Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2024, Vol. 17 Issue (2) : 13    https://doi.org/10.1007/s12200-024-00116-4
MEMS-actuated terahertz metamaterials driven by phase-transition materials
Zhixiang Huang1, Weipeng Wu2, Eric Herrmann1, Ke Ma1, Zizwe A. Chase3, Thomas A. Searles3, M. Benjamin Jungfleisch2, Xi Wang1()
1. Department of Materials Science and Engineering, College of Engineering, University of Delaware, Newark, DE 19716, USA
2. Department of Physics and Astronomy, College of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
3. Department of Electrical and Computer Engineering, College of Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
 Download: PDF(5152 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The non-ionizing and penetrative characteristics of terahertz (THz) radiation have recently led to its adoption across a variety of applications. To effectively utilize THz radiation, modulators with precise control are imperative. While most recent THz modulators manipulate the amplitude, frequency, or phase of incident THz radiation, considerably less progress has been made toward THz polarization modulation. Conventional methods for polarization control suffer from high driving voltages, restricted modulation depth, and narrow band capabilities, which hinder device performance and broader applications. Consequently, an ideal THz modulator that offers high modulation depth along with ease of processing and operation is required. In this paper, we propose and realize a THz metamaterial comprised of microelectromechanical systems (MEMS) actuated by the phase-transition material vanadium dioxide (VO2). Simulation and experimental results of the three-dimensional metamaterials show that by leveraging the unique phase-transition attributes of VO2, our THz polarization modulator offers notable advancements over existing designs, including broad operation spectrum, high modulation depth, ease of fabrication, ease of operation condition, and continuous modulation capabilities. These enhanced features make the system a viable candidate for a range of THz applications, including telecommunications, imaging, and radar systems.

Keywords Metamaterials      MEMS      THz      VO2      Phase-transition material     
Corresponding Author(s): Xi Wang   
Issue Date: 13 June 2024
 Cite this article:   
Zhixiang Huang,Weipeng Wu,Eric Herrmann, et al. MEMS-actuated terahertz metamaterials driven by phase-transition materials[J]. Front. Optoelectron., 2024, 17(2): 13.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-024-00116-4
https://academic.hep.com.cn/foe/EN/Y2024/V17/I2/13
1 International Telecommunication Union. General Secretariat: Radio regulations; additional radio regulations, resolutions and recommendations
2 T. Shibuya,, K. Kawase,: 17-Terahertz applications in tomographic imaging and material spectroscopy: a review. In: Handbook of Terahertz Technology for Imaging, Sensing and Communications. Ed D. Saeedkia. Woodhead Publishing (2013)
https://doi.org/10.1533/9780857096494.3.493
3 P.H. Siegel,: Terahertz technology. IEEE Trans Microw Theory Tech 50(3), 910–928 (2002)
https://doi.org/10.1109/22.989974
4 D.M. Slocum,, E.J. Slingerland,, R.H. Giles,, T.M. Goyette,: Atmospheric absorption of terahertz radiation and water vapor continuum effects. J Quant Spectrosc Radiat Transf 127, 49–63 (2013)
https://doi.org/10.1016/j.jqsrt.2013.04.022
5 M. Yamashita,, K. Kawase,, C. Otani,, T. Kiwa,, M. Tonouchi,: Imaging of large-scale integrated circuits using laser-terahertz emission microscopy. Opt Express 13(1), 115–120 (2005)
https://doi.org/10.1364/OPEX.13.000115
6 J.F. Federici,, B. Schulkin,, F. Huang,, D. Gary,, R. Barat,, F. Oliveira,, D. Zimdars,: THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond Sci Technol 20(7), S266–S280 (2005)
https://doi.org/10.1088/0268-1242/20/7/018
7 S. Koenig,, D. Lopez-Diaz,, J. Antes,, F. Boes,, R. Henneberger,, A. Leuther,, A. Tessmann,, R. Schmogrow,, D. Hillerkuss,, R. Palmer,, T. Zwick,, C. Koos,, W. Freude,, O. Ambacher,, J. Leuthold,, I. Kallfass,: Wireless sub-THz communication system with high data rate. Nat Photonics 7(12), 977–981 (2013)
https://doi.org/10.1038/nphoton.2013.275
8 M. Nagel,, M. Först,, H. Kurz,: THz biosensing devices: fundamentals and technology. J Phys Condens Matter 18(18), S601–S618 (2006)
https://doi.org/10.1088/0953-8984/18/18/S07
9 L. Zhao,, Y.H. Hao,, R.Y. Peng,: Advances in the biological effects of terahertz wave radiation. Mil Med Res 1(1), 26 (2014)
https://doi.org/10.1186/s40779-014-0026-x
10 E. Herrmann,, H. Gao,, Z. Huang,, S.R. Sitaram,, K. Ma,, X. Wang,: Modulators for mid-infrared and terahertz light. J Appl Phys 128(14), 140903 (2020)
https://doi.org/10.1063/5.0025032
11 H.T. Chen,, W.J. Padilla,, J.M. Zide,, A.C. Gossard,, A.J. Taylor,, R.D. Averitt,: Active terahertz metamaterial devices. Nature 444(7119), 597–600 (2006)
https://doi.org/10.1038/nature05343
12 D. Shrekenhamer,, S. Rout,, A.C. Strikwerda,, C. Bingham,, R.D. Averitt,, S. Sonkusale,, W.J. Padilla,: High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. Opt Express 19(10), 9968–9975 (2011)
https://doi.org/10.1364/OE.19.009968
13 S. Dutta-Gupta,, N. Dabidian,, I. Kholmanov,, M.A. Belkin,, G. Shvets,: Electrical tuning of the polarization state of light using graphene-integrated anisotropic metasurfaces. Philos Trans Royal Soc Math Phys Eng Sci 375(2090), 20160061 (2017)
https://doi.org/10.1098/rsta.2016.0061
14 Z. Miao,, Q. Wu,, X. Li,, Q. He,, K. Ding,, Z. An,, Y. Zhang,, L. Zhou,: Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys Rev X 5(4), 041027 (2015)
https://doi.org/10.1103/PhysRevX.5.041027
15 L. Ju,, B. Geng,, J. Horng,, C. Girit,, M. Martin,, Z. Hao,, H.A. Bechtel,, X. Liang,, A. Zettl,, Y.R. Shen,, F. Wang,: Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10), 630–634 (2011)
https://doi.org/10.1038/nnano.2011.146
16 Y. Wu,, C. La-o-vorakiat,, X. Qiu,, J. Liu,, P. Deorani,, K. Banerjee,, J. Son,, Y. Chen,, E.E.M. Chia,, H. Yang,: Graphene terahertz modulators by ionic liquid gating. Adv Mater 27(11), 1874–1879 (2015)
https://doi.org/10.1002/adma.201405251
17 G. Si,, Y. Zhao,, E.S.P. Leong,, Y.J. Liu,: Liquid-crystal-enabled active plasmonics: a review. Materials (Basel) 7(2), 1296–1317 (2014)
https://doi.org/10.3390/ma7021296
18 M. Reuter,, N. Vieweg,, B.M. Fischer,, M. Mikulicz,, M. Koch,, K. Garbat,, R. Dąbrowski,: Highly birefringent, low-loss liquid crystals for terahertz applications. APL mater 1(1), 012107 (2013)
https://doi.org/10.1063/1.4808244
19 O. Buchnev,, J. Wallauer,, M. Walther,, M. Kaczmarek,, N.I. Zheludev,, V.A. Fedotov,: Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial. Appl Phys Lett. 103(14), 141904 (2013)
https://doi.org/10.1063/1.4823822
20 D. Shrekenhamer,, W.C. Chen,, W.J. Padilla,: Liquid crystal tunable metamaterial absorber. Phys Rev Lett 110(17), 177403 (2013)
https://doi.org/10.1103/PhysRevLett.110.177403
21 L. Wang,, X.W. Lin,, W. Hu,, G.H. Shao,, P. Chen,, L.J. Liang,, B.B. Jin,, P.H. Wu,, H. Qian,, Y.N. Lu,, X. Liang,, Z.G. Zheng,, Y.Q. Lu,: Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci Appl 4(2), e253 (2015)
https://doi.org/10.1038/lsa.2015.26
22 T. Driscoll,, H.T. Kim,, B.G. Chae,, B.J. Kim,, Y.W. Lee,, N.M. Jokerst,, S. Palit,, D.R. Smith,, M. Di Ventra,, D.N. Basov,: Memory metamaterials. Science 325(5947), 1518–1521 (2009)
https://doi.org/10.1126/science.1176580
23 R. Yahiaoui,, Z.A. Chase,, C. Kyaw,, E. Seabron,, J. Mathews,, T.A. Searles,: Dynamically tunable single-layer VO2/metasurface based THz cross-polarization converter. J Phys D Appl Phys 54(23), 235101 (2021)
https://doi.org/10.1088/1361-6463/abe9df
24 M.T. Nouman,, J.H. Hwang,, M. Faiyaz,, K.J. Lee,, D.Y. Noh,, J.H. Jang,: Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control. Opt Express 26(10), 12922–12929 (2018)
https://doi.org/10.1364/OE.26.012922
25 V. Eyert,: The metal-insulator transitions of VO2: a band theoretical approach. Ann Phys 514(9), 650–704 (2002)
https://doi.org/10.1002/andp.20025140902
26 M.R.M. Hashemi,, S.H. Yang,, T. Wang,, N. Sepúlveda,, M. Jarrahi,: Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci Rep 6(1), 35439 (2016)
https://doi.org/10.1038/srep35439
27 K. Dong,, S. Lou,, H.S. Choe,, K. Liu,, Z. You,, J. Yao,, J. Wu,: Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators. Appl Phys Lett 109(2), 023504 (2016)
https://doi.org/10.1063/1.4958692
28 Z. Yang,, S. Ramanathan,: Breakthroughs in photonics 2014: phase change materials for photonics. Photonics J IEEE 7, 1–5 (2015)
https://doi.org/10.1109/JPHOT.2015.2504960
29 B. Chae,, D.H. Youn,, H.T. Kim,, M. Sunglyul,, K. Kang,: Fabrication and electrical properties of pure VO2 phase films. J Korean Phys Soc 44, 884–888 (2003)
30 T. Kawakubo,, T. Nakagawa,: Phase transition in VO2. J. Phys. Soc. Jpn 19(4), 517–519 (1964)
https://doi.org/10.1143/JPSJ.19.517
31 H. Cai,, S. Chen,, C. Zou,, Q. Huang,, Y. Liu,, X. Hu,, Z. Fu,, Y. Zhao,, H. He,, Y. Lu,: Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves. Adv Opt Mater 6(14), 1800257 (2018)
https://doi.org/10.1002/adom.201800257
32 F.Z. Shu,, F.F. Yu,, R.W. Peng,, Y.Y. Zhu,, B. Xiong,, R.H. Fan,, Z.H. Wang,, Y. Liu,, M. Wang,: Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Adv Opt Mater 6(7), 1700939 (2018)
https://doi.org/10.1002/adom.201700939
33 F.Z. Shu,, J.N. Wang,, R.W. Peng,, B. Xiong,, R.H. Fan,, Y.J. Gao,, Y. Liu,, D.X. Qi,, M. Wang,: Electrically driven tunable broadband polarization states via active metasurfaces based on Joule-heat-induced phase transition of vanadium dioxide. Laser Photonics Rev 15(10), 2100155 (2021)
https://doi.org/10.1002/lpor.202100155
34 P. Pitchappa,, A. Kumar,, R. Singh,, C. Lee,, N. Wang,: Terahertz MEMS metadevices. J Micromech Microeng 31(11), 113001 (2021)
https://doi.org/10.1088/1361-6439/ac1eed
35 Y. Huang,, T. Okatani,, N. Inomata,, Y. Kanamori,: A reconfigurable ladder-shaped THz metamaterial integrated with a microelectromechanical cantilever array. Appl Phys Lett 122(5), 051705 (2023)
https://doi.org/10.1063/5.0124601
36 Y. Fu,, X. Xu,, Y.S. Lin,: Actively programmable MEMS-based racetrack-shaped terahertz metamaterial. J Appl Phys 131(11), 115301 (2022)
https://doi.org/10.1063/5.0069625
37 H.M. Silalahi,, W.F. Chiang,, Y.H. Shih,, W.Y. Wei,, J.Y. Su,, C.Y. Huang,: Folding metamaterials with extremely strong electromagnetic resonance. Photon Res 10(9), 2215–2222 (2022)
https://doi.org/10.1364/PRJ.465746
38 K. Shih,, P. Pitchappa,, M. Manjappa,, C.P. Ho,, R. Singh,, B. Yang,, N. Singh,, C. Lee,: Active MEMS metamaterials for THz bandwidth control. Appl Phys Lett 110(16), 161108 (2017)
https://doi.org/10.1063/1.4980115
39 T. Kan,, A. Isozaki,, N. Kanda,, N. Nemoto,, K. Konishi,, H. Takahashi,, M. Kuwata-Gonokami,, K. Matsumoto,, I. Shimoyama,: Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat Commun 6(1), 8422 (2015)
https://doi.org/10.1038/ncomms9422
40 K. Fan,, W.J. Padilla,: Dynamic electromagnetic metamaterials. Mater Today 18(1), 39–50 (2015)
https://doi.org/10.1016/j.mattod.2014.07.010
41 M. Liu,, M. Susli,, D. Silva,, G. Putrino,, H. Kala,, S. Fan,, M. Cole,, L. Faraone,, V.P. Wallace,, W.J. Padilla,, D.A. Powell,, I.V. Shadrivov,, M. Martyniuk,: Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial. Microsyst Nanoeng 3(1), 17033 (2017)
https://doi.org/10.1038/micronano.2017.33
42 N.I. Zheludev,, E. Plum,: Reconfigurable nanomechanical photonic metamaterials. Nat Nanotechnol 11(1), 16–22 (2016)
https://doi.org/10.1038/nnano.2015.302
43 T. Kan,, A. Isozaki,, N. Kanda,, N. Nemoto,, K. Konishi,, M. Kuwata-Gonokami,, K. Matsumoto,, I. Shimoyama,: Spiral metamaterial for active tuning of optical activity. Appl Phys Lett 102(22), 221906 (2013)
https://doi.org/10.1063/1.4809533
44 X. Zhao,, J. Schalch,, J. Zhang,, H.R. Seren,, G. Duan,, R.D. Averitt,, X. Zhang,: Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica 5(3), 303–310 (2018)
https://doi.org/10.1364/OPTICA.5.000303
45 M. Först,, C. Manzoni,, S. Kaiser,, Y. Tomioka,, Y. Tokura,, R. Merlin,, A. Cavalleri,: Nonlinear phononics as an ultrafast route to lattice control. Nat Phys 7(11), 854–856 (2011)
https://doi.org/10.1038/nphys2055
46 S. Fleischer,, Y. Zhou,, R. Field,, K. Nelson,: Molecular orientation and alignment by intense single-cycle THz pulses. Phys Rev Lett 10(16), 163603 (2011)
https://doi.org/10.1103/PhysRevLett.107.163603
47 D. Kong,, X. Wu,, B. Wang,, T. Nie,, M. Xiao,, C. Pandey,, Y. Gao,, L. Wen,, W. Zhao,, C. Ruan,, J. Miao,, Y. Li,, L. Wang,: Broadband spintronic terahertz emitter with magnetic-field manipulated polarizations. Adv Opt Mater 7(20), 1900487 (2019)
https://doi.org/10.1002/adom.201900487
48 W. Wu,, S. Lendinez,, M.T. Kaffash,, R.D. Schaller,, H. Wen,, M.B. Jungfleisch,: Controlling polarization of spintronic THz emitter by remanent magnetization texture. Appl Phys Lett 121(5), 052401 (2022)
https://doi.org/10.1063/5.0096252
49 P. Agarwal,, L. Huang,, S. Ter Lim,, R. Singh,: Electric-field control of nonlinear THz spintronic emitters. Nat Commun 13(1), 4072 (2022)
https://doi.org/10.1038/s41467-022-31789-0
50 J. Federici,, L. Moeller,: Review of terahertz and subterahertz wireless communications. J Appl Phys 107(11), 111101 (2010)
https://doi.org/10.1063/1.3386413
51 T.T. Kim,, S.S. Oh,, H.D. Kim,, H.S. Park,, O. Hess,, B. Min,, S. Zhang,: Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci Adv 3(9), e1701377 (2017)
https://doi.org/10.1126/sciadv.1701377
52 T. Qi,, Y.H. Shin,, K.L. Yeh,, K.A. Nelson,, A.M. Rappe,: Collective coherent control: synchronization of polarization in ferroelectric PbTiO3 by shaped THz fields. Phys Rev Lett 102(24), 247603 (2009)
https://doi.org/10.1103/PhysRevLett.102.247603
53 I. Jr Tinoco,, C.R. Cantor,: Application of optical rotatory dispersion and circular dichroism to the study of biopolymers. In: Methods of Biochemical Analysis. (1970)
https://doi.org/10.1002/9780470110362.ch3
54 Z. Song,, L. Zhang,, Q.H. Liu,: High-efficiency broadband cross polarization converter for near-infrared light based on anisotropic plasmonic meta-surfaces. Plasmonics 11(1), 61–64 (2016)
https://doi.org/10.1007/s11468-015-0027-y
55 B. Zhang,, L. Lv,, T. He,, T. Chen,, M. Zang,, L. Zhong,, X. Wang,, J. Shen,, Y. Hou,: Active terahertz device based on optically controlled organometal halide perovskite. Appl Phys Lett 107(9), 093301 (2015)
https://doi.org/10.1063/1.4930164
56 J. Guo,, J.Y. Kim,, S. Yang,, J. Xu,, Y.C. Choi,, A. Stein,, C.B. Murray,, N.A. Kotov,, C.R. Kagan,: Broadband circular polarizers via coupling in 3D plasmonic meta-atom arrays. ACS Photonics 8(5), 1286–1292 (2021)
https://doi.org/10.1021/acsphotonics.1c00310
57 Z. Liu,, H. Du,, J. Li,, L. Lu,, Z.Y. Li,, N.X. Fang,: Nano-kirigami with giant optical chirality. Sci Adv 4(7), eaat4436 (2018)
https://doi.org/10.1126/sciadv.aat4436
58 Z. Wang,, L. Jing,, K. Yao,, Y. Yang,, B. Zheng,, C.M. Soukoulis,, H. Chen,, Y. Liu,: Origami-based reconfigurable metamaterials for tunable chirality. Adv Mater Adv Mater 29(27), 1700412 (2017)
https://doi.org/10.1002/adma.201700412
59 J. Landau, L.P. Kearsley, E.M. Pitaevskii, J.B. Lifshitz: Sykes: Electrodynamics of Continuous Media (1984)
https://doi.org/10.1016/B978-0-08-030275-1.50007-2
60 M.E. McConney,, D.D. Kulkarni,, H. Jiang,, T.J. Bunning,, V.V. Tsukruk,: A new twist on scanning thermal microscopy. Nano Lett 12(3), 1218–1223 (2012)
https://doi.org/10.1021/nl203531f
61 L.S. Zheng,, M.S.C. Lu,: A large-displacement CMOS micromachined thermal actuator with comb electrodes for capacitive sensing. Sens Actuators A Phys. 136(2), 697–703 (2007)
https://doi.org/10.1016/j.sna.2007.01.006
62 T.G. King,, M.E. Preston,, B.J.M. Murphy,, D.S. Cannell,: Piezoelectric ceramic actuators: a review of machinery applications. Precis Eng 12(3), 131–136 (1990)
https://doi.org/10.1016/0141-6359(90)90084-C
63 C. Wu,, M. Kahn,, W. Moy,: Piezoelectric ceramics with functional gradients: a new application in material design. J Am Ceram Soc 79(3), 809–812 (1996)
https://doi.org/10.1111/j.1151-2916.1996.tb07951.x
64 E. Makino,, T. Mineta,, T. Mitsunaga,, T. Kawashima,, T. Shibata,: Sphincter actuator fabricated with PDMS/SMA bimorph cantilevers. Microelectron Eng 88(8), 2662–2665s (2011)
https://doi.org/10.1016/j.mee.2011.02.112
65 P. Krulevitch,, A.P. Lee,, P.B. Ramsey,, J.C. Trevino,, J. Hamilton,, M.A. Northrup,: Thin film shape memory alloy microactuators. J Microelectromech Syst 5(4), 270–282 (1996)
https://doi.org/10.1109/84.546407
66 A. Cavalleri,, C. Tóth,, C.W. Siders,, J.A. Squier,, F. Ráksi,, P. Forget,, J.C. Kieffer,: Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys Rev Lett 87(23), 237401 (2001)
https://doi.org/10.1103/PhysRevLett.87.237401
67 X. Wang,, K. Dong,, H.S. Choe,, H. Liu,, S. Lou,, K.B. Tom,, H.A. Bechtel,, Z. You,, J. Wu,, J. Yao,: Multifunctional microelectro-opto-mechanical platform based on phase-transition materials. Nano Lett 18(3), 1637–1643 (2018)
https://doi.org/10.1021/acs.nanolett.7b04477
68 K. Liu,, C. Cheng,, Z. Cheng,, K. Wang,, R. Ramesh,, J. Wu,: Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs. Nano Lett 12(12), 6302–6308 (2012)
https://doi.org/10.1021/nl303405g
69 G.P. Nikishkov,: Curvature estimation for multilayer hinged structures with initial strains. J Appl Phys 94(8), 5333–5336 (2003)
https://doi.org/10.1063/1.1610777
70 N. Sepúlveda,, A. Rúa,, R. Cabrera,, F. Fernández,: Young’s modulus of VO2 thin films as a function of temperature including insulator-to-metal transition regime. Appl Phys Lett 92(19), 191913 (2008)
https://doi.org/10.1063/1.2926681
71 B. Merle,: Mechanical Properties of Thin Films Studied by Bulge Testing (2013)
72 X.G. Guo,, Z.F. Zhou,, C. Sun,, W.H. Li,, Q.A. Huang,: A simple extraction method of young’s modulus for multilayer films in MEMS applications. Micromachines 8(7), 201 (2017)
https://doi.org/10.3390/mi8070201
73 N. Kanda,, K. Konishi,, M. Kuwata-Gonokami,: Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns. Opt Express 15(18), 11117–11125 (2017)
https://doi.org/10.1364/OE.15.011117
[1] O. Castelló, Sofía M. López Baptista, K. Watanabe, T. Taniguchi, E. Diez, J. E. Velázquez-Pérez, Y. M. Meziani, J. M. Caridad, J. A. Delgado-Notario. Impact of device resistances in the performance of graphene-based terahertz photodetectors[J]. Front. Optoelectron., 2024, 17(2): 19-.
[2] Peiyan Li, Shaojie Liu, Xinhou Chen, Chunyan Geng, Xiaojun Wu. Spintronic terahertz emission with manipulated polarization (STEMP)[J]. Front. Optoelectron., 2022, 15(1): 12-.
[3] Yuchao LI, Fengyu KONG, Bin WANG, Yanhua ZHAO, Zuankai WANG. Preparation of shape-controlling VO2(M/R) nanoparticles via one-step hydrothermal synthesis[J]. Front. Optoelectron., 2021, 14(3): 311-320.
[4] C. GANDHI, P. RAMESH BABU, K. SENTHILNATHAN. Ultra-thin polarization independent broadband terahertz metamaterial absorber[J]. Front. Optoelectron., 2021, 14(3): 288-297.
[5] Chunyu LIU, Yanfeng LI, Xi FENG, Xixiang ZHANG, Jiaguang HAN, Weili ZHANG. Dual non-diffractive terahertz beam generators based on all-dielectric metasurface[J]. Front. Optoelectron., 2021, 14(2): 201-210.
[6] Dixiang SHAO, Chen YAO, Zhanglong FU, Wenjian WAN, Ziping LI, Juncheng CAO. Terahertz quantum cascade lasers with sampled lateral gratings for single mode operation[J]. Front. Optoelectron., 2021, 14(1): 94-98.
[7] Qi JIN, Yiwen E, Xi-Cheng ZHANG. Terahertz aqueous photonics[J]. Front. Optoelectron., 2021, 14(1): 37-63.
[8] Yan ZHANG, Kaixuan LI, Huan ZHAO. Intense terahertz radiation: generation and application[J]. Front. Optoelectron., 2021, 14(1): 4-36.
[9] Elchin ISGANDAROV, Xavier ROPAGNOL, Mangaljit SINGH, Tsuneyuki OZAKI. Intense terahertz generation from photoconductive antennas[J]. Front. Optoelectron., 2021, 14(1): 64-93.
[10] Andrey BAYDIN, Takuma MAKIHARA, Nicolas Marquez PERACA, Junichiro KONO. Time-domain terahertz spectroscopy in high magnetic fields[J]. Front. Optoelectron., 2021, 14(1): 110-129.
[11] Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiation-enhanced-emission-of-fluorescence: a review[J]. Front. Optoelectron., 2019, 12(2): 117-147.
[12] Chenghong WU, Xinyang MIAO, Kun ZHAO. Identifying PM2.5 samples collected in different environment by using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2018, 11(3): 256-260.
[13] Xiangkun KONG, Junyi XU, Jin-jun MO, Shaobin LIU. Broadband and conformal metamaterial absorber[J]. Front. Optoelectron., 2017, 10(2): 124-131.
[14] Chen JIANG, Honglei ZHAN, Kun ZHAO, Cheng FU. Characterization of the cooling process of solid n-alkanes via terahertz spectroscopy[J]. Front. Optoelectron., 2017, 10(2): 132-137.
[15] Xiangang LUO. Subwavelength electromagnetics[J]. Front. Optoelectron., 2016, 9(2): 138-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed