Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (4) : 307-313    https://doi.org/10.15302/J-FASE-2014039
RESEARCH ARTICLE
Detection of genomic signatures for pig hairlessness using high-density SNP data
Ying SU1, Yi LONG1, Xinjun LIAO1,2, Huashui AI1, Zhiyan ZHANG1, Bin YANG1, Shijun XIAO1, Jianhong TANG1, Wenshui XIN1, Lusheng HUANG1, Jun REN1, Nengshui DING1()
1. State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
2. College of Life Science of Jinggangshan University, Ji’an 343009, China
 Download: PDF(662 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hair provides thermal regulation for mammals and protects the skin from wounds, bites and ultraviolet (UV) radiation, and is important in adaptation to volatile environments. Pigs in nature are divided into hairy and hairless, which provide a good model for deciphering the molecular mechanisms of hairlessness. We conducted a genomic scan for genetically differentiated regions between hairy and hairless pigs using 60K SNP data, with the aim to better understand the genetic basis for the hairless phenotype in pigs. A total of 38405 SNPs in 498 animals from 36 diverse breeds were used to detect genomic signatures for pig hairlessness by estimating between-population (FST) values. Seven diversifying signatures between Yucatan hairless pig and hairy pigs were identified on pig chromosomes (SSC) 1, 3, 7, 8, 10, 11 and 16, and the biological functions of two notable genes, RGS17 and RB1, were revealed. When Mexican hairless pigs were contrasted with hairypigs, strong signatures were detected on SSC1 and SSC10, which harbor two functionally plausible genes, REV3L and BAMBI. KEGG pathway analysis showed a subset of overrepresented genes involved in the T cell receptor signaling pathway, MAPK signaling pathway and the tight junction pathways. All of these pathways may be important in local adaptability of hairless pigs. The potential mechanisms underlying the hairless phenotype in pigs are reported for the first time. RB1 and BAMBI are interesting candidate genes for the hairless phenotype in Yucatan hairless and Mexico hairless pigs, respectively. RGS17, REV3L, ICOS and RASGRP1 as well as other genes involved in the MAPK and T cell receptor signaling pathways may be important in environmental adaption by improved tolerance to UV damage in hairless pigs. These findings improve our understanding of the genetic basis for inherited hairlessness in pigs.

Keywords hairlessness      pig      selective sweeping     
Corresponding Author(s): Nengshui DING   
Online First Date: 28 January 2015    Issue Date: 10 March 2015
 Cite this article:   
Ying SU,Yi LONG,Xinjun LIAO, et al. Detection of genomic signatures for pig hairlessness using high-density SNP data[J]. Front. Agr. Sci. Eng. , 2014, 1(4): 307-313.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014039
https://academic.hep.com.cn/fase/EN/Y2014/V1/I4/307
N Breed Code Country N
1 Iberian IB Spain 16
2 Bisaro PTBI Portugal 14
3 Landrance L - 40
4 Large White Y - 40
5 Duroc D - 40
6 MeiShan MS China 17
7 XiangPig XI China 13
8 JinHua JH China 17
9 JiangQuHai JQ China 11
10 Hampshire HA USA 14
11 Peru Creole pig PECR Peru 16
12 Bolivia Creole pig BOCR Bolivia 3
13 Ecuador Creole pig ECCR Ecuador 4
14 Colombia Creole pig COCR Colombia 11
15 Guatemala Creole pig GUCR guatemala 14
16 Argentina Creole pig ARMS Argentina 9
17 Costa rica Creole pig CRCR Costa 12
18 Cuba Creole pig CUEA Cuba 5
19 Cuba Creole pig CUCE Cuba 1
20 Cuba Creole pig CUWE Cuba 12
21 GuadeloupeCreole pig GPCR Guadeloupe 4
22 Argentina Creole pig ARFP Argentina 6
23 Argentina semi feral ARFO Argentina 10
24 Guinea hog USGH USA 15
25 Mexico hairless MXHL Mexico 9
26 Brazil Monteiro BRNT Brazil 10
27 Brazil moura BRMO Brazil 9
28 Brazil nilo BRNI Brazil 2
29 Ossabaw pig USOB USA 7
30 Brazil piau BRPU Brazil 9
31 Black sicily ITSI Italy 4
32 Wild Boar WB Poland 13
33 USA Yucatan USYU USA 10
34 Colombia zungo COZU Colombia 10
35 Canarian ESCN Spain 4
36 British Saddleback BS British 20
37 Pietrain PI - 20
38 Tamworth TA British 20
39 Mexico cuino MXCU Mexico 7
498
Tab.1  Pig breeds, their origin and sample size in this study
Fig.1  The distribution of the FST density for selection signatures in Mexico hairless pig (a) and Yucatan pigs (b). The dotted line is the outlier analogous to the top 0.5% of the empirical distribution. The data to the right of the vertical dotted line ran to an extreme.
Fig.2  Neighbor-joining phylogenetic tree of the tested breeds. MXHL and USYU are underlined. Duroc (D), Brazil Moura (BRMO), Mexico cuino (MXCU) and Mexico hairless (MXHL) pig define a separate grouping, while Iberian (IB), wild boar (WB), Black sicily (ITSI), Argentina creole pig (ARFP), Argentina semi pig (ARFO), Peru creole pig (PECR), Bolivia creole pig (BOCR), Ecuador Creole pig (ECCR), Guatemala creole pig (GUCR), Cuba creole pig (CUWE) and USA yucatan (USYU) appear as a closely related population cluster.
Fig.3  Genome-wide distribution of FST values between hairless pigs and norml pigs. (a) Genomic signatures for hairlessness in Yucatan pigs; (b) genomic signatures of selection in Mexico hairless pigs. The chromosomes are plotted along the x-axis, and the FST values are plotted along the y-axis, and the 99.5% percentile is denoted with a dashed line. The top candidate gene SNPs for hairlessness are circled in red, while candidate gene SNPs for UV radiation are circled in blue, with the gene names labeled above.
1 M J Rantala. Human nakedness: adaptation against ectoparasites? International Journal for Parasitology, 1999, 29(12): 1987– 1989
pmid: 10961855
2 T Andl, K Ahn, A Kairo, E Y Chu, L Wine-Lee, S T Reddy, N J Croft, J A Cebra-Thomas, D Metzger, P Chambon, K M Lyons, Y Mishina, J T Seykora, E B Crenshaw 3rd, S E Millar. Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development, 2004, 131(10): 2257–2268
https://doi.org/10.1242/dev.01125 pmid: 15102710
3 K Foitzik, G Lindner, S Mueller-Roever, M Maurer, N Botchkareva, V Botchkarev, B Handjiski, M Metz, T Hibino, T Soma, G P Dotto, R Paus. Control of murine hair follicle regression (catagen) by TGF-β1 in vivo. FASEB Journal, 2000, 14(5): 752–760
pmid: 10744631
4 L A Hansen, N Alexander, M E Hogan, J P Sundberg, A Dlugosz, D W Threadgill, T Magnuson, S H Yuspa. Genetically null mice reveal a central role for epidermal growth factor receptor in the differentiation of the hair follicle and normal hair development. American Journal of Pathology, 1997, 150(6): 1959–1975
pmid: 9176390
5 J M Hébert, T Rosenquist, J Götz, G R Martin. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell, 1994, 78(6): 1017–1025
https://doi.org/10.1016/0092-8674(94)90276-3 pmid: 7923352
6 R Schmidt-Ullrich, R Paus. Molecular principles of hair follicle induction and morphogenesis. BioEssays, 2005, 27(3): 247–261
https://doi.org/10.1002/bies.20184 pmid: 15714560
7 L Alonso, H Okada, H A Pasolli, A Wakeham, A I You-Ten, T W Mak, E Fuchs. Sgk3 links growth factor signaling to maintenance of progenitor cells in the hair follicle. Journal of Cell Biology, 2005, 170(4): 559–570
https://doi.org/10.1083/jcb.200504131 pmid: 16103225
8 L Ma, J Liu, T Wu, M Plikus, T X Jiang, Q Bi, Y H Liu, S Müller-Röver, H Peters, J P Sundberg, R Maxson, R L Maas, C M Chuong. ‘Cyclic alopecia’ in Msx2 mutants: defects in hair cycling and hair shaft differentiation. Development, 2003, 130(2): 379–389
https://doi.org/10.1242/dev.00201 pmid: 12466204
9 U Gat, R DasGupta, L Degenstein, E Fuchs. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell, 1998, 95(5): 605–614
https://doi.org/10.1016/S0092-8674(00)81631-1 pmid: 9845363
10 J Huelsken, R Vogel, B Erdmann, G Cotsarelis, W Birchmeier. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell, 2001, 105(4): 533–545
https://doi.org/10.1016/S0092-8674(01)00336-1 pmid: 11371349
11 C A Callahan, T Ofstad, L Horng, J K Wang, H H Zhen, P A Coulombe, A E Oro. MIM/BEG4, a Sonic hedgehog-responsive gene that potentiates Gli-dependent transcription. Genes & Development, 2004, 18(22): 2724–2729
https://doi.org/10.1101/gad.1221804 pmid: 15545630
12 V A Botchkarev, N V Botchkareva, W Roth, M Nakamura, L H Chen, W Herzog, G Lindner, J A McMahon, C Peters, R Lauster, A P McMahon, R Paus. Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nature Cell Biology, 1999, 1(3): 158–164
https://doi.org/10.1038/11078 pmid: 10559902
13 W Burgos-Paz, C A Souza, H J Megens, Y Ramayo-Caldas, M Melo, C Lemús-Flores, E Caal, H W Soto, R Martínez, L A Alvarez, L Aguirre, V Iñiguez, M A Revidatti, O R Martínez-López, S Llambi, A Esteve-Codina, M C Rodríguez, R P Crooijmans, S R Paiva, L B Schook, M A Groenen, M Pérez-Enciso. Porcine colonization of the Americas: a 60k SNP story. Heredity, 2013, 110(4): 321–330
https://doi.org/10.1038/hdy.2012.109 pmid: 23250008
14 W Burgos-Paz, C A Souza, H J Megens, Y Ramayo-Caldas, M Melo, C Lemús-Flores, E Caal, H W Soto, R Martínez, L A Alvarez, L Aguirre, V Iñiguez, M A Revidatti, O R Martínez-López, S Llambi, A Esteve-Codina, M C Rodríguez, R P Crooijmans, S R Paiva, L B Schook, M A Groenen, M Pérez-Enciso. Porcine colonization of the Americas: a 60k SNP story. Heredity, 2013, 110(4): 321–330
https://doi.org/10.1038/hdy.2012.109 pmid: 23250008
15 S Wilkinson, Z H Lu, H J Megens, A L Archibald, C Haley, I J Jackson, M A Groenen, R P Crooijmans, R Ogden, P Wiener. Signatures of diversifying selection in European pig breeds. PLOS Genetics, 2013, 9(4): e1003453
https://doi.org/10.1371/journal.pgen.1003453 pmid: 23637623
16 S Purcell, B Neale, K Todd-Brown, L Thomas, M A Ferreira, D Bender, J Maller, P Sklar, P I de Bakker, M J Daly, P C Sham. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, 81(3): 559–575
https://doi.org/10.1086/519795 pmid: 17701901
17 Plotree D, Plotgram D. PHYLIP-phylogeny inference package (version 3.2). Evolution, 1989, 5(2): 163–166
18 R Nielsen, S Williamson, Y Kim, M J Hubisz, A G Clark, C Bustamante. Genomic scans for selective sweeps using SNP data. Genome Research, 2005, 15(11): 1566–1575
https://doi.org/10.1101/gr.4252305 pmid: 16251466
19 M Raymond, F Rousset. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 1995, 86(3): 248–249
20 H Ai, B Yang, J Li, X Xie, H Chen, J Ren. Population history and genomic signatures for high-altitude adaptation in Tibetan pigs. BMC Genomics, 2014, 15(1): 834
https://doi.org/10.1186/1471-2164-15-834 pmid: 25270331
21 M V Rockman, M W Hahn, N Soranzo, F Zimprich, D B Goldstein, G A Wray. Ancient and recent positive selection transformed opioid cis-regulation in humans. PLoS Biology, 2005, 3(12): e387
https://doi.org/10.1371/journal.pbio.0030387 pmid: 16274263
22 M Udart, J Utikal, G M Krähn, R U Peter. Chromosome 7 aneusomy. A marker for metastatic melanoma? Expression of the epidermal growth factor receptor gene and chromosome 7 aneusomy in nevi, primary malignant melanomas and metastases. Neoplasia, 2001, 3(3): 245–254
https://doi.org/10.1038/sj.neo.7900156 pmid: 11494118
23 M R Schneider, S Werner, R Paus, E Wolf. Beyond wavy hairs: the epidermal growth factor receptor and its ligands in skin biology and pathology. American Journal of Pathology, 2008, 173(1): 14–24
https://doi.org/10.2353/ajpath.2008.070942 pmid: 18556782
24 A J Chien, E C Moore, A S Lonsdorf, R M Kulikauskas, B G Rothberg, A J Berger, M B Major, S T Hwang, D L Rimm, R T Moon. Activated Wnt/β-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(4): 1193–1198
https://doi.org/10.1073/pnas.0811902106 pmid: 19144919
25 T Sekiya, S Adachi, K Kohu, T Yamada, O Higuchi, Y Furukawa, Y Nakamura, T Nakamura, K Tashiro, S Kuhara, S Ohwada, T Akiyama. Identification of BMP and activin membrane-bound inhibitor (BAMBI), an inhibitor of transforming growth factor-β signaling, as a target of the β-catenin pathway in colorectal tumor cells. Journal of Biological Chemistry, 2004, 279(8): 6840–6846
https://doi.org/10.1074/jbc.M310876200 pmid: 14660579
26 N Oshimori, E Fuchs. Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell, 2012, 10(1): 63–75
https://doi.org/10.1016/j.stem.2011.11.005 pmid: 22226356
27 WHO. Ultraviolet radiation and the INTERSUN Programme. Available at WHO website on August 5, 2009
28 F R de Gruijl. Skin cancer and solar UV radiation. European Journal of Cancer, 1999, 35(14): 2003–2009
https://doi.org/10.1016/S0959-8049(99)00283-X pmid: 10711242
29 H Mao, Q Zhao, M Daigle, M H Ghahremani, P Chidiac, P R Albert. RGS17/RGSZ2, a novel regulator of Gi/o, Gz, and Gq signaling. Journal of Biological Chemistry, 2004, 279(25): 26314–26322
https://doi.org/10.1074/jbc.M401800200 pmid: 15096504
30 D M Berman, A G Gilman. Mammalian RGS proteins: barbarians at the gate. Journal of Biological Chemistry, 1998, 273(3): 1269–1272
https://doi.org/10.1074/jbc.273.3.1269 pmid: 9430654
31 G Wong, J Pawelek. Melanocyte-stimulating hormone promotes activation of pre-existing tyrosinase molecules in Cloudman S91 melanoma cells. Nature, 1975, 255: 644–646
32 C Stevens, N B La Thangue. A new role for E2F-1 in checkpoint control. Cell Cycle, 2003, 2(5): 435–437
https://doi.org/10.4161/cc.2.5.462 pmid: 12963836
33 S van den Heuvel, N J Dyson. Conserved functions of the pRB and E2F families. Nature Reviews Molecular Cell Biology, 2008, 9(9): 713–724
https://doi.org/10.1038/nrm2469 pmid: 18719710
34 J H Yoon, L Prakash, S Prakash. Error-free replicative bypass of (6-4) photoproducts by DNA polymerase ζ in mouse and human cells. Genes & Development, 2010, 24(2): 123–128
https://doi.org/10.1101/gad.1872810 pmid: 20080950
35 L Jinlian, Z Yingbin, W Chunbo. p38 MAPK in regulating cellular responses to ultraviolet radiation. Journal of Biomedical Science, 2007, 14(3): 303–312
https://doi.org/10.1007/s11373-007-9148-4 pmid: 17334833
[1] Supplementary Material Download
[1] Yinglin JI, Mingyang XU, Aide WANG. RECENT ADVANCES IN THE REGULATION OF CLIMACTERIC FRUIT RIPENING: HORMONE, TRANSCRIPTION FACTOR AND EPIGENETIC MODIFICATIONS[J]. Front. Agr. Sci. Eng. , 2021, 8(2): 314-334.
[2] Yifei MA, Ling ZHANG, Zhaohai BAI, Rongfeng JIANG, Yong HOU, Lin MA. NUTRIENT USE EFFICIENCY AND LOSSES OF INDUSTRIAL FARMS AND MIXED SMALLHOLDINGS: LESSONS FROM THE NORTH CHINA PLAIN[J]. Front. Agr. Sci. Eng. , 2021, 8(1): 58-71.
[3] Chris PROUDFOOT, Gus MCFARLANE, Bruce WHITELAW, Simon LILLICO. Livestock breeding for the 21st century: the promise of the editing revolution[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 129-135.
[4] Ruigao SONG, Yu WANG, Yanfang WANG, Jianguo ZHAO. Base editing in pigs for precision breeding[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 161-170.
[5] Ning WANG, Sile WANG, Yaxian WANG, Yuanxing CAI, Fan YANG, Huayan WANG. SALL4 maintains self-renewal of porcine pluripotent stem cells through downregulation of OTX2[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 81-92.
[6] Yong JIN, Manling ZHANG, Xinrong JU, Shuang LIANG, Qiang XIONG, Lihua ZHAO, Xiaowei NIE, Daorong HOU, Qiang LIU, Junzheng WANG, Chenyu WANG, Xiaokang LI, Lining ZHANG, Xiaorui LIU, Ying WANG, Haiyuan YANG, Yifan DAI, Rongfeng LI. Factors influencing the somatic cell nuclear transfer efficiency in pigs[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 73-80.
[7] Qijing LEI, Qin PAN, Shuai YU, Na LI, Shulin CHEN, Kuldip SIDHU, Jinlian HUA. Reprogramming of the pig primordial germ cells into pluripotent stem cells: a brief review[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 28-32.
[8] Chengcheng ZHAO, Junsong SHI, Rong ZHOU, Ranbiao MAI, Lvhua LUO, Xiaoyan HE, Hongmei JI, Gengyuan CAI, Dewu LIU, Enqin ZHENG, Zhenfang WU, Zicong LI. Effects of enucleation method on in vitro and in vivo development rate of cloned pig embryos[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 61-65.
[9] Jianwen CHEN, Kaiyuan PAN, Zhen CHEN, Biao DING, Dandan SONG, Wenbin BAO, Yunhai ZHANG. Construction of multiple shRNA vectors targeting PEDV and TGEV and production of transgenic SCNT porcine embryos in vitro[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 66-72.
[10] Jianyong HAN, Yi-Liang MIAO, Jinlian HUA, Yan LI, Xue ZHANG, Jilong ZHOU, Na LI, Ying ZHANG, Jinying ZHANG, Zhonghua LIU. Porcine pluripotent stem cells: progress, challenges and prospects[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 8-27.
[11] Zheng AO, Chengfa ZHAO, Yanmin GAN, Xiao WU, Junsong SHI, Enqin ZHENG, Dewu LIU, Gengyuan CAI, Zhenfang WU, Zicong LI. Comparison of birth weight and umbilical and placental characteristics of cloned and artificial insemination-derived piglets[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 54-60.
[12] Xingwang WANG, Rongrong DING, Jianping QUAN, Linxue YANG, Ming YANG, Enqin ZHENG, Dewu LIU, Gengyuan CAI, Zhenfang WU, Jie YANG. Genome-wide association analysis reveals genetic loci and candidate genes associated with intramuscular fat in Duroc pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 335-341.
[13] Wen LUO, Bahareldin A. ABDALLA, Qinghua NIE, Xiquan ZHANG. The genetic regulation of skeletal muscle development: insights from chicken studies[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 295-304.
[14] Lei CHEN, Shilin TIAN, Long JIN, Zongyi GUO, Dan ZHU, Lan JING, Tiandong CHE, Qianzi TANG, Siqing CHEN, Liang ZHANG, Tinghuan ZHANG, Zuohua LIU, Jinyong WANG, Mingzhou LI. Genome-wide analysis reveals selection for Chinese Rongchang pigs[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 319-326.
[15] Haiyan WANG, Qiaoxia ZHANG, Lilin YIN, Xiangdong LIU, Shuhong ZHAO, Mengjin ZHU, Changchun LI. Transcriptomic basis of neutrophil ratio variation induced by poly I:C stimulation in porcine peripheral blood[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 342-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed