Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (6) : 62502    https://doi.org/10.1007/s11467-024-1428-1
Emerging single-photon detection technique for high-performance photodetector
Jinxiu Liu1, Zhenghan Peng1,2, Chao Tan1, Lei Yang1, Ruodan Xu3, Zegao Wang1()
1. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
2. Department of Materials Science and Engineering, Stanford University, California 94305, USA
3. Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
 Download: PDF(8007 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Single-photon detections (SPDs) represent a highly sensitive light detection technique capable of detecting individual photons at extremely low light intensity levels. This technology mainly relies on the mainstream SPDs, such as photomultiplier tubes (PMTs), avalanche photodiodes (SAPD), superconducting nanowire single-photon detectors (SNSPDs), superconducting transition-edge sensor (TES), and hybrid lead halide perovskite. However, the complexity and high manufacturing cost, coupled with the requirement of special conditions like a low-temperature environment, pose significant challenges to the wide adoption of SPDs. To address the challenges faced by SPDs, significant efforts have been devoted to enhancing their performance. In this review, we first summarize the principles and technical challenges of several SPDs. Conductors, superconductors, semiconductors, 3D bulk materials, 2D film materials, 1D nanowires, and 0D quantum dots have all been discussed for single-photon detectors. Methods such as special optical structure, waveguide integration, and strain engineering have been employed to elevate the performance of single-photon detectors. These techniques enhance light absorption and modulate the band structure of the material, thereby improving the single-photon sensitivity. By providing an overview of the current situation and future challenges of SPDs, this review aims to propose potential solutions for photon detection technology.

Keywords single-photon detection      superconductor      semiconductor      low dimensional materials      optical structure      waveguide integration      strain engineering     
Corresponding Author(s): Zegao Wang   
Issue Date: 16 July 2024
 Cite this article:   
Jinxiu Liu,Zhenghan Peng,Chao Tan, et al. Emerging single-photon detection technique for high-performance photodetector[J]. Front. Phys. , 2024, 19(6): 62502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1428-1
https://academic.hep.com.cn/fop/EN/Y2024/V19/I6/62502
Fig.1  Scope of this review.
Fig.2  (a) Schematic diagram of the multiplication effect in APD. Reproduced from Ref. [19]. Avalanche diode quenching circuit: (b) passive quenching, (c) active quenching, and (d) mixed quenching.
Fig.3  Multiple multiplication layer avalanche diode. (a) Illustration of InGaAs/InAlAs-SPAD with quadruple mesa structure (i) and triple mesa structure (ii). (b) Transverse electric field profile of the lower side of the second multiplication layer. (c) Dark current and photocurrent of mesa-type InGaAs/InAlAs SPAD illuminated with an optical power of 1 μW. (d) Gaussian-like temporal responses were measured at T = 200 K for quadruple and triple mesa devices. Reproduced from Ref. [31].
Fig.4  0D quantum dot based avalanche diode. (a) Schematic diagram of AlGaAs/GaAs quantum dot avalanche diode single-photon detector. (b) Detection efficiency of AQDIP-SPD at different temperatures. (c) DCR of the detector as a function of its detection efficiency for different temperatures. 1D nanowires based detector. (d) Schematic diagram of single photon detection of CdS nanowires deposited on Si/SiO2 structures. (e) The process of electron−hole pair induction by a single photon. (f) The photogating effect was induced by the trapped hole in the photogating layer. (g) Time-resolved of current measurements at room temperature. 2D ballistic avalanche diode. (h) Illustration of the conventional avalanche diode and (i) ballistic avalanche diode in the vertical InSe/BP heterostructure devices. (j) Low temperature (10 K) photon response and multiplication of InSe/BP APDs (grey line, dark; red line, 4 μm laser illuminated with 30 μW and blue line, the corresponding multiplication factor). (k) IdsVds curves at different temperatures (from 40 to 180 K). (l) Threshold voltages (Vth) of the avalanche breakdown and multiplication as functions of temperature. (a?c) Reproduced from Ref. [39]; (d?g) Reproduced from Ref. [41]; (h?l) Reproduced from Ref. [49].
Fig.5  Single photon detection principle of superconducting nanowire. Reproduced from Ref. [56].
Fig.6  (a) TES Single photon detection schematic diagram. (b) The TES resistance changes near the superconducting transition temperature and. (c) TES resistance changes with photon absorption. (d) Microscope images of various sizes of Au-TES layouts on the chip. (e) Schematic layout of the TES array. The top number (black) indicates the TES number used. The bottom number, in red, gives the AC bias frequency in MHz for each TES. (f) Measured energy resolution for all geometries. (a?c) Reproduced from Ref. [60]; (d?f) Reproduced from Ref. [64].
Detector type Working parameter (wavelength, time jitter/tj) Performance (detection range, depth resolution, etc.) Year Ref.
PMTs 200–1100, 1550 nm 2–40 QE at 200?300 K ? [78]
Ge-APD 1310 nm DE:5.27%, dark count rate of 534 kHz at 80 K 2017 [79]
Si-SPAD 400?1000 nm 50%−92% QE at 200?300 K ? [80, 81]
InGaAs/InAlAs-SPAD 1310 nm 61.2% DE at 200 K 2022 [82]
InGaAs/InAlAs-SPAD 1550 nm, 53 ps tj sensitivities of −57.2 dBm, −53.42 dBm, and −51.06 dBm at bit rates of 100 Mbit/s, 200 Mbit/s, and 400 Mbit/s 2022 [25]
InGaAs/InAlAs-SPAD 50 keV X-ray 4.1 Mcps at 50 keV, NEP/Ps (2.5 × 10−15 W·μm2/Hz3/2) 2023 [83]
NbRe-SMSPD 1.5 μm 2022 [55]
NbN SMSPD 1550 nm.48 ps tj 92.2% SDE, 200 cps DCR, at 0.84 K 2021 [54]
NbN-SNSPD 1550 nm 92%SDE at 2.2 K 2019 [59]
WSi-SNSPD 1520?1610 nm, 150 ps tj, 1cps DCR 93% SDE at 2 K 2013 [84]
NbN-SNSPD visible wavelengths and 1550 nm 2.6?±?0.2?ps system temporal resolution (STR) for visible wavelengths , 4.3?±?0.2?ps STR at 1550?nm 2020 [58]
MoSi-SNSPD 1542 nm, 76ps tj 87.1%±0.5% SDE for 1542 nm at 0.7 K 2015 [85]
MoSi-SNSPD 1550 nm 98.0%±0.5% SDE for 1550 nm, 2020 [86]
NbTiN-SNSPD 1260?1625 nm, 15?26ps tj 99.5% SDE for 1350 nm, 2022 [87]
MoSi-SNSPD 1550 nm, 15ps tj full-width at half-maximum values of 4.8 ps for 532 nm and 10.3 ps for 1550 nm single photons, lowest temporal jitter of 15 ps 2018 [88]
Bi-TES 10 keV and 15.6 keV X-ray 40.3% and 30.7% absorptivity 2016 [65]
TiAu-TES 5.9 keV X-ray 2.4 eV energy resolution for 140 × 30 μm2 at 110 mK 2020 [67]
TiAu-TES 5.9 keV X-ray 1.75 ± 0.10 eV energy resolution for 50 × 50 μm2 (Tc = 80.77 ± 0.70 mK) 2022 [89]
TiAu-TES 1550 nm 0.067 eV energy resolution for 8 × 8 μm2 at 115 mK 2022 [75]
Ti/Au -TES 1550 nm 0.19 eV energy resolution for 20 × 20 μm2 at 46 mK 2022 [90]
BLG-MoS2 470?700 nm 2%?4% at 100 K 2018 [47]
Tab.1  Performance information of different single-photon detectors.
Fig.7  (a) Schematic cross-section of the NbN SMSPD with 13 layers of SiO2/Ta2O5 Bragg mirror. (b) The relationship between different filling values f on wavelength absorption. (c) The relationship between the bias current of the SMSPD on the SDE and DCR of SMSPD under 1550 nm illumination at 0.84 and 2.1 K. (d) The maximum and minimum SDE under different polarized lights (the dotted line is the function fitting, and the inset is the microscope image with an effective area of 50 μm). (e) Multispectral SNSPD schemata based on thickness-modulated SiO2/Ta2O5 optical films. (f) For multilayer thickness-modulated optical films, simulated absorption and measurement system detection efficiency (SDEs) in the vicinity of multi-wavelength range. (g) The system detection efficiency (SDE) at 505, 610, 1030 and 1550 nm, and the dark count rate (DCR) as a function of the bias current. (h) SEM image of a cross-section of an optical TES cavity. Inset is the contact between TES and Nb electrodes. (i) Cross-sectional diagram of the fiber coupling. (j) The relationship of reflectivity and wavelength for TES single-photon detectors (The solid line shows the simulation results and the circle is the measured reflectance). (k) The energy distribution of the number of probe pulses laser of Ti-TES. (a?d) Reproduced from Ref. [104]; (e?g) Reproduced from Ref. [105]; (h?k) Reproduced from Ref. [76].
Fig.8  Waveguide integrated SPAD (a), DCR (b) and SPDE (c) of the detection system versus the excess bias at 78 K. (d) The timing jitter as a function of excess bias at VS1 = 1 V where single-photon detection based on waveguide superconducting nanowires. (e) GaAs/Al0.75Ga0.25As ridge waveguides based on NbN. (f) The calculated absorptivity in TE and TM modes, and the inset shows the electric field equivalent profile. (g) Device quantum efficiency (QE) at 1310 nm. (h) Photon count rate measured by pulsed laser at TE polarization at 1310 nm, Ib = 8.8 μA where waveguide integrated TES is used to single-photon detection. (i) Schematic of TES fabricated on optical waveguides at 1550 nm at 12 mK. The size of TES is 25 nm × 25 nm × 40 nm. (j) The photon pulse height distribution for the optimal TM polarization is plotted, and (k) the pulse height distribution without waveguide transient coupling. (l) The electrical TES output traces for different numbers of photons in the weak laser pulse. (a?d) Reproduced from Ref. [124]; (e?h) Reproduced from Ref. [122]; (i?k) Reproduced from Ref. [123].
Fig.9  PdSe2 photodetector integrated with silicon waveguide. (a) 3D illustration of the waveguide integrated PdSe2 photodetector. (b) Calculated electric field profiles of the TE mode in the hybrid silicon/PdSe2 waveguide. (c) Responsivity and EQE at different bias voltage at 1550 nm for different thickness/length PdSe2 (S1 for 139 nm/22.6 μm, S2 for 142 nm/10.4 μm, S3 for 226 nm/14.7 μm). (d) Regulation of the gate voltage on the photon response (photocurrent and dark current), the optical power is 42 μW. Reproduced from Ref. [125].
Fig.10  Strain-induced modulation of the electronic bandgap in MoTe2. (a) Schematic diagram of MRR integrated MoTe2 photodetector. (b) Bulk band structure DFT calculations of MoTe2 before strain (black) and after 4% strain (red). (c) Photocurrent at different optical power. (d) The responsivity and EQE of the Au/MoTe2/Au detector with different thickness/length (Device 1 for 40 nm/15 μm; Device 2 for 60 nm/30.7 μm). Reproduced from Ref. [152].
Fig.11  (a) Underwater imaging system for single-photon radar. Reproduced from Ref. [154]. (b) Non-view imaging. Reproduced from Ref. [5].
Fig.12  (a) Schematic of the X-ray imaging system. (b) Normalized response varying with the frequency. (c) Sensitivity of X-ray detectors under different electric fields. (d) MAPbI3 SC XPV device and (e) DQE dependencies on the dose in γ-ray single-photon counting. The solid black line and points represent the model and experimental data. (f) Energy-resolved spectrum of 60 keV photons from a radioactive 241Am source. The inset picture is Energy-resolved X-ray imaging of the object under 50 kVp X-ray irradiation. (a?c) Reproduced from Ref. [159]; (d?f) Reproduced from Ref. [98].
Fig.13  (a) Using single-photon laser radar (i), a high-rise building (ii) located 45 km away in Shanghai is imaged at a long distance. (iii) is the internal structure of single-photon lidar. (b) A single photon detector (SPD) was used to perform quantum key distribution on 830 km optical fiber. (a) Reproduced from Ref. [161]; (b) Reproduced from Ref. [164].
1 F. Yan Y., Zhou L., Zhong W., and B. Sheng Y., Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys. 16(1), 11501 (2021)
https://doi.org/10.1007/s11467-020-1005-1
2 P. Chen J., Zhang C., Liu Y., Jiang C., F. Zhao D., J. Zhang W., X. Chen F., Li H., X. You L., Wang Z., Chen Y., B. Wang X., Zhang Q., and W. Pan J., Quantum key distribution over 658 km fiber with distributed vibration sensing, Phys. Rev. Lett. 128(18), 180502 (2022)
https://doi.org/10.1103/PhysRevLett.128.180502
3 Ma Y., Z. Ma Y., Q. Zhou Z., F. Li C., and C. Guo G., One-hour coherent optical storage in an atomic frequency comb memory, Nat. Commun. 12(1), 2381 (2021)
https://doi.org/10.1038/s41467-021-22706-y
4 Grein M.Kerman A.Dauler E.Willis M.Romkey B. Molnar R.Robinson B.Murphy D.Boroson D., An optical receiver for the Lunar Laser Communication Demonstration based on photon-counting superconducting nanowires, SPIE, Vol. 9492 CSI, 2015
5 Wang B., Y. Zheng M., J. Han J., Huang X., P. Xie X., Xu F., Zhang Q., and W. Pan J., Non-line-of-sight imaging with picosecond temporal resolution, Phys. Rev. Lett. 127(5), 053602 (2021)
https://doi.org/10.1103/PhysRevLett.127.053602
6 P. Li Z., T. Ye J., Huang X., Y. Jiang P., Cao Y., Hong Y., Yu C., Zhang J., Zhang Q., Z. Peng C., Xu F., and W. Pan J., Single-photon imaging over 200 km, Optica 8(3), 344 (2021)
https://doi.org/10.1364/OPTICA.408657
7 He W., Feng Z., Lin J., Shen S., Chen Q., Gu G., Zhou B., and Zhang P., Adaptive depth imaging with single-photon detectors, IEEE Photonics J. 9(2), 7801812 (2017)
https://doi.org/10.1109/JPHOT.2017.2670139
8 Scholes S., Mora-Martín G., Zhu F., Gyongy I., Soan P., and Leach J., Fundamental limits to depth imaging with single-photon detector array sensors, Sci. Rep. 13(1), 176 (2023)
https://doi.org/10.1038/s41598-022-27012-1
9 Wang Y., Huang K., Fang J., Yan M., Wu E., and Zeng H., Mid-infrared single-pixel imaging at the single-photon level, Nat. Commun. 14(1), 1073 (2023)
https://doi.org/10.1038/s41467-023-36815-3
10 Rajendran K., Petersilka M., Henning A., R. Shanblatt E., Schmidt B., G. Flohr T., Ferrero A., Baffour F., E. Diehn F., Yu L., Rajiah P., G. Fletcher J., Leng S., and H. McCollough C., First clinical photon-counting detector CT system: Technical evaluation, Radiology 303(1), 130 (2022)
https://doi.org/10.1148/radiol.212579
11 S. Kowligy A., Timmers H., J. Lind A., Elu U., C. Cruz F., G. Schunemann P., Biegert J., and A. Diddams S., Infrared electric field sampled frequency comb spectroscopy, Sci. Adv. 5(6), eaaw8794 (2019)
https://doi.org/10.1126/sciadv.aaw8794
12 Pupeza I., Huber M., Trubetskov M., Schweinberger W., A. Hussain S., Hofer C., Fritsch K., Poetzlberger M., Vamos L., Fill E., Amotchkina T., V. Kepesidis K., Apolonski A., Karpowicz N., Pervak V., Pronin O., Fleischmann F., Azzeer A., Žigman M., and Krausz F., Field-resolved infrared spectroscopy of biological systems, Nature 577(7788), 52 (2020)
https://doi.org/10.1038/s41586-019-1850-7
13 Niclass C., Favi C., Kluter T., Monnier F., and Charbon E., Single-photon synchronous detection, IEEE J. Solid-State Circuits 44(7), 1977 (2009)
https://doi.org/10.1109/JSSC.2009.2021920
14 Zhang B., Q. Guan Y., Xia L., Dong D., Chen Q., Xu C., Wu C., Huang H., Zhang L., Kang L., Chen J., and Wu P., An all-day lidar for detecting soft targets over 100 km based on superconducting nanowire single-photon detectors, Supercond. Sci. Technol. 34(3), 034005 (2021)
https://doi.org/10.1088/1361-6668/abd576
15 Chen Q., Ge R., Zhang L., Li F., Zhang B., Jin F., Han H., Dai Y., He G., Fei Y., Wang X., Wang H., Jia X., Zhao Q., Tu X., Kang L., Chen J., and Wu P., Mid-infrared single photon detector with superconductor Mo0.8Si0.2 nanowire, Sci. Bull. (Beijing) 66(10), 965 (2021)
https://doi.org/10.1016/j.scib.2021.02.024
16 T. Jaeckel F., Roy A., Wulf D., Zhang S., Zhou Y., S. Adams J., R. Bandler S., A. Chervenak J., M. Datesman A., E. Eckart M., J. Ewin A., V. Ambarish C., M. Finkbeiner F., Kelley R., A. Kilbourne C., R. Miniussi A., S. Porter F., E. Sadleir J., Sakai K., J. Smith S., Wakeham N., Wassell E., Christensen N., Yoon W., M. Morgan K., R. Schmidt D., S. Swetz D., N. Ullom J., Gruenke R., Hu L., McCammon D., McPheron M., Meyer M., and L. Nelms K., Energy calibration of high-resolution X-ray TES microcalorimeters with 3 eV optical photons, IEEE Trans. Appl. Supercond. 29(5), 1 (2019)
https://doi.org/10.1109/TASC.2019.2899856
17 Incoronato A., Cusini I., Pasquinelli K., and Zappa F., Single-shot pulsed-LiDAR SPAD sensor with on-chip peak detection for background rejection, IEEE J. Sel. Top. Quantum Electron. 28, 3804210 (2022)
https://doi.org/10.1109/JSTQE.2022.3180687
18 C. Shan G., Q. Yin Z., H. Shek C., and Huang W., Single photon sources with single semiconductor quantum dots, Front. Phys. 9(2), 170 (2014)
https://doi.org/10.1007/s11467-013-0360-6
19 Martyniuk P., Wang P., Rogalski A., Gu Y., Jiang R., Wang F., and Hu W., Infrared avalanche photodiodes from bulk to 2D materials, Light Sci. Appl. 12(1), 212 (2023)
https://doi.org/10.1038/s41377-023-01259-3
20 Gallivanoni A., Rech I., and Ghioni M., Progress in quenching circuits for single photon avalanche diodes, IEEE Trans. Nucl. Sci. 57, 3815 (2010)
https://doi.org/10.1109/TNS.2010.2074213
21 Maccarone A., Acconcia G., Steinlehner U., Labanca I., Newborough D., Rech I., and S. Buller G., Custom-technology single-photon avalanche diode linear detector array for underwater depth imaging, Sensors (Basel) 21(14), 4850 (2021)
https://doi.org/10.3390/s21144850
22 Lee H., Choi H., and Yun I., Junction engineering-based modeling and optimization of deep junction silicon single-photon avalanche diodes for device scaling, IEEE Trans. Electron Dev. 69(9), 4970 (2022)
https://doi.org/10.1109/TED.2022.3190262
23 Sanzaro M., Calandri N., Ruggeri A., and Tosi A., InGaAs/InP SPAD with monolithically integrated zinc-diffused resistor, IEEE J. Quantum Electron. 52(7), 1 (2016)
https://doi.org/10.1109/JQE.2016.2567063
24 Telesca F., Signorelli F., and Tosi A., Temperature-dependent photon detection efficiency model for InGaAs/InP SPADs, Opt. Express 30(3), 4504 (2022)
https://doi.org/10.1364/OE.444536
25 Tian Y., Li Q., Ding W., Wu D., Lin Z., Feng X., Zhang H., Yu X., and Zhao Y., High speed and high sensitivity InGaAs/InAlAs single photon avalanche diodes for photon counting communication, J. Lightwave Technol. 40(15), 5245 (2022)
https://doi.org/10.1109/JLT.2022.3174962
26 Meng X., Xie S., Zhou X., Calandri N., Sanzaro M., Tosi A., H. Tan C., and S. Ng J., InGaAs/InAlAs single photon avalanche diode for 1550 nm photons, R. Soc. Open Sci. 3(3), 150584 (2016)
https://doi.org/10.1098/rsos.150584
27 Rothman J., Physics and limitations of HgCdTe APDs: A review, J. Electron. Mater. 47(10), 5657 (2018)
https://doi.org/10.1007/s11664-018-6475-3
28 H. Haitz R., Model for the electrical behavior of a microplasma, J. Appl. Phys. 35(5), 1370 (1964)
https://doi.org/10.1063/1.1713636
29 K. Liao S., L. Yong H., Liu C., L. Shentu G., D. Li D., Lin J., Dai H., Q. Zhao S., Li B., Y. Guan J., Chen W., H. Gong Y., Li Y., H. Lin Z., S. Pan G., S. Pelc J., M. Fejer M., Z. Zhang W., Y. Liu W., Yin J., G. Ren J., B. Wang X., Zhang Q., Z. Peng C., and W. Pan J., Long-distance free-space quantum key distribution in daylight towards inter-satellite communication, Nat. Photonics 11(8), 509 (2017)
https://doi.org/10.1038/nphoton.2017.116
30 T. Rakher M., Ma L., Slattery O., Tang X., and Srinivasan K., Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion, Nat. Photonics 4(11), 786 (2010)
https://doi.org/10.1038/nphoton.2010.221
31 S. Lee Y., M. Liao Y., L. Wu P., E. Chen C., J. Teng Y., Y. Hung Y., and W. Shi J., In0.52Al0.48As based single photon avalanche diodes with stepped E-field in multiplication layers and high efficiency beyond 60%, IEEE J. Sel. Top. Quantum Electron. 28(2), 1 (2022)
https://doi.org/10.1109/JSTQE.2021.3114130
32 Wu D., Guo J., Wang C., Ren X., Chen Y., Lin P., Zeng L., Shi Z., J. Li X., X. Shan C., and Jie J., Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation, ACS Nano 15(6), 10119 (2021)
https://doi.org/10.1021/acsnano.1c02007
33 Wu D., Guo C., Zeng L., Ren X., Shi Z., Wen L., Chen Q., Zhang M., J. Li X., X. Shan C., and Jie J., Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection, Light Sci. Appl. 12(1), 5 (2023)
https://doi.org/10.1038/s41377-022-01047-5
34 Wu D., Guo J., Du J., Xia C., Zeng L., Tian Y., Shi Z., Tian Y., J. Li X., H. Tsang Y., and Jie J., Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction, ACS Nano 13(9), 9907 (2019)
https://doi.org/10.1021/acsnano.9b03994
35 Zeng L., Wu D., Jie J., Ren X., Hu X., P. Lau S., Chai Y., and H. Tsang Y., Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm, Adv. Mater. 32(52), 2004412 (2020)
https://doi.org/10.1002/adma.202004412
36 Zeng L., Han W., E. Wu S., Wu D., P. Lau S., and H. Tsang Y., Graphene/PtSe2/pyramid Si van der Waals Schottky junction for room-temperature broadband infrared light detection, IEEE Trans. Electron Dev. 69(11), 6212 (2022)
https://doi.org/10.1109/TED.2022.3208854
37 Zeng S., Zhao M., Li F., Yang Z., Wu H., Tan C., Sun Q., Yang L., Lei L., and Wang Z., Crystalline orientation-tunable growth of hexagonal and tetragonal 2H-PtSe2 single-crystal flakes, Adv. Funct. Mater. 34(6), 2308681 (2024)
https://doi.org/10.1002/adfm.202308681
38 Zeng L., Han W., Ren X., Li X., Wu D., Liu S., Wang H., P. Lau S., H. Tsang Y., X. Shan C., and Jie J., Uncooled mid-infrared sensing enabled by chip-integrated low-temperature-grown 2D PdTe2 Dirac semimetal, Nano Lett. 23(17), 8241 (2023)
https://doi.org/10.1021/acs.nanolett.3c02396
39 Zavvari M. and Ahmadi V., Self-quenched quantum dot avalanche photodetector for mid-infrared single photon detection, Infrared Phys. Technol. 62, 7 (2014)
https://doi.org/10.1016/j.infrared.2013.10.005
40 J. Gansen E., A. Rowe M., B. Greene M., Rosenberg D., E. Harvey T., Y. Su M., H. Hadfield R., W. Nam S., and P. Mirin R., Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor, Nat. Photonics 1(10), 585 (2007)
https://doi.org/10.1038/nphoton.2007.173
41 Luo W., Weng Q., Long M., Wang P., Gong F., Fang H., Luo M., Wang W., Wang Z., Zheng D., Hu W., Chen X., and Lu W., Room-temperature single-photon detector based on single nanowire, Nano Lett. 18(9), 5439 (2018)
https://doi.org/10.1021/acs.nanolett.8b01795
42 Tan C., Yang Z., Wu H., Yang Y., Yang L., and Wang Z., Electrically tunable interlayer recombination and tunneling behavior in WSe2/MoS2 heterostructure for broadband photodetector, Nanoscale 16(12), 6241 (2024)
https://doi.org/10.1039/D3NR06144B
43 Ye Z., Tan C., Huang X., Ouyang Y., Yang L., Wang Z., and Dong M., Emerging MoS2 wafer-scale technique for integrated circuits, Nano-Micro Lett. 15(1), 38 (2023)
https://doi.org/10.1007/s40820-022-01010-4
44 Tan C., Tao R., Yang Z., Yang L., Huang X., Yang Y., Qi F., and Wang Z., Tune the photoresponse of monolayer MoS2 by decorating CsPbBr3 perovskite nanoparticles, Chin. Chem. Lett. 34(7), 107979 (2023)
https://doi.org/10.1016/j.cclet.2022.107979
45 Lopez-Sanchez O., Lembke D., Kayci M., Radenovic A., and Kis A., Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotechnol. 8(7), 497 (2013)
https://doi.org/10.1038/nnano.2013.100
46 Zhang Y., Liu T., Meng B., Li X., Liang G., Hu X., and J. Wang Q., Broadband high photoresponse from pure monolayer graphene photodetector, Nat. Commun. 4(1), 1811 (2013)
https://doi.org/10.1038/ncomms2830
47 Roy K., Ahmed T., Dubey H., P. Sai T., Kashid R., Maliakal S., Hsieh K., Shamim S., and Ghosh A., Number-resolved single-photon detection with ultralow noise van der Waals hybrid, Adv. Mater. 30(2), 1704412 (2018)
https://doi.org/10.1002/adma.201704412
48 Liu Y., Gong T., Zheng Y., Wang X., Xu J., Ai Q., Guo J., Huang W., Zhou S., Liu Z., Lin Y., L. Ren T., and Yu B., Ultra-sensitive and plasmon-tunable graphene photodetectors for micro-spectrometry, Nanoscale 10(42), 20013 (2018)
https://doi.org/10.1039/C8NR04996C
49 Gao A., Lai J., Wang Y., Zhu Z., Zeng J., Yu G., Wang N., Chen W., Cao T., Hu W., Sun D., Chen X., Miao F., Shi Y., and Wang X., Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures, Nat. Nanotechnol. 14(3), 217 (2019)
https://doi.org/10.1038/s41565-018-0348-z
50 Cheng R., Wright J., G. Xing H., Jena D., and X. Tang H., Epitaxial niobium nitride superconducting nanowire single-photon detectors, Appl. Phys. Lett. 117(13), 132601 (2020)
https://doi.org/10.1063/5.0018818
51 Hu P., Li H., You L., Wang H., Xiao Y., Huang J., Yang X., Zhang W., Wang Z., and Xie X., Detecting single infrared photons toward optimal system detection efficiency, Opt. Express 28(24), 36884 (2020)
https://doi.org/10.1364/OE.410025
52 Yang X., You L., Zhang L., Lv C., Li H., Liu X., Zhou H., and Wang Z., Comparison of superconducting nanowire single-photon detectors made of NbTiN and NbN thin films, IEEE Trans. Appl. Supercond. 28(1), 2200106 (2018)
https://doi.org/10.1109/TASC.2017.2776288
53 Vetter A., Ferrari S., Rath P., Alaee R., Kahl O., Kovalyuk V., Diewald S., N. Goltsman G., Korneev A., Rockstuhl C., and H. P. Pernice W., Cavity-enhanced and ultrafast superconducting single-photon detectors, Nano Lett. 16(11), 7085 (2016)
https://doi.org/10.1021/acs.nanolett.6b03344
54 Z. Xu G., J. Zhang W., X. You L., M. Xiong J., Q. Sun X., Huang H., Ou X., M. Pan Y., L. Lv C., Li H., Wang Z., and M. Xie X., Superconducting microstrip single-photon detector with system detection efficiency over 90% at 1550 nm, Photon. Res. 9(6), 958 (2021)
https://doi.org/10.1364/PRJ.419514
55 Ejrnaes M., Cirillo C., Salvoni D., Chianese F., Bruscino C., Ercolano P., Cassinese A., Attanasio C., P. Pepe G., and Parlato L., Single photon detection in NbRe superconducting microstrips, Appl. Phys. Lett. 121(26), 262601 (2022)
https://doi.org/10.1063/5.0131336
56 Esmaeil Zadeh I., Chang J., W. N. Los J., Gyger S., W. Elshaari A., Steinhauer S., N. Dorenbos S., and Zwiller V., Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications, Appl. Phys. Lett. 118(19), 190502 (2021)
https://doi.org/10.1063/5.0045990
57 Zhang W., You L., Li H., Huang J., Lv C., Zhang L., Liu X., Wu J., Wang Z., and Xie X., NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature, Sci. China Phys. Mech. Astron. 60(12), 120314 (2017)
https://doi.org/10.1007/s11433-017-9113-4
58 Korzh B., Y. Zhao Q., P. Allmaras J., Frasca S., M. Autry T., A. Bersin E., D. Beyer A., M. Briggs R., Bumble B., Colangelo M., M. Crouch G., E. Dane A., Gerrits T., E. Lita A., Marsili F., Moody G., Pena C., Ramirez E., D. Rezac J., Sinclair N., J. Stevens M., E. Velasco A., B. Verma V., E. Wollman E., Xie S., Zhu D., D. Hale P., Spiropulu M., L. Silverman K., P. Mirin R., W. Nam S., G. Kozorezov A., D. Shaw M., and K. Berggren K., Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector, Nat. Photonics 14(4), 250 (2020)
https://doi.org/10.1038/s41566-020-0589-x
59 Zhang W., Jia Q., You L., Ou X., Huang H., Zhang L., Li H., Wang Z., and Xie X., Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering, Phys. Rev. Appl. 12(4), 044040 (2019)
https://doi.org/10.1103/PhysRevApplied.12.044040
60 Fukuda D., Single-photon measurement techniques with a superconducting transition edge sensor, in: IEICE Transactions on Electronics 2019, E102. C, pp 230–234
61 E. Lita A., V. Reddy D., B. Verma V., P. Mirin R., and W. Nam S., Development of superconducting single-photon and photon-number resolving detectors for quantum applications, J. Lightwave Technol. 40(23), 7578 (2022)
https://doi.org/10.1109/JLT.2022.3195000
62 Irwin K.Hilton G., Transition-edge sensors, in: Cryogenic Particle Detection, Berlin: Springer, 2005, pp 63–150
63 Geng Y., Z. Li P., Q. Zhong J., Zhang W., Wang Z., Miao W., Ren Y., and C. Shi S., Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model, Chin. Phys. B 30(9), 098501 (2021)
https://doi.org/10.1088/1674-1056/ac11ce
64 de Wit M., Gottardi L., Taralli E., Nagayoshi K., L. Ridder M., Akamatsu H., P. Bruijn M., D’Andrea M., van der Kuur J., Ravensberg K., Vaccaro D., Visser S., R. Gao J., and W. A. den Herder J., High aspect ratio transition edge sensors for X-ray spectrometry, J. Appl. Phys. 128(22), 224501 (2020)
https://doi.org/10.1063/5.0029669
65 L. Ridder M., Khosropanah P., A. Hijmering R., Suzuki T., P. Bruijn M., F. C. Hoevers H., R. Gao J., and R. Zuiddam M., Fabrication of low-noise TES arrays for the SAFARI instrument on SPICA, J. Low Temp. Phys. 184(1−2), 60 (2016)
https://doi.org/10.1007/s10909-015-1381-z
66 Chen J., Li J., Xu X., Wang Z., Guo S., Jiang Z., Gao H., Zhong Q., Zhong Y., Zeng J., and Wang X., Electroplating deposition of bismuth absorbers for X-ray superconducting transition edge sensors, Materials (Basel) 14(23), 7169 (2021)
https://doi.org/10.3390/ma14237169
67 Taralli E., Gottardi L., Nagayoshi K., Ridder M., Visser S., Khosropanah P., Akamatsu H., van der Kuur J., Bruijn M., and R. Gao J., Characterization of high aspect-ratio TiAu TES X-ray microcalorimeter array under AC bias, J. Low Temp. Phys. 199(1-2), 80 (2020)
https://doi.org/10.1007/s10909-019-02254-y
68 Xu X., Rajteri M., Li J., Zhang S., Monticone E., Chen J., Pepe C., Gao H., Li W., Li X., Li Q., Gao Y., Liu Z., and Wang X., Investigation of the superconducting Ti/PdAu bilayer films for transition edge sensors, IEEE Trans. Appl. Supercond. 32(4), 1 (2022)
https://doi.org/10.1109/TASC.2022.3153233
69 Xu X.Li J. Wang X.Zhong Q.Zhong Y.Cao W.Li W. Chen J.Zhao Z.Gao Y.Liu Z.He Q., in: 2020 Conference on Precision Electromagnetic Measurements (CPEM), pp 1–2
70 Xu X., Rajteri M., Li J., Zhang S., Chen J., Monticone E., Zhong Q., Gao H., Li W., Li X., Li Q., Zhong Y., Cao W., Wang S., Gao Y., Liu Z., and Wang X., Influence of the interface composition to the superconductivity of Ti/PdAu films, Nanomaterials (Basel) 11(1), 39 (2020)
https://doi.org/10.3390/nano11010039
71 Shirazi F.Gau E.A. Hossen M.Becker D.Schmidt D. Swetz D.Bennett D.Braun D.Kislat F.Gard J. Mates J.Weber J.Rodriguez Cavero N.Chun S.Lisalda L. West A.Dev B.Ferrer F.Bose R.Ullom J. Krawczynski H., 511-CAM mission: A pointed 511 keV gamma-ray telescope with a focal plane detector made of stacked transition edge sensor microcalorimeter arrays, J. Astron. Telesc. Instrum. Syst. 9(2), 024006 (2023)
72 Kikuchi T., Fujii G., Hayakawa R., Smith R., Hirayama F., Sato Y., Kohjiro S., Ukibe M., Ohno M., Sato A., and Yamamori H., Gamma-ray transition edge sensor with a thick SiO2/SixNy/SiO2 membrane, Appl. Phys. Lett. 119(22), 222602 (2021)
https://doi.org/10.1063/5.0063640
73 Ohno M.Irimatsugawa T.Takahashi HOtani CYasumune TTakasaki KIto C. Ohnishi T.-I. Koyama S.Hatakeyama S.M. T. Damayanthi R., Superconducting transition edge sensor for gamma-ray spectroscopy, in: IEICE Transactions on Electronics 2017, E100. C, pp 283–290
74 Cabrera B., M. Clarke R., Colling P., J. Miller A., Nam S., and W. Romani R., Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors, Appl. Phys. Lett. 73(6), 735 (1998)
https://doi.org/10.1063/1.121984
75 Hattori K., Konno T., Miura Y., Takasu S., and Fukuda D., An optical transition-edge sensor with high energy resolution, Supercond. Sci. Technol. 35(9), 095002 (2022)
https://doi.org/10.1088/1361-6668/ac7e7b
76 Fukuda D., Fujii G., Numata T., Amemiya K., Yoshizawa A., Tsuchida H., Fujino H., Ishii H., Itatani T., Inoue S., and Zama T., Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling, Opt. Express 19(2), 870 (2011)
https://doi.org/10.1364/OE.19.000870
77 E. Lita A., J. Miller A., and W. Nam S., Counting near-infrared single-photons with 95% efficiency, Opt. Express 16(5), 3032 (2008)
https://doi.org/10.1364/OE.16.003032
78 Deng Z.Ling L.Deng Y.Han C.Yu L. Cao G.Wang Y., A novel visible light communication system prototype based on SiPM receiver, in: Proceedings of the 4th International Conference on Telecommunications and Communication Engineering, 2019
79 J. D. Martinez N., Gehl M., T. Derose C., L. Starbuck A., T. Pomerene A., L. Lentine A., C. Trotter D., and S. Davids P., Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode, Opt. Express 25(14), 16130 (2017)
https://doi.org/10.1364/OE.25.016130
80 A. Kalashnikov D., H. Tan S., V. Chekhova M., and A. Krivitsky L., Accessing photon bunching with a photon number resolving multi-pixel detector, Opt. Express 19(10), 9352 (2011)
https://doi.org/10.1364/OE.19.009352
81 Ghioni M., Gulinatti A., Rech I., Zappa F., and Cova S., Progress in silicon single-photon avalanche diodes, IEEE J. Sel. Top. Quantum Electron. 13(4), 852 (2007)
https://doi.org/10.1109/JSTQE.2007.902088
82 S. Lee Y., M. Liao Y., L. Wu P., E. Chen C., J. Teng Y., Y. Hung Y., and W. Shi J., In0.52Al0.48As based single photon avalanche diodes with stepped E-field in multiplication layers and high efficiency beyond 60%, IEEE J. Selected Topics Quantum Electron. 28(2), 3802107 (2022)
https://doi.org/10.1109/JSTQE.2021.3114130
83 Ding W., Feng X., Tian Y., Li Q., Yu X., Lin Z., Zhang H., Zeng X., and Zhao Y., InGaAs/InAlAs single photon avalanche photodiodes for X-ray detection, IEEE Sens. J. 23(18), 21254 (2023)
https://doi.org/10.1109/JSEN.2023.3301498
84 Marsili F., B. Verma V., A. Stern J., Harrington S., E. Lita A., Gerrits T., Vayshenker I., Baek B., D. Shaw M., P. Mirin R., and W. Nam S., Detecting single infrared photons with 93% system efficiency, Nat. Photonics 7(3), 210 (2013)
https://doi.org/10.1038/nphoton.2013.13
85 B. Verma V., Korzh B., Bussières F., D. Horansky R., D. Dyer S., E. Lita A., Vayshenker I., Marsili F., D. Shaw M., Zbinden H., P. Mirin R., and W. Nam S., High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films, Opt. Express 23(26), 33792 (2015)
https://doi.org/10.1364/OE.23.033792
86 V. Reddy D., R. Nerem R., W. Nam S., P. Mirin R., and B. Verma V., Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm, Optica 7(12), 1649 (2020)
https://doi.org/10.1364/OPTICA.400751
87 Chang J., W. N. Los J., O. Tenorio-Pearl J., Noordzij N., Gourgues R., Guardiani A., R. Zichi J., F. Pereira S., P. Urbach H., Zwiller V., N. Dorenbos S., and Esmaeil Zadeh I., Detecting telecom single photons with 99.5−2.07+0.5% system detection efficiency and high time resolution, APL Photonics 6(3), 036114 (2021)
https://doi.org/10.1063/5.0039772
88 Korzh B.Y. Zhao Q.Frasca S.Zhu D.Ramirez E. Bersin E.Colangelo M.E. Dane A.D. Beyer A.Allmaras J. E. Wollman E.K. Berggren K.D. Shaw M., in: 2018 Conference on Lasers and Electro-Optics (CLEO), pp 1–3
89 Taralli E.de Wit M.Gottardi L.Nagayoshi K.Visser S. L. Ridder M.Akamatsu H.Vaccaro D.P. Bruijn M.R. Gao J. W. den Herder J., Small size transition-edge sensors for future X-ray applications, J. Low Temp. Phys. 209(3–4), 256 (2022)
90 Xu X., Rajteri M., Li J., Zhang S., Pepe C., Chen J., Gao H., Li Q., Li W., Li X., Zhang M., Ouyang Y., and Wang X., Investigation of Ti/Au transition-edge sensors for single-photon detection, J. Low Temp. Phys. 209(3−4), 372 (2022)
https://doi.org/10.1007/s10909-022-02818-5
91 Guerra M., Manso M., Longelin S., Pessanha S., and L. Carvalho M., Performance of three different Si X-ray detectors for portable XRF spectrometers in cultural heritage applications, J. Instrum. 7(10), C10004 (2012)
https://doi.org/10.1088/1748-0221/7/10/C10004
92 Brombal L., Donato S., Brun F., Delogu P., Fanti V., Oliva P., Rigon L., Di Trapani V., Longo R., and Golosio B., Large-area single-photon-counting CdTe detector for synchrotron radiation computed tomography: A dedicated pre-processing procedure, J. Synchrotron Radiat. 25(4), 1068 (2018)
https://doi.org/10.1107/S1600577518006197
93 M. Ivanov Y., M. Kanevsky V., F. Dvoryankin V., V. Artemov V., N. Polyakov A., A. Kudryashov A., M. Pashaev E., and J. Horvath Z., The possibilities of using semi-insulating CdTe crystals as detecting material for X-ray imaging radiography, physica status solidi (c) 0(3), 840 (2003)
https://doi.org/10.1002/pssc.200306258
94 Szeles C., CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications, physica status solidi (b) 241(3), 783 (2004)
https://doi.org/10.1002/pssb.200304296
95 Wu H., Ge Y., Niu G., and Tang J., Metal halide perovskites for X-ray detection and imaging, Matter 4(1), 144 (2021)
https://doi.org/10.1016/j.matt.2020.11.015
96 Zhou Y., Chen J., M. Bakr O., and F. Mohammed O., Metal halide perovskites for X-ray imaging scintillators and detectors, ACS Energy Lett. 6(2), 739 (2021)
https://doi.org/10.1021/acsenergylett.0c02430
97 Wu Y., Feng J., Yang Z., Liu Y., and Liu S., Halide perovskite: A promising candidate for next-generation X-ray detectors, Adv. Sci. (Weinh.) 10(1), 2205536 (2023)
https://doi.org/10.1002/advs.202205536
98 Sakhatskyi K., Turedi B., J. Matt G., Wu E., Sakhatska A., Bartosh V., N. Lintangpradipto M., Naphade R., Shorubalko I., F. Mohammed O., Yakunin S., M. Bakr O., and V. Kovalenko M., Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity, Nat. Photonics 17(6), 510 (2023)
https://doi.org/10.1038/s41566-023-01207-y
99 Shrestha S.Tsai H.Nie W., A perspective on the device physics of lead halide perovskite semiconducting detector for gamma and X-ray sensing, Appl. Phys. Lett. 122(8), 080501 (2023)
100 Zhang F., Herman C., He Z., De Geronimo G., Vernon E., and Fried J., Characterization of the H3D ASIC readout system and 6.0 cm3 3-D position sensitive CdZnTe detectors, IEEE Trans. Nucl. Sci. 59(1), 236 (2012)
https://doi.org/10.1109/TNS.2011.2175948
101 Wang F., Zhang T., Xie R., Wang Z., and Hu W., How to characterize figures of merit of two-dimensional photodetectors, Nat. Commun. 14(1), 2224 (2023)
https://doi.org/10.1038/s41467-023-37635-1
102 A. Wolff M., Vogel S., Splitthoff L., and Schuck C., Superconducting nanowire single-photon detectors integrated with tantalum pentoxide waveguides, Sci. Rep. 10(1), 17170 (2020)
https://doi.org/10.1038/s41598-020-74426-w
103 Zhou Z., Lv J., Tan C., Yang L., and Wang Z., Emerging frontiers of 2D transition metal dichalcogenides in photovoltaics solar cell, Adv. Funct. Mater. 34, 2316175 (2024)
https://doi.org/10.1002/adfm.202316175
104 Z. Xu G., J. Zhang W., X. You L., M. Xiong J., Q. Sun X., Huang H., Ou X., M. Pan Y., L. Lv C., Li H., Wang Z., and M. Xie X., Superconducting microstrip single-photon detector with system detection efficiency over 90% at 1550 nm, Photon. Res. 9(6), 958 (2021)
https://doi.org/10.1364/PRJ.419514
105 Wang H., Hu P., Xiao Y., Zhang X., Zhou H., Zhang W., Li H., You L., and Wang Z., Multispectral superconducting nanowire single-photon detector based on thickness-modulated optical film stack, IEEE Photonics J. 14(2), 6816304 (2022)
https://doi.org/10.1109/JPHOT.2022.3151962
106 Das S., Pandey D., Thomas J., and Roy T., The role of graphene and other 2D materials in solar photovoltaics, Adv. Mater. 31(1), 1802722 (2019)
https://doi.org/10.1002/adma.201802722
107 Salvoni D., Ejrnaes M., Gaggero A., Mattioli F., Martini F., G. Ahmad H., Di Palma L., Satariano R., Y. Yang X., You L., Tafuri F., P. Pepe G., Massarotti D., Montemurro D., and Parlato L., , Phys. Rev. Applied 18(1), 014006 (2022)
https://doi.org/10.1103/PhysRevApplied.18.014006
108 Geng Y.Zhang W.Z. Li P.Q. Zhong J.Wang Z. Miao W.Ren Y.F. Wang J.J. Yao Q.C. Shi S., Improving energy detection efficiency of Ti-based superconducting transition-edge sensors with optical cavity, J. Low Temp. Phys. 199(1–2), 556 (2020)
109 Hu X., Wu D., Zhang H., Li W., Chen D., Wang L., Xiao X., and Yu S., High-speed and high-power germanium photodetector with a lateral silicon nitride waveguide, Photon. Res. 9(5), 749 (2021)
https://doi.org/10.1364/PRJ.417601
110 Thomson D., Zilkie A., E. Bowers J., Komljenovic T., T. Reed G., Vivien L., Marris-Morini D., Cassan E., Virot L., M. Fédéli J., M. Hartmann J., H. Schmid J., X. Xu D., Boeuf F., O’Brien P., Z. Mashanovich G., and Nedeljkovic M., Roadmap on silicon photonics, J. Opt. 18(7), 073003 (2016)
https://doi.org/10.1088/2040-8978/18/7/073003
111 R. Karim M., Al Kayed N., Jahan N., S. Alam M., and M. A. Rahman B., Study of highly coherent mid-infrared supercontinuum generation in CMOS compatible Si-rich SiN tapered waveguide, J. Lightwave Technol. 40(13), 4300 (2022)
https://doi.org/10.1109/JLT.2022.3157792
112 C. Hsu W., Nujhat N., Kupp B., F. Jr Conley J., and X. Wang A., On-chip wavelength division multiplexing filters using extremely efficient gate-driven silicon microring resonator array, Sci. Rep. 13(1), 5269 (2023)
https://doi.org/10.1038/s41598-023-32313-0
113 Schuler S., E. Muench J., Ruocco A., Balci O., Thourhout D., Sorianello V., Romagnoli M., Watanabe K., Taniguchi T., Goykhman I., C. Ferrari A., and Mueller T., High-responsivity graphene photodetectors integrated on silicon microring resonators, Nat. Commun. 12(1), 3733 (2021)
https://doi.org/10.1038/s41467-021-23436-x
114 Mu J., Dijkstra M., Korterik J., Offerhaus H., and M. García-Blanco S., High-gain waveguide amplifiers in Si3N4 technology via double-layer monolithic integration, Photon. Res. 8(10), 1634 (2020)
https://doi.org/10.1364/PRJ.401055
115 J. Blumenthal D., Heideman R., Geuzebroek D., Leinse A., and Roeloffzen C., Silicon nitride in silicon photonics, Proc. IEEE 106(12), 2209 (2018)
https://doi.org/10.1109/JPROC.2018.2861576
116 Rönn J., Zhang W., Autere A., Leroux X., Pakarinen L., Alonso-Ramos C., Säynätjoki A., Lipsanen H., Vivien L., Cassan E., and Sun Z., Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides, Nat. Commun. 10(1), 432 (2019)
https://doi.org/10.1038/s41467-019-08369-w
117 Feng L., Zhang M., Wang J., Zhou X., Qiang X., Guo G., and Ren X., Silicon photonic devices for scalable quantum information applications, Photon. Res. 10(10), A135 (2022)
https://doi.org/10.1364/PRJ.464808
118 T. Kim J. and G. Choi C., Graphene-based polymer waveguide polarizer, Opt. Express 20(4), 3556 (2012)
https://doi.org/10.1364/OE.20.003556
119 Kleinert M., Herziger F., Reinke P., Zawadzki C., de Felipe D., Brinker W., G. Bach H., Keil N., Maultzsch J., and Schell M., Graphene-based electro-absorption modulator integrated in a passive polymer waveguide platform, Opt. Mater. Express 6(6), 1800 (2016)
https://doi.org/10.1364/OME.6.001800
120 Hatai R., Nakazaki F., Nakayama T., and Ishigure T., Fabrication of Y-branched GI core polymer waveguide and its application to CWDM MUX device for multimode fiber, J. Lightwave Technol. 40(9), 2915 (2022)
https://doi.org/10.1109/JLT.2021.3130241
121 Ding Z., Wang H., Li T., Ouyang X., Shi Y., and P. Zhang A., Fabrication of polymer optical waveguides by digital ultraviolet lithography, J. Lightwave Technol. 40(1), 163 (2022)
https://doi.org/10.1109/JLT.2021.3120712
122 Sahin D., Gaggero A., Zhou Z., Jahanmirinejad S., Mattioli F., Leoni R., Beetz J., Lermer M., Kamp M., Höfling S., and Fiore A., Waveguide photon-number-resolving detectors for quantum photonic integrated circuits, Appl. Phys. Lett. 103(11), 111116 (2013)
https://doi.org/10.1063/1.4820842
123 Gerrits T., Thomas-Peter N., C. Gates J., E. Lita A., J. Metcalf B., Calkins B., A. Tomlin N., E. Fox A., L. Linares A., B. Spring J., K. Langford N., P. Mirin R., G. R. Smith P., A. Walmsley I., and W. Nam S., On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing, Phys. Rev. A 84(6), 060301 (2011)
https://doi.org/10.1103/PhysRevA.84.060301
124 Wang H., Shi Y., Zuo Y., Yu Y., Lei L., Zhang X., and Qian Z., High-performance waveguide coupled Germanium-on-silicon single-photon avalanche diode with independently controllable absorption and multiplication, Nanophotonics 12(4), 705 (2023)
https://doi.org/10.1515/nanoph-2022-0663
125 Wu J., Ma H., Zhong C., Wei M., Sun C., Ye Y., Xu Y., Tang B., Luo Y., Sun B., Jian J., Dai H., Lin H., and Li L., Waveguide-integrated PdSe2 photodetector over a broad infrared wavelength range, Nano Lett. 22(16), 6816 (2022)
https://doi.org/10.1021/acs.nanolett.2c02099
126 Youngblood N., Chen C., J. Koester S., and Li M., Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current, Nat. Photonics 9(4), 247 (2015)
https://doi.org/10.1038/nphoton.2015.23
127 Yin Y., Cao R., Guo J., Liu C., Li J., Feng X., Wang H., Du W., Qadir A., Zhang H., Ma Y., Gao S., Xu Y., Shi Y., Tong L., and Dai D., High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 µm, Laser Photonics Rev. 13(6), 1900032 (2019)
https://doi.org/10.1002/lpor.201900032
128 Flöry N., Ma P., Salamin Y., Emboras A., Taniguchi T., Watanabe K., Leuthold J., and Novotny L., Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity, Nat. Nanotechnol. 15(2), 118 (2020)
https://doi.org/10.1038/s41565-019-0602-z
129 L. Chen P., Chen Y., Y. Chang T., Q. Li W., X. Li J., Lee S., Fang Z., Li M., Majumdar A., and H. Liu C., Waveguide-integrated van der Waals heterostructure mid-infrared photodetector with high performance, ACS Appl. Mater. Interfaces 14(21), 24856 (2022)
https://doi.org/10.1021/acsami.2c01094
130 Wu J., Wei M., Mu J., Ma H., Zhong C., Ye Y., Sun C., Tang B., Wang L., Li J., Xu X., Liu B., Li L., and Lin H., High-performance waveguide-integrated Bi2O2Se photodetector for Si photonic integrated circuits, ACS Nano 15(10), 15982 (2021)
https://doi.org/10.1021/acsnano.1c04359
131 H. Zeng L., Wu D., H. Lin S., Xie C., Y. Yuan H., Lu W., P. Lau S., Chai Y., B. Luo L., J. Li Z., and H. Tsang Y., Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications, Adv. Funct. Mater. 29(1), 1806878 (2019)
https://doi.org/10.1002/adfm.201806878
132 Deng S., V. Sumant A., and Berry V., Strain engineering in two-dimensional nanomaterials beyond graphene, Nano Today 22, 14 (2018)
https://doi.org/10.1016/j.nantod.2018.07.001
133 Frisenda R., Drüppel M., Schmidt R., Michaelis de Vasconcellos S., Perez de Lara D., Bratschitsch R., Rohlfing M., and Castellanos-Gomez A., Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides, npj 2D Mater. Appl. 1, 10 (2017)
https://doi.org/10.1038/s41699-017-0013-7
134 Tang N., Du C., Wang Q., and Xu H., Strain engineering in bilayer WSe2 over a large strain range, Microelectron. Eng. 223, 111202 (2020)
https://doi.org/10.1016/j.mee.2019.111202
135 Xu W., D. Zheng J., Y. Tong W., L. Wang J., P. Shao Y., K. Zhang Y., F. Tan Y., and G. Duan C., Strain-induced ferroelectric phase transition in group-V monolayer black phosphorus, Adv. Quantum Technol. 6(4), 2200169 (2023)
https://doi.org/10.1002/qute.202200169
136 L. Li L., Gillen R., Palummo M., V. Milošević M., and M. Peeters F., Strain tunable interlayer and intralayer excitons in vertically stacked MoSe2/WSe2 heterobilayers, Appl. Phys. Lett. 123(3), 033102 (2023)
https://doi.org/10.1063/5.0147761
137 Nayak D. and Thangavel R., Tailoring the electronic and photocatalytic properties of Mo1−xWxS2 monolayers via biaxial strain, J. Mater. Sci. 57(6), 4283 (2022)
https://doi.org/10.1007/s10853-022-06889-3
138 Tareq S., O. M. Almayyali A., and R. Jappor H., Prediction of two-dimensional AlBrSe monolayer as a highly efficient photocatalytic for water splitting, Surf. Interfaces 31, 102020 (2022)
https://doi.org/10.1016/j.surfin.2022.102020
139 Roldán R., Castellanos-Gomez A., Cappelluti E., and Guinea F., Strain engineering in semiconducting two-dimensional crystals, J. Phys.: Condens. Matter 27(31), 313201 (2015)
https://doi.org/10.1088/0953-8984/27/31/313201
140 O. Island J., Kuc A., H. Diependaal E., Bratschitsch R., S. J. van der Zant H., Heine T., and Castellanos-Gomez A., Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain, Nanoscale 8(5), 2589 (2016)
https://doi.org/10.1039/C5NR08219F
141 Hayashi M., Yoshioka H., Tomori H., and Kanda A., Theory of the strain engineering of graphene nanoconstrictions, J. Phys. Soc. Jpn. 90(2), 023701 (2021)
https://doi.org/10.7566/JPSJ.90.023701
142 Chen M., Xia J., Zhou J., Zeng Q., Li K., Fujisawa K., Fu W., Zhang T., Zhang J., Wang Z., Wang Z., Jia X., Terrones M., X. Shen Z., Liu Z., and Wei L., Ordered and atomically perfect fragmentation of layered transition metal dichalcogenides via mechanical instabilities, ACS Nano 11(9), 9191 (2017)
https://doi.org/10.1021/acsnano.7b04158
143 Cho C., Wong J., Taqieddin A., Biswas S., R. Aluru N., Nam S., and A. Atwater H., Highly strain-tunable interlayer excitons in MoS2/WSe2 heterobilayers, Nano Lett. 21(9), 3956 (2021)
https://doi.org/10.1021/acs.nanolett.1c00724
144 K. Ryu Y., Carrascoso F., López-Nebreda R., Agraït N., Frisenda R., and Castellanos-Gomez A., Microheater actuators as a versatile platform for strain engineering in 2D materials, Nano Lett. 20(7), 5339 (2020)
https://doi.org/10.1021/acs.nanolett.0c01706
145 Chen Z., Luo W., Liang L., Ling X., and K. Swan A., Charge separation in monolayer WSe2 by strain engineering: implications for strain-induced diode action, ACS Appl. Nano Mater. 5(10), 15095 (2022)
https://doi.org/10.1021/acsanm.2c03264
146 Manzeli S., Allain A., Ghadimi A., and Kis A., Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2, Nano Lett. 15(8), 5330 (2015)
https://doi.org/10.1021/acs.nanolett.5b01689
147 Y. Juo J.G. Shin B.Stiepany W.Memmler M.Kern K. J. Jung S., In-situ atomic level observation of the strain response of graphene lattice, Sci. Rep. 13(1), 2451 (2023)
148 Nemes-Incze P., Kukucska G., Koltai J., Kürti J., Hwang C., Tapasztó L., and P. Biró L., Preparing local strain patterns in graphene by atomic force microscope based indentation, Sci. Rep. 7(1), 3035 (2017)
https://doi.org/10.1038/s41598-017-03332-5
149 Wang K., A. Puretzky A., Hu Z., R. Srijanto B., Li X., Gupta N., Yu H., Tian M., Mahjouri-Samani M., Gao X., Oyedele A., M. Rouleau C., Eres G., I. Yakobson B., Yoon M., Xiao K., and B. Geohegan D., Strain tolerance of two-dimensional crystal growth on curved surfaces, Sci. Adv. 5(5), eaav4028 (2019)
https://doi.org/10.1126/sciadv.aav4028
150 W. Christopher J., Vutukuru M., Lloyd D., S. Bunch J., B. Goldberg B., J. Bishop D., and K. Swan A., Monolayer MoS2 strained to 1.3% with a microelectromechanical system, J. Microelectromech. Syst. 28(2), 254 (2019)
https://doi.org/10.1109/JMEMS.2018.2877983
151 Y. Hui Y., Liu X., Jie W., Y. Chan N., Hao J., T. Hsu Y., J. Li L., Guo W., and P. Lau S., Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet, ACS Nano 7(8), 7126 (2013)
https://doi.org/10.1021/nn4024834
152 Maiti R., Patil C., A. S. R. Saadi M., Xie T., G. Azadani J., Uluutku B., Amin R., F. Briggs A., Miscuglio M., Van Thourhout D., D. Solares S., Low T., Agarwal R., R. Bank S., and J. Sorger V., Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits, Nat. Photonics 14(9), 578 (2020)
https://doi.org/10.1038/s41566-020-0647-4
153 He H., F. Yang P., F. Zhang P., Li G., and C. Zhang T., Single-photon source with sub-MHz linewidth for cesium-based quantum information processing, Front. Phys. 18(6), 61303 (2023)
https://doi.org/10.1007/s11467-023-1317-z
154 Maccarone A., Drummond K., McCarthy A., K. Steinlehner U., Tachella J., A. Garcia D., Pawlikowska A., A. Lamb R., K. Henderson R., McLaughlin S., Altmann Y., and S. Buller G., Submerged single-photon LiDAR imaging sensor used for real-time 3D scene reconstruction in scattering underwater environments, Opt. Express 31(10), 16690 (2023)
https://doi.org/10.1364/OE.487129
155 Liu X., Wang J., Xiao L., Shi Z., Fu X., and Qiu L., Non-line-of-sight imaging with arbitrary illumination and detection pattern, Nat. Commun. 14(1), 3230 (2023)
https://doi.org/10.1038/s41467-023-38898-4
156 Moya R., C. Norris A., Kondo T., and S. Schlau-Cohen G., Observation of robust energy transfer in the photosynthetic protein allophycocyanin using single-molecule pump–probe spectroscopy, Nat. Chem. 14(2), 153 (2022)
https://doi.org/10.1038/s41557-021-00841-9
157 Li Q., Orcutt K., L. Cook R., Sabines-Chesterking J., L. Tong A., S. Schlau-Cohen G., Zhang X., R. Fleming G., and B. Whaley K., Single-photon absorption and emission from a natural photosynthetic complex, Nature 619(7969), 300 (2023)
https://doi.org/10.1038/s41586-023-06121-5
158 Du Z.Hu Y. Ali Buttar N.Mahmood A., X-ray computed tomography for quality inspection of agricultural products: A review, Food Sci. Nutr. 7(10), 3146 (2019)
159 Jiang J., Xiong M., Fan K., Bao C., Xin D., Pan Z., Fei L., Huang H., Zhou L., Yao K., Zheng X., Shen L., and Gao F., Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring, Nat. Photonics 16(8), 575 (2022)
https://doi.org/10.1038/s41566-022-01024-9
160 H. Zuo G.C. Zhang Y.Li G.F. Zhang P.F. Yang P. Q. Guo Y.Y. Zhu S.C. Zhang T., 10-Hertz squeezed light source generation on the cesium D2 line using single photon modulation, Front. Phys. 18(3), 32301 (2023)
161 P. Li Z., Huang X., Cao Y., Wang B., H. Li Y., Jin W., Yu C., Zhang J., Zhang Q., Z. Peng C., Xu F., and W. Pan J., Single-photon computational 3D imaging at 45 km, Photon. Res. 8(9), 1532 (2020)
https://doi.org/10.1364/PRJ.390091
162 T. Fang X., Zeng P., Liu H., Zou M., Wu W., L. Tang Y., J. Sheng Y., Xiang Y., Zhang W., Li H., Wang Z., You L., J. Li M., Chen H., A. Chen Y., Zhang Q., Z. Peng C., Ma X., Y. Chen T., and W. Pan J., Implementation of quantum key distribution surpassing the linear rate-transmittance bound, Nat. Photonics 14(7), 422 (2020)
https://doi.org/10.1038/s41566-020-0599-8
163 P. Chen J., Zhang C., Liu Y., Jiang C., Zhang W., L. Hu X., Y. Guan J., W. Yu Z., Xu H., Lin J., J. Li M., Chen H., Li H., You L., Wang Z., B. Wang X., Zhang Q., and W. Pan J., Sending-or-not-sending with independent lasers: Secure twin-field quantum key distribution over 509 km, Phys. Rev. Lett. 124(7), 070501 (2020)
https://doi.org/10.1103/PhysRevLett.124.070501
164 Wang S., Q. Yin Z., Y. He D., Chen W., Q. Wang R., Ye P., Zhou Y., J. Fan-Yuan G., X. Wang F., Chen W., G. Zhu Y., V. Morozov P., V. Divochiy A., Zhou Z., C. Guo G., and F. Han Z., Twin-field quantum key distribution over 830-km fibre, Nat. Photonics 16(2), 154 (2022)
https://doi.org/10.1038/s41566-021-00928-2
[1] Xueping Li, Xiaojie Tang, Zhuojun Wang, Peize Yuan, Lin Li, Chenhai Shen, Congxin Xia. Sub-5 nm bilayer GaSe MOSFETs towards ultrahigh on-state current[J]. Front. Phys. , 2024, 19(5): 53202-.
[2] Junrong Zhang, Cheng Chen, Yanming Wang, Yang Lu, Honghong Li, Xingang Hou, Yaning Liang, Long Fang, Du Xiang, Kai Zhang, Junyong Wang. Tunable near-infrared light emission from layered TiS3 nanoribbons[J]. Front. Phys. , 2024, 19(4): 43203-.
[3] Hui Zeng, Yao Wen, Lei Yin, Ruiqing Cheng, Hao Wang, Chuansheng Liu, Jun He. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides[J]. Front. Phys. , 2023, 18(5): 53603-.
[4] Shuhui Yang, Tao Ying. Optimal charge inhomogeneity for the d+id-wave superconductivity in the intercalated graphite CaC6[J]. Front. Phys. , 2023, 18(3): 33305-.
[5] Guangqiang Mei, Pengfei Suo, Li Mao, Min Feng, Limin Cao. Demonstration and operation of quantum harmonic oscillators in an AlGaAs−GaAs heterostructure[J]. Front. Phys. , 2023, 18(1): 13310-.
[6] Mo Cheng, Junbo Yang, Xiaohui Li, Hui Li, Ruofan Du, Jianping Shi, Jun He. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies[J]. Front. Phys. , 2022, 17(6): 63601-.
[7] Mingqing Liao, Jumahan Maimaitimusha, Xueting Zhang, Jingchuan Zhu, Fengjiang Wang. P212121-C16: An ultrawide bandgap and ultrahard carbon allotrope with the bandgap larger than diamond[J]. Front. Phys. , 2022, 17(6): 63507-.
[8] Tingting Liu, Qianjun Wang, Cheng Zhang, Xiaofeng Li, Jun Hu. High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction[J]. Front. Phys. , 2022, 17(5): 53509-.
[9] Jia-Jing Li, Yang Dai, Jin-Cheng Zheng. Strain engineering of ion migration in LiCoO2[J]. Front. Phys. , 2022, 17(1): 13503-.
[10] Jiahao Fan, Huaqing Huang. Topological states in quasicrystals[J]. Front. Phys. , 2022, 17(1): 13203-.
[11] Yin-Xiang Li, Xiao-Tong Yang. p + ip-wave pairing symmetry at type-II van Hove singularities[J]. Front. Phys. , 2021, 16(5): 53501-.
[12] Hao Cheng, Jin-Cheng Zheng. Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding[J]. Front. Phys. , 2021, 16(4): 43505-.
[13] Si Liu, Hongnan Wu, Xiaotao Zhang, Wenping Hu. Research progress of rubrene as an excellent multifunctional organic semiconductor[J]. Front. Phys. , 2021, 16(1): 13304-.
[14] Chen-Xiao Zhao (赵晨晓), Jin-Feng Jia (贾金锋). Stanene: A good platform for topological insulator and topological superconductor[J]. Front. Phys. , 2020, 15(5): 53201-.
[15] Qi-Tao Liu, De-Yu Liu, Jian-Ming Li, Yong-Bo Kuang. The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting[J]. Front. Phys. , 2019, 14(5): 53403-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed