Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (3) : 33311    https://doi.org/10.1007/s11467-023-1292-4
RESEARCH ARTICLE
Strongly nonlinear topological phases of cascaded topoelectrical circuits
Jijie Tang1, Fangyuan Ma2, Feng Li2(), Honglian Guo1(), Di Zhou2()
1. College of Science, Minzu University of China, Beijing 100081, China
2. Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
 Download: PDF(5290 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Circuits provide ideal platforms of topological phases and matter, yet the study of topological circuits in the strongly nonlinear regime, has been lacking. We propose and experimentally demonstrate strongly nonlinear topological phases and transitions in one-dimensional electrical circuits composed of nonlinear capacitors. Nonlinear topological interface modes arise on domain walls of the circuit lattices, whose topological phases are controlled by the amplitudes of nonlinear voltage waves. Experimentally measured topological transition amplitudes are in good agreement with those derived from nonlinear topological band theory. Our prototype paves the way towards flexible metamaterials with amplitude-controlled rich topological phases and is readily extendable to two and three-dimensional systems that allow novel applications.

Keywords strongly nonlinear      Berry phase      topological      electrical     
Corresponding Author(s): Feng Li,Honglian Guo,Di Zhou   
About author:

*These authors equally shared correspondence to this manuscript.

Issue Date: 09 May 2023
 Cite this article:   
Jijie Tang,Fangyuan Ma,Feng Li, et al. Strongly nonlinear topological phases of cascaded topoelectrical circuits[J]. Front. Phys. , 2023, 18(3): 33311.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1292-4
https://academic.hep.com.cn/fop/EN/Y2023/V18/I3/33311
Fig.1  (a) The unit cell of the underlying nonlinear topoelectrical circuit. (b) The unit cell of the linear circuit that helps to construct an interface between two semi-lattices in Fig.3. (c) The voltage-dependence of the nonlinear capacitors, where the dots represent the data measured by the network analyzer, and the fitting Gaussian curve is adopted for numerical computations. (d) The numerical calculation of the nonlinear band gap and topological phase transitions of the circuit unit cell in (a) for growing nonlinearity as voltage amplitude increases. At the transition point marked by the vertical red line, the degree of nonlinearity (horizontal axis) reads 0.332, which grants the considered topoelectrical circuit the strongly nonlinear regime.
Fig.2  Topological phase diagram of the nonlinear electrical circuit in Fig.1(a). In the horizontal axis, we vary the parameter of the linear capacitor C2 from 14.0pF to 37.0pF. The vertical axis represents the amplitude of responding voltage fields. The blue curve denotes the numerical result of the topological transition voltage amplitudes for varying linear capacitor C2. The blue area depicts the numerical result of the topological transition voltage under the influence of fluctuations in the nonlinear capacitors C1 with a range of ±10%. The experimentally measured transition voltages are depicted by the square marks with error bars. The inset illustrates the transition of the topological index when C2=23pF.
Fig.3  (a) Schematic illustration of the first prototype of the nonlinear topoelectrical circuit, whose interface connects the left and right half-lattices. Encircled by the red dashed box, the right-sided unit cells are composed of linear elements, as shown in Fig.1(b). The left-sided semi-lattice, as enclosed by the green dashed box, is composed of unit cells whose intra-cell and inter-cell couplings are switched comparing with Fig.1(a). (b) Photograph of the experimentally constructed circuit board from the design in (a), whose right and left sides contain 4 unit cells each. (c) The absence of topological interface mode in the small amplitude regime. (d) Topological interface mode on the verge of nonlinear topological phase transition. The mode amplitude reads 3.09V, which approaches the transition point Ac=2.97V. (e) Nonlinear topological interface mode becomes clearer for amplitude at 7.84V. (f?h) Impedance diagram of variable capacitor replaced by linear capacitor 37pF in (f), 25pF (g), and 15pF in (h).
Fig.4  (a) Schematic illustration of the second prototype of the nonlinear topoelectrical circuits. As encircled by the green dashed boxes, the unit cells of the two semi-lattices are designed from Fig.1(a). (b) Experimental setup of (a). (c) The interface hosts a topological mode with the excitation power of 0.065V. (d) Nonlinear topological interface mode on the verge of disappearance, as the external power 1.91V approaches the topological transition amplitude Ac=2.97V. (e) For the power that further rises to 6.17V, trivial localized modes take place on the interface. (f?h) Impedance diagram of variable capacitor replaced by linear capacitor 37pF in (f), 25pF (g), and 15pF in (h).
1 Hafezi M. , Mittal S. , Fan J. , Migdall A. , M. Taylor J. . Imaging topological edge states in silicon photonics. Nat. Photonics, 2013, 7(12): 1001
https://doi.org/10.1038/nphoton.2013.274
2 S. Kirsch M. , Zhang Y. , Kremer M. , J. Maczewsky L. , K. Ivanov S. , V. Kartashov Y. , Torner L. , Bauer D. , Szameit A. , Heinrich M. . Nonlinear second-order photonic topological insulators. Nat. Phys., 2021, 17(9): 995
https://doi.org/10.1038/s41567-021-01275-3
3 C. Rechtsman M. , M. Zeuner J. , Plotnik Y. , Lumer Y. , Podolsky D. , Dreisow F. , Nolte S. , Segev M. , Szameit A. . Photonic Floquet topological insulators. Nature, 2013, 496(7444): 196
https://doi.org/10.1038/nature12066
4 Schomerus H. . Topologically protected midgap states in complex photonic lattices. Opt. Lett., 2013, 38(11): 1912
https://doi.org/10.1364/OL.38.001912
5 B. Khanikaev A. , Hossein Mousavi S. , K. Tse W. , Kargarian M. , H. MacDonald A. , Shvets G. . Photonic topological insulators. Nat. Mater., 2013, 12(3): 233
https://doi.org/10.1038/nmat3520
6 Lu L. , D. Joannopoulos J. , Soljačić M. . Topological photonics. Nat. Photonics, 2014, 8(11): 821
https://doi.org/10.1038/nphoton.2014.248
7 Tuloup T. , W. Bomantara R. , H. Lee C. , Gong J. . Nonlinearity induced topological physics in momentum space and real space. Phys. Rev. B, 2020, 102(11): 115411
https://doi.org/10.1103/PhysRevB.102.115411
8 W. Bomantara R. , Zhao W. , Zhou L. , Gong J. . Nonlinear Dirac cones. Phys. Rev. B, 2017, 96(12): 121406
https://doi.org/10.1103/PhysRevB.96.121406
9 M. Zeuner J. , C. Rechtsman M. , Plotnik Y. , Lumer Y. , Nolte S. , S. Rudner M. , Segev M. , Szameit A. . Observation of topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett., 2015, 115(4): 040402
https://doi.org/10.1103/PhysRevLett.115.040402
10 Jiang J. , Ren J. , Guo Z. , Zhu W. , Long Y. , Jiang H. , Chen H. . Seeing topological winding number and band inversion in photonic dimer chain of split-ring resonators. Phys. Rev. B, 2020, 101(16): 165427
https://doi.org/10.1103/PhysRevB.101.165427
11 Guo Z. , Jiang J. , Jiang H. , Ren J. , Chen H. . Observation of topological bound states in a double Su−Schrieffer−Heeger chain composed of split ring resonators. Phys. Rev. Res., 2021, 3(1): 013122
https://doi.org/10.1103/PhysRevResearch.3.013122
12 Yang Z. , Gao F. , Shi X. , Lin X. , Gao Z. , Chong Y. , Zhang B. . Topological acoustics. Phys. Rev. Lett., 2015, 114(11): 114301
https://doi.org/10.1103/PhysRevLett.114.114301
13 Souslov A. , C. van Zuiden B. , Bartolo D. , Vitelli V. . Topological sound in active-liquid metamaterials. Nat. Phys., 2017, 13(11): 1091
https://doi.org/10.1038/nphys4193
14 Lee G. , Lee D. , Park J. , Jang Y. , Kim M. , Rho J. . Piezoelectric energy harvesting using mechanical metamaterials and phononic crystals. Commun. Phys., 2022, 5(1): 94
https://doi.org/10.1038/s42005-022-00869-4
15 Süsstrunk R. , D. Huber S. . Observation of phononic helical edge states in a mechanical topological insulator. Science, 2015, 349(6243): 47
https://doi.org/10.1126/science.aab0239
16 He C. , Ni X. , Ge H. , Sun X. , Chen Y. , Lu M. , Liu X. , Chen Y. . Acoustic topological insulator and robust one-way sound transport. Nat. Phys., 2016, 12(12): 1124
https://doi.org/10.1038/nphys3867
17 Peano V. , Brendel C. , Schmidt M. , Marquardt F. . Topological phases of sound and light. Phys. Rev. X, 2015, 5(3): 031011
https://doi.org/10.1103/PhysRevX.5.031011
18 Xiao M. , Ma G. , Yang Z. , Sheng P. , Q. Zhang Z. , T. Chan C. . Geometric phase and band inversion in periodic acoustic system. Nat. Phys., 2015, 11(3): 240
https://doi.org/10.1038/nphys3228
19 He H. , Qiu C. , Ye L. , Cai X. , Fan X. , Ke M. , Zhang F. , Liu Z. . Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature, 2018, 560(7716): 61
https://doi.org/10.1038/s41586-018-0367-9
20 Lu J. , Qiu C. , Ye L. , Fan X. , Ke M. , Zhang F. , Liu Z. . Observation of topological valley transport of sound in sonic crystals. Nat. Phys., 2017, 13(4): 369
https://doi.org/10.1038/nphys3999
21 L. Kane C. , C. Lubensky T. . Topological boundary modes in isostatic lattices. Nat. Phys., 2014, 10(1): 39
https://doi.org/10.1038/nphys2835
22 Paulose J. , G. Chen B. , Vitelli V. . Topological modes bound to dislocations in mechanical metamaterials. Nat. Phys., 2015, 11(2): 153
https://doi.org/10.1038/nphys3185
23 Xiu H. , Liu H. , Poli A. , Wan G. , Sun K. , M. Arruda E. , Mao X. . Topological transformability and reprogrammability of multistable mechanical metamaterials. Proc. Natl. Acad. Sci. USA, 2022, 119(52): e2211725119
https://doi.org/10.1073/pnas.2211725119
24 Zhou D. , Zhang L. , Mao X. . Topological edge floppy modes in disordered fiber networks. Phys. Rev. Lett., 2018, 120(6): 068003
https://doi.org/10.1103/PhysRevLett.120.068003
25 Fruchart M. , Vitelli V. . Symmetries and dualities in the theory of elasticity. Phys. Rev. Lett., 2020, 124(24): 248001
https://doi.org/10.1103/PhysRevLett.124.248001
26 Ma J. , Zhou D. , Sun K. , Mao X. , Gonella S. . Edge modes and asymmetric wave transport in topological lattices: Experimental characterization at finite frequencies. Phys. Rev. Lett., 2018, 121(9): 094301
https://doi.org/10.1103/PhysRevLett.121.094301
27 Liu H. , Zhou D. , Zhang L. , K. Lubensky D. , Mao X. . Topological floppy modes in models of epithelial tissues. Soft Matter, 2021, 17(38): 8624
https://doi.org/10.1039/D1SM00637A
28 Rosa M. , Ruzzene M. , Prodan E. . Topological gaps by twisting. Commun. Phys., 2021, 4(1): 130
https://doi.org/10.1038/s42005-021-00630-3
29 Zhou D. , Zhang L. , Mao X. . Topological boundary floppy modes in quasicrystals. Phys. Rev. X, 2019, 9(2): 021054
https://doi.org/10.1103/PhysRevX.9.021054
30 Fu Y. , Qin H. . Topological phases and bulk-edge correspondence of magnetized cold plasmas. Nat. Commun., 2021, 12(1): 3924
https://doi.org/10.1038/s41467-021-24189-3
31 Fu Y. , Qin H. . The dispersion and propagation of topological Langmuir-cyclotron waves in cold magnetized plasmas. J. Plasma Phys., 2022, 88(4): 835880401
https://doi.org/10.1017/S0022377822000629
32 V. Albert V. , I. Glazman L. , Jiang L. . Topological properties of linear circuit lattices. Phys. Rev. Lett., 2015, 114(17): 173902
https://doi.org/10.1103/PhysRevLett.114.173902
33 Imhof S. , Berger C. , Bayer F. , Brehm J. , W. Molenkamp L. , Kiessling T. , Schindler F. , H. Lee C. , Greiter M. , Neupert T. , Thomale R. . Topolectrical circuit realization of topological corner modes. Nat. Phys., 2018, 14(9): 925
https://doi.org/10.1038/s41567-018-0246-1
34 Ningyuan J. , Owens C. , Sommer A. , Schuster D. , Simon J. . Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X, 2015, 5(2): 021031
https://doi.org/10.1103/PhysRevX.5.021031
35 Goren T.Plekhanov K.Appas F.L. Hur K., Topological Zak phase in strongly coupled LC circuits, Phys. Rev. B 97, 041106(R) (2018)
36 Zhu W. , Hou S. , Long Y. , Chen H. , Ren J. . Simulating quantum spin Hall effect in the topological Lieb lattice of a linear circuit network. Phys. Rev. B, 2018, 97(7): 075310
https://doi.org/10.1103/PhysRevB.97.075310
37 Serra-Garcia M.Süsstrunk R.D. Huber S., Observation of quadrupole transitions and edge mode topology in an LC network, Phys. Rev. B 99, 020304(R) (2019)
38 Helbig T. , Hofmann T. , Imhof S. , Abdelghany M. , Kiessling T. , W. Molenkamp L. , H. Lee C. , Szameit A. , Greiter M. , Thomale R. . Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys., 2020, 16(7): 747
https://doi.org/10.1038/s41567-020-0922-9
39 H. Lee C. , Imhof S. , Berger C. , Bayer F. , Brehm J. , W. Molenkamp L. , Kiessling T. , Thomale R. . Topolectrical circuits. Commun. Phys., 2018, 1(1): 39
https://doi.org/10.1038/s42005-018-0035-2
40 Zou D. , Chen T. , He W. , Bao J. , H. Lee C. , Sun H. , Zhang X. . Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat. Commun., 2021, 12(1): 7201
https://doi.org/10.1038/s41467-021-26414-5
41 Hofmann T. , Helbig T. , Schindler F. , Salgo N. , Brzezińska M. , Greiter M. , Kiessling T. , Wolf D. , Vollhardt A. , Kabaši A. , H. Lee C. , Bilušić A. , Thomale R. , Neupert T. . Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Res., 2020, 2(2): 023265
https://doi.org/10.1103/PhysRevResearch.2.023265
42 Yang H.X. Li Z.Liu Y.Cao Y.Yan P., Observation of symmetry-protected zero modes in topolectrical circuits, Phys. Rev. Res. 2(2), 022028 (2020) (J)
43 Hofmann T. , Helbig T. , H. Lee C. , Greiter M. , Thomale R. . Chiral voltage propagation and calibration in a topolectrical Chern circuit. Phys. Rev. Lett., 2019, 122(24): 247702
https://doi.org/10.1103/PhysRevLett.122.247702
44 Xiao L. , Deng T. , Wang K. , Zhu G. , Wang Z. , Yi W. , Xue P. . Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys., 2020, 16(7): 761
https://doi.org/10.1038/s41567-020-0836-6
45 Zhu W. , Long Y. , Chen H. , Ren J. . Quantum valley Hall effects and spin-valley locking in topological Kane−Mele circuit networks. Phys. Rev. B, 2019, 99(11): 115410
https://doi.org/10.1103/PhysRevB.99.115410
46 Lumer Y. , Plotnik Y. , C. Rechtsman M. , Segev M. . Self-localized states in photonic topological insulators. Phys. Rev. Lett., 2013, 111(24): 243905
https://doi.org/10.1103/PhysRevLett.111.243905
47 Leykam D. , D. Chong Y. . Edge solitons in nonlinear-photonic topological insulators. Phys. Rev. Lett., 2016, 117(14): 143901
https://doi.org/10.1103/PhysRevLett.117.143901
48 Lumer Y.C. Rechtsman M.Plotnik Y.Segev M., Instability of bosonic topological edge states in the presence of interactions, Phys. Rev. A 94, 021801(R) (2016)
49 Hadad Y. , B. Khanikaev A. , Alu A. . Self-induced topological transitions and edge states supported by nonlinear staggered potentials. Phys. Rev. B, 2016, 93(15): 155112
https://doi.org/10.1103/PhysRevB.93.155112
50 Hadad Y. , C. Soric J. , B. Khanikaev A. , Alù A. . Self-induced topological protection in nonlinear circuit arrays. Nat. Electron., 2018, 1(3): 178
https://doi.org/10.1038/s41928-018-0042-z
51 Xiu H.Frankel I.Liu H.Qian K.Sarkar S.C. Macnider B.Chen Z.Boechler N.Mao X., Synthetically non-Hermitian nonlinear wave-like behavior in a topological mechanical metamaterial, arXiv: 2207.09273 (2022)
52 Fruchart M. , Hanai R. , B. Littlewood P. , Vitelli V. . Non-reciprocal phase transitions. Nature, 2021, 592(7854): 363
https://doi.org/10.1038/s41586-021-03375-9
53 Wang Y. , J. Lang L. , H. Lee C. , Zhang B. , D. Chong Y. . Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial. Nat. Commun., 2019, 10(1): 1102
https://doi.org/10.1038/s41467-019-08966-9
54 Zhou D. , Ma J. , Sun K. , Gonella S. , Mao X. . Switchable phonon diodes using nonlinear topological Maxwell lattices. Phys. Rev. B, 2020, 101(10): 104106
https://doi.org/10.1103/PhysRevB.101.104106
55 K. Pal R. , Vila J. , Leamy M. , Ruzzene M. . Amplitude-dependent topological edge states in nonlinear phononic lattices. Phys. Rev. E, 2018, 97(3): 032209
https://doi.org/10.1103/PhysRevE.97.032209
56 Zhou D. , Z. Rocklin D. , J. Leamy M. , Yao Y. . Topological invariant and anomalous edge modes of strongly nonlinear systems. Nat. Commun., 2022, 13(1): 3379
https://doi.org/10.1038/s41467-022-31084-y
57 R. Tempelman J. , H. Matlack K. , F. Vakakis A. . Topological protection in a strongly nonlinear interface lattice. Phys. Rev. B, 2021, 104(17): 174306
https://doi.org/10.1103/PhysRevB.104.174306
58 Vila J. , Paulino G. , Ruzzene M. . Role of nonlinearities in topological protection: Testing magnetically coupled fidget spinners. Phys. Rev. B, 2019, 99(12): 125116
https://doi.org/10.1103/PhysRevB.99.125116
59 Zhou D. , Zhang J. . Non-Hermitian topological metamaterials with odd elasticity. Phys. Rev. Res., 2020, 2(2): 023173
https://doi.org/10.1103/PhysRevResearch.2.023173
60 Cheng W. , Hu G. . Acoustic skin effect with non-reciprocal Willis materials. Appl. Phys. Lett., 2022, 121(4): 041701
https://doi.org/10.1063/5.0093247
61 See Supplementary Information for experimental setup and measurement, the nonlinear topological band theory, nonlinear Berry phase, and topological phase transitions.
62 F. Vakakis (Ed.) A., Normal Modes and Localization in Nonlinear Systems, Springer Dordrecht, 2001
63 Shang C. , Zheng Y. , A. Malomed B. . Weyl solitons in three-dimensional optical lattices. Phys. Rev. A, 2018, 97(4): 043602
https://doi.org/10.1103/PhysRevA.97.043602
[1] fop-21292-OF-lifeng_suppl_1 Download
[1] Rijia Lin, Tommy Tai, Linhu Li, Ching Hua Lee. Topological non-Hermitian skin effect[J]. Front. Phys. , 2023, 18(5): 53605-.
[2] Jia-Ning Zhang, Jin-Xuan Han, Jin-Lei Wu, Jie Song, Yong-Yuan Jiang. Robust beam splitter with fast quantum state transfer through a topological interface[J]. Front. Phys. , 2023, 18(5): 51303-.
[3] Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301-.
[4] Huanhuan Gao, Xiaojun Huang, Xiongwei Ma, Xiaoyan Li, Linyan Guo, Helin Yang. An ultra-wideband coding polarizer for beam control and RCS reduction[J]. Front. Phys. , 2023, 18(4): 42301-.
[5] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[6] Lei Shi, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (III)[J]. Front. Phys. , 2023, 18(2): 21307-.
[7] Yuan Wang, Fayuan Zhang, Meng Zeng, Hongyi Sun, Zhanyang Hao, Yongqing Cai, Hongtao Rong, Chengcheng Zhang, Cai Liu, Xiaoming Ma, Le Wang, Shu Guo, Junhao Lin, Qihang Liu, Chang Liu, Chaoyu Chen. Intrinsic magnetic topological materials[J]. Front. Phys. , 2023, 18(2): 21304-.
[8] Liang Kong, Hao Zheng. Categorical computation[J]. Front. Phys. , 2023, 18(2): 21302-.
[9] Biao Huang. Topological invariants for anomalous Floquet higher-order topological insulators[J]. Front. Phys. , 2023, 18(1): 13601-.
[10] Xu-Tao Zeng, Ziyu Chen, Cong Chen, Bin-Bin Liu, Xian-Lei Sheng, Shengyuan A. Yang. Topological hinge modes in Dirac semimetals[J]. Front. Phys. , 2023, 18(1): 13308-.
[11] Meng Xu, Lei Guo, Lei Chen, Ying Zhang, Shuang-Shuang Li, Weiyao Zhao, Xiaolin Wang, Shuai Dong, Ren-Kui Zheng. Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals[J]. Front. Phys. , 2023, 18(1): 13304-.
[12] Jia-En Yang, Hang Xie. Energy-resolved spin filtering effect and thermoelectric effect in topological-insulator junctions with anisotropic chiral edge states[J]. Front. Phys. , 2022, 17(6): 63504-.
[13] Junjie Zeng, Rui Xue, Tao Hou, Yulei Han, Zhenhua Qiao. Formation of topological domain walls and quantum transport properties of zero-line modes in commensurate bilayer graphene systems[J]. Front. Phys. , 2022, 17(6): 63503-.
[14] Jin-Xuan Han, Jin-Lei Wu, Zhong-Hui Yuan, Yan Xia, Yong-Yuan Jiang, Jie Song. Fast topological pumping for the generation of large-scale Greenberger−Horne−Zeilinger states in a superconducting circuit[J]. Front. Phys. , 2022, 17(6): 62504-.
[15] Si Jia Li, Zhuo Yue Li, Guo Shai Huang, Xiao Bin Liu, Rui Qi Li, Xiang Yu Cao. Digital coding transmissive metasurface for multi-OAM-beam[J]. Front. Phys. , 2022, 17(6): 62501-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed