1), 432 (2019)
https://doi.org/10.1038/s41467-019-08369-w
|
117 |
Feng L., Zhang M., Wang J., Zhou X., Qiang X., Guo G., and Ren X., Silicon photonic devices for scalable quantum information applications, Photon. Res. 10(10), A135 (2022)
https://doi.org/10.1364/PRJ.464808
|
118 |
T. Kim J. and G. Choi C., Graphene-based polymer waveguide polarizer, Opt. Express 20(4), 3556 (2012)
https://doi.org/10.1364/OE.20.003556
|
119 |
Kleinert M., Herziger F., Reinke P., Zawadzki C., de Felipe D., Brinker W., G. Bach H., Keil N., Maultzsch J., and Schell M., Graphene-based electro-absorption modulator integrated in a passive polymer waveguide platform, Opt. Mater. Express 6(6), 1800 (2016)
https://doi.org/10.1364/OME.6.001800
|
120 |
Hatai R., Nakazaki F., Nakayama T., and Ishigure T., Fabrication of Y-branched GI core polymer waveguide and its application to CWDM MUX device for multimode fiber, J. Lightwave Technol. 40(9), 2915 (2022)
https://doi.org/10.1109/JLT.2021.3130241
|
121 |
Ding Z., Wang H., Li T., Ouyang X., Shi Y., and P. Zhang A., Fabrication of polymer optical waveguides by digital ultraviolet lithography, J. Lightwave Technol. 40(1), 163 (2022)
https://doi.org/10.1109/JLT.2021.3120712
|
122 |
Sahin D., Gaggero A., Zhou Z., Jahanmirinejad S., Mattioli F., Leoni R., Beetz J., Lermer M., Kamp M., Höfling S., and Fiore A., Waveguide photon-number-resolving detectors for quantum photonic integrated circuits, Appl. Phys. Lett. 103(11), 111116 (2013)
https://doi.org/10.1063/1.4820842
|
123 |
Gerrits T., Thomas-Peter N., C. Gates J., E. Lita A., J. Metcalf B., Calkins B., A. Tomlin N., E. Fox A., L. Linares A., B. Spring J., K. Langford N., P. Mirin R., G. R. Smith P., A. Walmsley I., and W. Nam S., On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing, Phys. Rev. A 84(6), 060301 (2011)
https://doi.org/10.1103/PhysRevA.84.060301
|
124 |
Wang H., Shi Y., Zuo Y., Yu Y., Lei L., Zhang X., and Qian Z., High-performance waveguide coupled Germanium-on-silicon single-photon avalanche diode with independently controllable absorption and multiplication, Nanophotonics 12(4), 705 (2023)
https://doi.org/10.1515/nanoph-2022-0663
|
125 |
Wu J., Ma H., Zhong C., Wei M., Sun C., Ye Y., Xu Y., Tang B., Luo Y., Sun B., Jian J., Dai H., Lin H., and Li L., Waveguide-integrated PdSe2 photodetector over a broad infrared wavelength range, Nano Lett. 22(16), 6816 (2022)
https://doi.org/10.1021/acs.nanolett.2c02099
|
126 |
Youngblood N., Chen C., J. Koester S., and Li M., Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current, Nat. Photonics 9(4), 247 (2015)
https://doi.org/10.1038/nphoton.2015.23
|
127 |
Yin Y., Cao R., Guo J., Liu C., Li J., Feng X., Wang H., Du W., Qadir A., Zhang H., Ma Y., Gao S., Xu Y., Shi Y., Tong L., and Dai D., High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 µm, Laser Photonics Rev. 13(6), 1900032 (2019)
https://doi.org/10.1002/lpor.201900032
|
128 |
Flöry N., Ma P., Salamin Y., Emboras A., Taniguchi T., Watanabe K., Leuthold J., and Novotny L., Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity, Nat. Nanotechnol. 15(2), 118 (2020)
https://doi.org/10.1038/s41565-019-0602-z
|
129 |
L. Chen P., Chen Y., Y. Chang T., Q. Li W., X. Li J., Lee S., Fang Z., Li M., Majumdar A., and H. Liu C., Waveguide-integrated van der Waals heterostructure mid-infrared photodetector with high performance, ACS Appl. Mater. Interfaces 14(21), 24856 (2022)
https://doi.org/10.1021/acsami.2c01094
|
130 |
Wu J., Wei M., Mu J., Ma H., Zhong C., Ye Y., Sun C., Tang B., Wang L., Li J., Xu X., Liu B., Li L., and Lin H., High-performance waveguide-integrated Bi2O2Se photodetector for Si photonic integrated circuits, ACS Nano 15(10), 15982 (2021)
https://doi.org/10.1021/acsnano.1c04359
|
131 |
H. Zeng L., Wu D., H. Lin S., Xie C., Y. Yuan H., Lu W., P. Lau S., Chai Y., B. Luo L., J. Li Z., and H. Tsang Y., Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications, Adv. Funct. Mater. 29(1), 1806878 (2019)
https://doi.org/10.1002/adfm.201806878
|
132 |
Deng S., V. Sumant A., and Berry V., Strain engineering in two-dimensional nanomaterials beyond graphene, Nano Today 22, 14 (2018)
https://doi.org/10.1016/j.nantod.2018.07.001
|
133 |
Frisenda R., Drüppel M., Schmidt R., Michaelis de Vasconcellos S., Perez de Lara D., Bratschitsch R., Rohlfing M., and Castellanos-Gomez A., Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides, npj 2D Mater. Appl. 1, 10 (2017)
https://doi.org/10.1038/s41699-017-0013-7
|
134 |
Tang N., Du C., Wang Q., and Xu H., Strain engineering in bilayer WSe2 over a large strain range, Microelectron. Eng. 223, 111202 (2020)
https://doi.org/10.1016/j.mee.2019.111202
|
135 |
Xu W., D. Zheng J., Y. Tong W., L. Wang J., P. Shao Y., K. Zhang Y., F. Tan Y., and G. Duan C., Strain-induced ferroelectric phase transition in group-V monolayer black phosphorus, Adv. Quantum Technol. 6(4), 2200169 (2023)
https://doi.org/10.1002/qute.202200169
|
136 |
L. Li L., Gillen R., Palummo M., V. Milošević M., and M. Peeters F., Strain tunable interlayer and intralayer excitons in vertically stacked MoSe2/WSe2 heterobilayers, Appl. Phys. Lett. 123(3), 033102 (2023)
https://doi.org/10.1063/5.0147761
|
137 |
Nayak D. and Thangavel R., Tailoring the electronic and photocatalytic properties of Mo1−xWxS2 monolayers via biaxial strain, J. Mater. Sci. 57(6), 4283 (2022)
https://doi.org/10.1007/s10853-022-06889-3
|
138 |
Tareq S., O. M. Almayyali A., and R. Jappor H., Prediction of two-dimensional AlBrSe monolayer as a highly efficient photocatalytic for water splitting, Surf. Interfaces 31, 102020 (2022)
https://doi.org/10.1016/j.surfin.2022.102020
|
139 |
Roldán R., Castellanos-Gomez A., Cappelluti E., and Guinea F., Strain engineering in semiconducting two-dimensional crystals, J. Phys.: Condens. Matter 27(31), 313201 (2015)
https://doi.org/10.1088/0953-8984/27/31/313201
|
140 |
O. Island J., Kuc A., H. Diependaal E., Bratschitsch R., S. J. van der Zant H., Heine T., and Castellanos-Gomez A., Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain, Nanoscale 8(5), 2589 (2016)
https://doi.org/10.1039/C5NR08219F
|
141 |
Hayashi M., Yoshioka H., Tomori H., and Kanda A., Theory of the strain engineering of graphene nanoconstrictions, J. Phys. Soc. Jpn. 90(2), 023701 (2021)
https://doi.org/10.7566/JPSJ.90.023701
|
142 |
Chen M., Xia J., Zhou J., Zeng Q., Li K., Fujisawa K., Fu W., Zhang T., Zhang J., Wang Z., Wang Z., Jia X., Terrones M., X. Shen Z., Liu Z., and Wei L., Ordered and atomically perfect fragmentation of layered transition metal dichalcogenides via mechanical instabilities, ACS Nano 11(9), 9191 (2017)
https://doi.org/10.1021/acsnano.7b04158
|
143 |
Cho C., Wong J., Taqieddin A., Biswas S., R. Aluru N., Nam S., and A. Atwater H., Highly strain-tunable interlayer excitons in MoS2/WSe2 heterobilayers, Nano Lett. 21(9), 3956 (2021)
https://doi.org/10.1021/acs.nanolett.1c00724
|
144 |
K. Ryu Y., Carrascoso F., López-Nebreda R., Agraït N., Frisenda R., and Castellanos-Gomez A., Microheater actuators as a versatile platform for strain engineering in 2D materials, Nano Lett. 20(7), 5339 (2020)
https://doi.org/10.1021/acs.nanolett.0c01706
|
145 |
Chen Z., Luo W., Liang L., Ling X., and K. Swan A., Charge separation in monolayer WSe2 by strain engineering: implications for strain-induced diode action, ACS Appl. Nano Mater. 5(10), 15095 (2022)
https://doi.org/10.1021/acsanm.2c03264
|
146 |
Manzeli S., Allain A., Ghadimi A., and Kis A., Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2, Nano Lett. 15(8), 5330 (2015)
https://doi.org/10.1021/acs.nanolett.5b01689
|
147 |
Y. Juo J.G. Shin B.Stiepany W.Memmler M.Kern K. J. Jung S., In-situ atomic level observation of the strain response of graphene lattice, Sci. Rep. 13(1), 2451 (2023)
|
148 |
Nemes-Incze P., Kukucska G., Koltai J., Kürti J., Hwang C., Tapasztó L., and P. Biró L., Preparing local strain patterns in graphene by atomic force microscope based indentation, Sci. Rep. 7(1), 3035 (2017)
https://doi.org/10.1038/s41598-017-03332-5
|
149 |
Wang K., A. Puretzky A., Hu Z., R. Srijanto B., Li X., Gupta N., Yu H., Tian M., Mahjouri-Samani M., Gao X., Oyedele A., M. Rouleau C., Eres G., I. Yakobson B., Yoon M., Xiao K., and B. Geohegan D., Strain tolerance of two-dimensional crystal growth on curved surfaces, Sci. Adv. 5(5), eaav4028 (2019)
https://doi.org/10.1126/sciadv.aav4028
|
150 |
W. Christopher J., Vutukuru M., Lloyd D., S. Bunch J., B. Goldberg B., J. Bishop D., and K. Swan A., Monolayer MoS2 strained to 1.3% with a microelectromechanical system, J. Microelectromech. Syst. 28(2), 254 (2019)
https://doi.org/10.1109/JMEMS.2018.2877983
|
151 |
Y. Hui Y., Liu X., Jie W., Y. Chan N., Hao J., T. Hsu Y., J. Li L., Guo W., and P. Lau S., Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet, ACS Nano 7(8), 7126 (2013)
https://doi.org/10.1021/nn4024834
|
152 |
Maiti R., Patil C., A. S. R. Saadi M., Xie T., G. Azadani J., Uluutku B., Amin R., F. Briggs A., Miscuglio M., Van Thourhout D., D. Solares S., Low T., Agarwal R., R. Bank S., and J. Sorger V., Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits, Nat. Photonics 14(9), 578 (2020)
https://doi.org/10.1038/s41566-020-0647-4
|
153 |
He H., F. Yang P., F. Zhang P., Li G., and C. Zhang T., Single-photon source with sub-MHz linewidth for cesium-based quantum information processing, Front. Phys. 18(6), 61303 (2023)
https://doi.org/10.1007/s11467-023-1317-z
|
154 |
Maccarone A., Drummond K., McCarthy A., K. Steinlehner U., Tachella J., A. Garcia D., Pawlikowska A., A. Lamb R., K. Henderson R., McLaughlin S., Altmann Y., and S. Buller G., Submerged single-photon LiDAR imaging sensor used for real-time 3D scene reconstruction in scattering underwater environments, Opt. Express 31(10), 16690 (2023)
https://doi.org/10.1364/OE.487129
|
155 |
Liu X., Wang J., Xiao L., Shi Z., Fu X., and Qiu L., Non-line-of-sight imaging with arbitrary illumination and detection pattern, Nat. Commun. 14(1), 3230 (2023)
https://doi.org/10.1038/s41467-023-38898-4
|
156 |
Moya R., C. Norris A., Kondo T., and S. Schlau-Cohen G., Observation of robust energy transfer in the photosynthetic protein allophycocyanin using single-molecule pump–probe spectroscopy, Nat. Chem. 14(2), 153 (2022)
https://doi.org/10.1038/s41557-021-00841-9
|
157 |
Li Q., Orcutt K., L. Cook R., Sabines-Chesterking J., L. Tong A., S. Schlau-Cohen G., Zhang X., R. Fleming G., and B. Whaley K., Single-photon absorption and emission from a natural photosynthetic complex, Nature 619(7969), 300 (2023)
https://doi.org/10.1038/s41586-023-06121-5
|
158 |
Du Z.Hu Y. Ali Buttar N.Mahmood A., X-ray computed tomography for quality inspection of agricultural products: A review, Food Sci. Nutr. 7(10), 3146 (2019)
|
159 |
Jiang J., Xiong M., Fan K., Bao C., Xin D., Pan Z., Fei L., Huang H., Zhou L., Yao K., Zheng X., Shen L., and Gao F., Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring, Nat. Photonics 16(8), 575 (2022)
https://doi.org/10.1038/s41566-022-01024-9
|
160 |
H. Zuo G.C. Zhang Y.Li G.F. Zhang P.F. Yang P. Q. Guo Y.Y. Zhu S.C. Zhang T., 10-Hertz squeezed light source generation on the cesium D2 line using single photon modulation, Front. Phys. 18(3), 32301 (2023)
|
161 |
P. Li Z., Huang X., Cao Y., Wang B., H. Li Y., Jin W., Yu C., Zhang J., Zhang Q., Z. Peng C., Xu F., and W. Pan J., Single-photon computational 3D imaging at 45 km, Photon. Res. 8(9), 1532 (2020)
https://doi.org/10.1364/PRJ.390091
|
162 |
T. Fang X., Zeng P., Liu H., Zou M., Wu W., L. Tang Y., J. Sheng Y., Xiang Y., Zhang W., Li H., Wang Z., You L., J. Li M., Chen H., A. Chen Y., Zhang Q., Z. Peng C., Ma X., Y. Chen T., and W. Pan J., Implementation of quantum key distribution surpassing the linear rate-transmittance bound, Nat. Photonics 14(7), 422 (2020)
https://doi.org/10.1038/s41566-020-0599-8
|
163 |
P. Chen J., Zhang C., Liu Y., Jiang C., Zhang W., L. Hu X., Y. Guan J., W. Yu Z., Xu H., Lin J., J. Li M., Chen H., Li H., You L., Wang Z., B. Wang X., Zhang Q., and W. Pan J., Sending-or-not-sending with independent lasers: Secure twin-field quantum key distribution over 509 km, Phys. Rev. Lett. 124(7), 070501 (2020)
https://doi.org/10.1103/PhysRevLett.124.070501
|
164 |
Wang S., Q. Yin Z., Y. He D., Chen W., Q. Wang R., Ye P., Zhou Y., J. Fan-Yuan G., X. Wang F., Chen W., G. Zhu Y., V. Morozov P., V. Divochiy A., Zhou Z., C. Guo G., and F. Han Z., Twin-field quantum key distribution over 830-km fibre, Nat. Photonics 16(2), 154 (2022)
https://doi.org/10.1038/s41566-021-00928-2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|