Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (2) : 187-194    https://doi.org/10.1007/s12200-015-0493-z
RESEARCH ARTICLE
Histogram analysis of laser speckle contrast image for cerebral blood flow monitoring
Arkady S. ABDURASHITOV1(), Vladislav V. LYCHAGOV1, Olga A. SINDEEVA1, Oxana V. SEMYACHKINA-GLUSHKOVSKAYA1, Valery V. TUCHIN1,2,3
1. National Research Saratov State University, Saratov 410012, Russia
2. Institute of Precise Mechanics and Control RAS, Saratov 410028, Russia
3. Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, Tomsk 634050, Russia
 Download: PDF(1353 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Laser speckle contrast imaging (LSCI) is a powerful tool for blood flow mapping. In this paper, we described a simple algorithm based on histogram analysis of laser speckle contrast image to provide rapid differentiation between macro- and microcirculations. The algorithm was successfully verified by the study of blood flow in rat cortex under functional activation.

Keywords laser speckle contrast imaging (LSCI)      histogram analysis      cerebral blood flow (CBF)      rat     
Corresponding Author(s): Arkady S. ABDURASHITOV   
Just Accepted Date: 11 February 2015   Online First Date: 17 April 2015    Issue Date: 24 June 2015
 Cite this article:   
Arkady S. ABDURASHITOV,Vladislav V. LYCHAGOV,Olga A. SINDEEVA, et al. Histogram analysis of laser speckle contrast image for cerebral blood flow monitoring[J]. Front. Optoelectron., 2015, 8(2): 187-194.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0493-z
https://academic.hep.com.cn/foe/EN/Y2015/V8/I2/187
Fig.1  Typical speckle contrast image
Fig.2  Histogram analysis of speckle image. (a) Multiple ROIs in speckle contrast image; (b) normalized histograms of these ROIs
Fig.3  Two consecutive frames of the time lapse measurements. Green block denotes statically overlaid ROI, whereas purple block is defined by correlation-based motion tracker
Fig.4  Cross-correlations between selection and the next frame in series. Purple block shows new ROI coordinates with respect to maximum of cross-correlation function; green block is a statically overlaid ROI
Fig.5  Results of time lapse measurements performed with statically overlaid ROI (a) and with correlation based motion tracker (b)
Fig.6  Typical example of changes of mean arterial pressure (a) and CBF after bolus injection of phenylephrine in three doses (0.25, 0.5, and 1?µg/kg) in normotensive (b) and hypertensive (c) rats
  
  
  
  
  
1 A F Fercher, J D Briers. Flow visualization by means of single-exposure speckle photography. Optics Communications, 1981, 37(5): 326–330
https://doi.org/10.1016/0030-4018(81)90428-4
2 P Li, S Ni, L Zhang, S Zeng, Q Luo. Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging. Optics Letters, 2006, 31(12): 1824–1826
https://doi.org/10.1364/OL.31.001824 pmid: 16729083
3 Z Luo, Z Yuan, Y Pan, C Du. Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging. Optics Letters, 2009, 34(9): 1480–1482
pmid: 19412312
4 A K Dunn. Laser speckle contrast imaging of cerebral blood flow. Annals of Biomedical Engineering, 2012, 40(2): 367–377
https://doi.org/10.1007/s10439-011-0469-0 pmid: 22109805
5 A B Parthasarathy, E L Weber, L M Richards, D J Fox, A K Dunn. Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study. Journal of Biomedical Optics, 2010, 15(6): 066030
https://doi.org/10.1117/1.3526368 pmid: 21198204
6 J D Briers. Laser doppler and time-varying speckle: a reconciliation. Journal of the Optical Society of America A, 1996, 13(2): 345–350
https://doi.org/10.1364/JOSAA.13.000345
7 D A Boas, A K Dunn. Laser speckle contrast imaging in biomedical optics. Journal of Biomedical Optics, 2010, 15(1): 011109
https://doi.org/10.1117/1.3285504 pmid: 20210435
8 Y C Huang, T L Ringold, J S Nelson, B Choi. Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks. Lasers in Surgery and Medicine, 2008, 40(3): 167–173
https://doi.org/10.1002/lsm.20619 pmid: 18366081
9 Y Tamaki, M Araie, E Kawamoto, S Eguchi, H Fujii. Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon. Investigative Ophthalmology & Visual Science, 1994, 35(11): 3825–3834
pmid: 7928179
10 T Sugiyama, Y Mashima, Y Yoshioka, H Oku, T Ikeda. Effect of unoprostone on topographic and blood flow changes in the ischemic optic nerve head of rabbits. Archives of Ophthalmology, 2009, 127(4): 454–459
https://doi.org/10.1001/archophthalmol.2008.606 pmid: 19365024
11 J Wang, Y Zhang, T H Xu, Q M Luo, D Zhu. An innovative transparent cranial window based on skull optical clearing. Laser Physics Letters, 2012, 9(6): 469–473
https://doi.org/10.7452/lapl.201210017
12 P Miao, H Lu, Q Liu, Y Li, S Tong. Laser speckle contrast imaging of cerebral blood flow in freely moving animals. Journal of Biomedical Optics, 2011, 16(9): 090502 -1–090502-3
https://doi.org/10.1117/1.3625231 pmid: 21950906
13 A K Dunn, A Devor, H Bolay, M L Andermann, M A Moskowitz, A M Dale, D A Boas. Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Optics Letters, 2003, 28(1): 28–30
https://doi.org/10.1364/OL.28.000028 pmid: 12656525
14 T Durduran, M G Burnett, G Yu, C Zhou, D Furuya, A G Yodh, J A Detre, J H Greenberg. Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry. Journal of Cerebral Blood Flow and Metabolism, 2004, 24(5): 518–525
https://doi.org/10.1097/00004647-200405000-00005 pmid: 15129183
15 A K Dunn, H Bolay, M A Moskowitz, D A Boas. Dynamic imaging of cerebral blood flow using laser speckle. Journal of Cerebral Blood Flow and Metabolism, 2001, 21(3): 195–201
https://doi.org/10.1097/00004647-200103000-00002 pmid: 11295873
16 Jnguyen. Neuroimaging, 2012
17 A J Strong, E L Bezzina, P J Anderson, M G Boutelle, S E Hopwood, A K Dunn. Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations. Journal of Cerebral Blood Flow and Metabolism, 2006, 26(5): 645–653
https://doi.org/10.1038/sj.jcbfm.9600240 pmid: 16251884
18 R Bandyopadhyay, A S Gittings, S S Suh, P K Dixon, D J Durian. Speckle-visibility spectroscopy: a tool to study time-varying dynamics. Review of Scientific Instruments, 2005, 76(9): 093110
https://doi.org/10.1063/1.2037987
19 M A Davis, S M Kazmi, A K Dunn. Imaging depth and multiple scattering in laser speckle contrast imaging. Journal of Biomedical Optics, 2014, 19(8): 086001
https://doi.org/10.1117/1.JBO.19.8.086001 pmid: 25089945
20 P A Lemieux, D J Durian. Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions. Journal of the Optical Society of America A, 1999, 16(7): 1651–1664
https://doi.org/10.1364/JOSAA.16.001651
21 D D Duncan, S J Kirkpatrick. Can laser speckle flowmetry be made a quantitative tool? Journal of the Optical Society of America A, 2008, 25(8): 2088–2094
https://doi.org/10.1364/JOSAA.25.002088 pmid: 18677371
22 J C Ramirez-San-Juan, R Ramos-García, I Guizar-Iturbide, G Martínez-Niconoff, B Choi. Impact of velocity distribution assumption on simplified laser speckle imaging equation. Optics Express, 2008, 16(5): 3197–3203
https://doi.org/10.1364/OE.16.003197 pmid: 18542407
23 S Yuan, A K Dunn, D A Boas. Calibration in laser speckle contrast imaging. In: Proceedings of Biomedical Topical Meeting Fort Lauderdale, Poster Session II (ME), 2006
24 O B Thompson, M K Andrews. Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra. Journal of Biomedical Optics, 2010, 15(2): 027015
https://doi.org/10.1117/1.3400721 pmid: 20459289
25 F Domoki, D Zölei, O Oláh, V Tóth-Szuki, B Hopp, F Bari, T Smausz. Evaluation of laser-speckle contrast image analysis techniques in the cortical microcirculation of piglets. Microvascular Research, 2012, 83(3): 311–317
https://doi.org/10.1016/j.mvr.2012.01.003 pmid: 22306444
26 R C Gonzalez, R E Woods. Digital Image Processing. New Jersey: Prentice Hall, 2002, 793
27 W J Tom, A Ponticorvo, A K Dunn. Efficient processing of laser speckle contrast images. IEEE Transactions on Medical Imaging, 2008, 27(12): 1728–1738
https://doi.org/10.1109/TMI.2008.925081 pmid: 19033089
28 A I Qureshi. The importance of acute hypertensive response in ICH. Stroke, 2013, 44(6, Supplement 1): S67–S69
https://doi.org/10.1161/STROKEAHA.111.000758 pmid: 23709735
29 A I Qureshi. Acute hypertensive response in patients with stroke: pathophysiology and management. Circulation, 2008, 118(2): 176–187
https://doi.org/10.1161/CIRCULATIONAHA.107.723874 pmid: 18606927
30 N A Lassen. Cerebral blood flow and oxygen consumption in man. Physiological Reviews, 1959, 39(2): 183–238
pmid: 13645234
31 D D Heistad, H A Kontos. Cerebral circulation. Comprehensive Physiology, 1983, 137–182
32 J Olesen. The effect of intracarotid epinephrine, norepinephrine, and angiotensin on the regional cerebral blood flow in man. Neurology, 1972, 22(9): 978–987
https://doi.org/10.1212/WNL.22.9.978 pmid: 4343348
33 O V Semyachkina-Glushkovskaya, V V Lychagov, O A Bibikova, I A Semyachkin-Gluskovskiy, S S Sindeev, E M Zinchenko, M M Kassim, H A Braun, F Al-Fatle, L Al Hassani, V V Tuchin. The assessment of pathological changes in cerebral blood flow in hypertensive rats with stress-induced intracranial hemorrhage using Doppler OCT: particularities of arterial and venous alterations. Photonics and Lasers in Medicine, 2013, 2(2): 109–116
https://doi.org/10.1515/plm-2013-0009
[1] Qi Li, Xiuhua Yuan, Feng Zhou, Zeyu Zhou, Wujie Liu. Application of phase-conjugate beams in beam correction and underwater optical wireless communication subject to surface wave turbulence[J]. Front. Optoelectron., 2022, 15(3): 37-.
[2] Shengmei Zhao, Yifang Cui, Xing He, Le Wang. Ghost edge detection based on HED network[J]. Front. Optoelectron., 2022, 15(3): 31-.
[3] Yongli He, Boxiang Song, Jiang Tang. Optical metalenses: fundamentals, dispersion manipulation, and applications[J]. Front. Optoelectron., 2022, 15(2): 24-.
[4] Mengjia Jiang, Shuyu Li, Chun Zhen, Lingsong Wang, Fei Li, Yihan Zhang, Weibing Dong, Xiaotao Zhang, Wenping Hu. TCNQ-based organic cocrystal integrated red emission and n-type charge transport[J]. Front. Optoelectron., 2022, 15(2): 21-.
[5] Zhongqi Hao, Zhiwei Deng, Li Liu, Jiulin Shi, Xingdao He. Spatial confinement effects of laser-induced breakdown spectroscopy at reduced air pressures[J]. Front. Optoelectron., 2022, 15(2): 17-.
[6] Min Tan, Yuhang Wang, Ken Xingze Wang, Yuan Yu, Xinliang Zhang. Circuit-level convergence of electronics and photonics: basic concepts and recent advances[J]. Front. Optoelectron., 2022, 15(2): 16-.
[7] Galina Georgieva, Christian Mai, Pascal M. Seiler, Anna Peczek, Lars Zimmermann. Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line[J]. Front. Optoelectron., 2022, 15(1): 13-.
[8] Xianfeng Qiao, Shu Xiao, Peisen Yuan, Dezhi Yang, Dongge Ma. Improved transient electroluminescence technique based on time-correlated single-photon counting technology to evaluate organic mobility[J]. Front. Optoelectron., 2022, 15(1): 11-.
[9] Shengping Liu, Junbo Feng, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review[J]. Front. Optoelectron., 2022, 15(1): 9-.
[10] Zhe XU, Yanyang ZHOU, Shuhuang CHEN, Liangjun LU, Gangqiang ZHOU, Jianping CHEN, Linjie ZHOU. Optical generation of UWB pulses utilizing Fano resonance modulation[J]. Front. Optoelectron., 2021, 14(4): 426-437.
[11] Yongfeng FU, Jing CHEN, Weiming WU, Yu HUANG, Jie HONG, Long CHEN, Zhongbin LI. A QoT prediction technique based on machine learning and NLSE for QoS and new lightpaths in optical communication networks[J]. Front. Optoelectron., 2021, 14(4): 513-521.
[12] Kanghua LI, Xuetian LIN, Boxiang SONG, Rokas KONDROTAS, Chong WANG, Yue LU, Xuke YANG, Chao CHEN, Jiang TANG. Rapid thermal evaporation for cadmium selenide thin-film solar cells[J]. Front. Optoelectron., 2021, 14(4): 482-490.
[13] Manshi WANG, Zhiqiang YU, Nan ZHANG, Weiwei LIU. Drilling high aspect ratio holes by femtosecond laser filament with aberrations[J]. Front. Optoelectron., 2021, 14(4): 522-528.
[14] Junwu WANG, Xinbing WANG, Duluo ZUO. Characteristics of laser induced discharge tin plasma and its extreme ultraviolet radiation[J]. Front. Optoelectron., 2021, 14(3): 352-359.
[15] Kangnian WANG, Yuan WANG, Xuhan GUO, Yong ZHANG, An HE, Yikai SU. Ultracompact bandwidth-tunable filter based on subwavelength grating-assisted contra-directional couplers[J]. Front. Optoelectron., 2021, 14(3): 374-380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed