|
|
Strongly nonlinear topological phases of cascaded topoelectrical circuits |
Jijie Tang1, Fangyuan Ma2, Feng Li2( ), Honglian Guo1( ), Di Zhou2( ) |
1. College of Science, Minzu University of China, Beijing 100081, China 2. Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Circuits provide ideal platforms of topological phases and matter, yet the study of topological circuits in the strongly nonlinear regime, has been lacking. We propose and experimentally demonstrate strongly nonlinear topological phases and transitions in one-dimensional electrical circuits composed of nonlinear capacitors. Nonlinear topological interface modes arise on domain walls of the circuit lattices, whose topological phases are controlled by the amplitudes of nonlinear voltage waves. Experimentally measured topological transition amplitudes are in good agreement with those derived from nonlinear topological band theory. Our prototype paves the way towards flexible metamaterials with amplitude-controlled rich topological phases and is readily extendable to two and three-dimensional systems that allow novel applications.
|
Keywords
strongly nonlinear
Berry phase
topological
electrical
|
Corresponding Author(s):
Feng Li,Honglian Guo,Di Zhou
|
About author: *These authors equally shared correspondence to this manuscript. |
Issue Date: 09 May 2023
|
|
1 |
Hafezi M. , Mittal S. , Fan J. , Migdall A. , M. Taylor J. . Imaging topological edge states in silicon photonics. Nat. Photonics, 2013, 7(12): 1001
https://doi.org/10.1038/nphoton.2013.274
|
2 |
S. Kirsch M. , Zhang Y. , Kremer M. , J. Maczewsky L. , K. Ivanov S. , V. Kartashov Y. , Torner L. , Bauer D. , Szameit A. , Heinrich M. . Nonlinear second-order photonic topological insulators. Nat. Phys., 2021, 17(9): 995
https://doi.org/10.1038/s41567-021-01275-3
|
3 |
C. Rechtsman M. , M. Zeuner J. , Plotnik Y. , Lumer Y. , Podolsky D. , Dreisow F. , Nolte S. , Segev M. , Szameit A. . Photonic Floquet topological insulators. Nature, 2013, 496(7444): 196
https://doi.org/10.1038/nature12066
|
4 |
Schomerus H. . Topologically protected midgap states in complex photonic lattices. Opt. Lett., 2013, 38(11): 1912
https://doi.org/10.1364/OL.38.001912
|
5 |
B. Khanikaev A. , Hossein Mousavi S. , K. Tse W. , Kargarian M. , H. MacDonald A. , Shvets G. . Photonic topological insulators. Nat. Mater., 2013, 12(3): 233
https://doi.org/10.1038/nmat3520
|
6 |
Lu L. , D. Joannopoulos J. , Soljačić M. . Topological photonics. Nat. Photonics, 2014, 8(11): 821
https://doi.org/10.1038/nphoton.2014.248
|
7 |
Tuloup T. , W. Bomantara R. , H. Lee C. , Gong J. . Nonlinearity induced topological physics in momentum space and real space. Phys. Rev. B, 2020, 102(11): 115411
https://doi.org/10.1103/PhysRevB.102.115411
|
8 |
W. Bomantara R. , Zhao W. , Zhou L. , Gong J. . Nonlinear Dirac cones. Phys. Rev. B, 2017, 96(12): 121406
https://doi.org/10.1103/PhysRevB.96.121406
|
9 |
M. Zeuner J. , C. Rechtsman M. , Plotnik Y. , Lumer Y. , Nolte S. , S. Rudner M. , Segev M. , Szameit A. . Observation of topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett., 2015, 115(4): 040402
https://doi.org/10.1103/PhysRevLett.115.040402
|
10 |
Jiang J. , Ren J. , Guo Z. , Zhu W. , Long Y. , Jiang H. , Chen H. . Seeing topological winding number and band inversion in photonic dimer chain of split-ring resonators. Phys. Rev. B, 2020, 101(16): 165427
https://doi.org/10.1103/PhysRevB.101.165427
|
11 |
Guo Z. , Jiang J. , Jiang H. , Ren J. , Chen H. . Observation of topological bound states in a double Su−Schrieffer−Heeger chain composed of split ring resonators. Phys. Rev. Res., 2021, 3(1): 013122
https://doi.org/10.1103/PhysRevResearch.3.013122
|
12 |
Yang Z. , Gao F. , Shi X. , Lin X. , Gao Z. , Chong Y. , Zhang B. . Topological acoustics. Phys. Rev. Lett., 2015, 114(11): 114301
https://doi.org/10.1103/PhysRevLett.114.114301
|
13 |
Souslov A. , C. van Zuiden B. , Bartolo D. , Vitelli V. . Topological sound in active-liquid metamaterials. Nat. Phys., 2017, 13(11): 1091
https://doi.org/10.1038/nphys4193
|
14 |
Lee G. , Lee D. , Park J. , Jang Y. , Kim M. , Rho J. . Piezoelectric energy harvesting using mechanical metamaterials and phononic crystals. Commun. Phys., 2022, 5(1): 94
https://doi.org/10.1038/s42005-022-00869-4
|
15 |
Süsstrunk R. , D. Huber S. . Observation of phononic helical edge states in a mechanical topological insulator. Science, 2015, 349(6243): 47
https://doi.org/10.1126/science.aab0239
|
16 |
He C. , Ni X. , Ge H. , Sun X. , Chen Y. , Lu M. , Liu X. , Chen Y. . Acoustic topological insulator and robust one-way sound transport. Nat. Phys., 2016, 12(12): 1124
https://doi.org/10.1038/nphys3867
|
17 |
Peano V. , Brendel C. , Schmidt M. , Marquardt F. . Topological phases of sound and light. Phys. Rev. X, 2015, 5(3): 031011
https://doi.org/10.1103/PhysRevX.5.031011
|
18 |
Xiao M. , Ma G. , Yang Z. , Sheng P. , Q. Zhang Z. , T. Chan C. . Geometric phase and band inversion in periodic acoustic system. Nat. Phys., 2015, 11(3): 240
https://doi.org/10.1038/nphys3228
|
19 |
He H. , Qiu C. , Ye L. , Cai X. , Fan X. , Ke M. , Zhang F. , Liu Z. . Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature, 2018, 560(7716): 61
https://doi.org/10.1038/s41586-018-0367-9
|
20 |
Lu J. , Qiu C. , Ye L. , Fan X. , Ke M. , Zhang F. , Liu Z. . Observation of topological valley transport of sound in sonic crystals. Nat. Phys., 2017, 13(4): 369
https://doi.org/10.1038/nphys3999
|
21 |
L. Kane C. , C. Lubensky T. . Topological boundary modes in isostatic lattices. Nat. Phys., 2014, 10(1): 39
https://doi.org/10.1038/nphys2835
|
22 |
Paulose J. , G. Chen B. , Vitelli V. . Topological modes bound to dislocations in mechanical metamaterials. Nat. Phys., 2015, 11(2): 153
https://doi.org/10.1038/nphys3185
|
23 |
Xiu H. , Liu H. , Poli A. , Wan G. , Sun K. , M. Arruda E. , Mao X. . Topological transformability and reprogrammability of multistable mechanical metamaterials. Proc. Natl. Acad. Sci. USA, 2022, 119(52): e2211725119
https://doi.org/10.1073/pnas.2211725119
|
24 |
Zhou D. , Zhang L. , Mao X. . Topological edge floppy modes in disordered fiber networks. Phys. Rev. Lett., 2018, 120(6): 068003
https://doi.org/10.1103/PhysRevLett.120.068003
|
25 |
Fruchart M. , Vitelli V. . Symmetries and dualities in the theory of elasticity. Phys. Rev. Lett., 2020, 124(24): 248001
https://doi.org/10.1103/PhysRevLett.124.248001
|
26 |
Ma J. , Zhou D. , Sun K. , Mao X. , Gonella S. . Edge modes and asymmetric wave transport in topological lattices: Experimental characterization at finite frequencies. Phys. Rev. Lett., 2018, 121(9): 094301
https://doi.org/10.1103/PhysRevLett.121.094301
|
27 |
Liu H. , Zhou D. , Zhang L. , K. Lubensky D. , Mao X. . Topological floppy modes in models of epithelial tissues. Soft Matter, 2021, 17(38): 8624
https://doi.org/10.1039/D1SM00637A
|
28 |
Rosa M. , Ruzzene M. , Prodan E. . Topological gaps by twisting. Commun. Phys., 2021, 4(1): 130
https://doi.org/10.1038/s42005-021-00630-3
|
29 |
Zhou D. , Zhang L. , Mao X. . Topological boundary floppy modes in quasicrystals. Phys. Rev. X, 2019, 9(2): 021054
https://doi.org/10.1103/PhysRevX.9.021054
|
30 |
Fu Y. , Qin H. . Topological phases and bulk-edge correspondence of magnetized cold plasmas. Nat. Commun., 2021, 12(1): 3924
https://doi.org/10.1038/s41467-021-24189-3
|
31 |
Fu Y. , Qin H. . The dispersion and propagation of topological Langmuir-cyclotron waves in cold magnetized plasmas. J. Plasma Phys., 2022, 88(4): 835880401
https://doi.org/10.1017/S0022377822000629
|
32 |
V. Albert V. , I. Glazman L. , Jiang L. . Topological properties of linear circuit lattices. Phys. Rev. Lett., 2015, 114(17): 173902
https://doi.org/10.1103/PhysRevLett.114.173902
|
33 |
Imhof S. , Berger C. , Bayer F. , Brehm J. , W. Molenkamp L. , Kiessling T. , Schindler F. , H. Lee C. , Greiter M. , Neupert T. , Thomale R. . Topolectrical circuit realization of topological corner modes. Nat. Phys., 2018, 14(9): 925
https://doi.org/10.1038/s41567-018-0246-1
|
34 |
Ningyuan J. , Owens C. , Sommer A. , Schuster D. , Simon J. . Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X, 2015, 5(2): 021031
https://doi.org/10.1103/PhysRevX.5.021031
|
35 |
Goren T.Plekhanov K.Appas F.L. Hur K., Topological Zak phase in strongly coupled LC circuits, Phys. Rev. B 97, 041106(R) (2018)
|
36 |
Zhu W. , Hou S. , Long Y. , Chen H. , Ren J. . Simulating quantum spin Hall effect in the topological Lieb lattice of a linear circuit network. Phys. Rev. B, 2018, 97(7): 075310
https://doi.org/10.1103/PhysRevB.97.075310
|
37 |
Serra-Garcia M.Süsstrunk R.D. Huber S., Observation of quadrupole transitions and edge mode topology in an LC network, Phys. Rev. B 99, 020304(R) (2019)
|
38 |
Helbig T. , Hofmann T. , Imhof S. , Abdelghany M. , Kiessling T. , W. Molenkamp L. , H. Lee C. , Szameit A. , Greiter M. , Thomale R. . Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys., 2020, 16(7): 747
https://doi.org/10.1038/s41567-020-0922-9
|
39 |
H. Lee C. , Imhof S. , Berger C. , Bayer F. , Brehm J. , W. Molenkamp L. , Kiessling T. , Thomale R. . Topolectrical circuits. Commun. Phys., 2018, 1(1): 39
https://doi.org/10.1038/s42005-018-0035-2
|
40 |
Zou D. , Chen T. , He W. , Bao J. , H. Lee C. , Sun H. , Zhang X. . Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat. Commun., 2021, 12(1): 7201
https://doi.org/10.1038/s41467-021-26414-5
|
41 |
Hofmann T. , Helbig T. , Schindler F. , Salgo N. , Brzezińska M. , Greiter M. , Kiessling T. , Wolf D. , Vollhardt A. , Kabaši A. , H. Lee C. , Bilušić A. , Thomale R. , Neupert T. . Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Res., 2020, 2(2): 023265
https://doi.org/10.1103/PhysRevResearch.2.023265
|
42 |
Yang H.X. Li Z.Liu Y.Cao Y.Yan P., Observation of symmetry-protected zero modes in topolectrical circuits, Phys. Rev. Res. 2(2), 022028 (2020) (J)
|
43 |
Hofmann T. , Helbig T. , H. Lee C. , Greiter M. , Thomale R. . Chiral voltage propagation and calibration in a topolectrical Chern circuit. Phys. Rev. Lett., 2019, 122(24): 247702
https://doi.org/10.1103/PhysRevLett.122.247702
|
44 |
Xiao L. , Deng T. , Wang K. , Zhu G. , Wang Z. , Yi W. , Xue P. . Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys., 2020, 16(7): 761
https://doi.org/10.1038/s41567-020-0836-6
|
45 |
Zhu W. , Long Y. , Chen H. , Ren J. . Quantum valley Hall effects and spin-valley locking in topological Kane−Mele circuit networks. Phys. Rev. B, 2019, 99(11): 115410
https://doi.org/10.1103/PhysRevB.99.115410
|
46 |
Lumer Y. , Plotnik Y. , C. Rechtsman M. , Segev M. . Self-localized states in photonic topological insulators. Phys. Rev. Lett., 2013, 111(24): 243905
https://doi.org/10.1103/PhysRevLett.111.243905
|
47 |
Leykam D. , D. Chong Y. . Edge solitons in nonlinear-photonic topological insulators. Phys. Rev. Lett., 2016, 117(14): 143901
https://doi.org/10.1103/PhysRevLett.117.143901
|
48 |
Lumer Y.C. Rechtsman M.Plotnik Y.Segev M., Instability of bosonic topological edge states in the presence of interactions, Phys. Rev. A 94, 021801(R) (2016)
|
49 |
Hadad Y. , B. Khanikaev A. , Alu A. . Self-induced topological transitions and edge states supported by nonlinear staggered potentials. Phys. Rev. B, 2016, 93(15): 155112
https://doi.org/10.1103/PhysRevB.93.155112
|
50 |
Hadad Y. , C. Soric J. , B. Khanikaev A. , Alù A. . Self-induced topological protection in nonlinear circuit arrays. Nat. Electron., 2018, 1(3): 178
https://doi.org/10.1038/s41928-018-0042-z
|
51 |
Xiu H.Frankel I.Liu H.Qian K.Sarkar S.C. Macnider B.Chen Z.Boechler N.Mao X., Synthetically non-Hermitian nonlinear wave-like behavior in a topological mechanical metamaterial, arXiv: 2207.09273 (2022)
|
52 |
Fruchart M. , Hanai R. , B. Littlewood P. , Vitelli V. . Non-reciprocal phase transitions. Nature, 2021, 592(7854): 363
https://doi.org/10.1038/s41586-021-03375-9
|
53 |
Wang Y. , J. Lang L. , H. Lee C. , Zhang B. , D. Chong Y. . Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial. Nat. Commun., 2019, 10(1): 1102
https://doi.org/10.1038/s41467-019-08966-9
|
54 |
Zhou D. , Ma J. , Sun K. , Gonella S. , Mao X. . Switchable phonon diodes using nonlinear topological Maxwell lattices. Phys. Rev. B, 2020, 101(10): 104106
https://doi.org/10.1103/PhysRevB.101.104106
|
55 |
K. Pal R. , Vila J. , Leamy M. , Ruzzene M. . Amplitude-dependent topological edge states in nonlinear phononic lattices. Phys. Rev. E, 2018, 97(3): 032209
https://doi.org/10.1103/PhysRevE.97.032209
|
56 |
Zhou D. , Z. Rocklin D. , J. Leamy M. , Yao Y. . Topological invariant and anomalous edge modes of strongly nonlinear systems. Nat. Commun., 2022, 13(1): 3379
https://doi.org/10.1038/s41467-022-31084-y
|
57 |
R. Tempelman J. , H. Matlack K. , F. Vakakis A. . Topological protection in a strongly nonlinear interface lattice. Phys. Rev. B, 2021, 104(17): 174306
https://doi.org/10.1103/PhysRevB.104.174306
|
58 |
Vila J. , Paulino G. , Ruzzene M. . Role of nonlinearities in topological protection: Testing magnetically coupled fidget spinners. Phys. Rev. B, 2019, 99(12): 125116
https://doi.org/10.1103/PhysRevB.99.125116
|
59 |
Zhou D. , Zhang J. . Non-Hermitian topological metamaterials with odd elasticity. Phys. Rev. Res., 2020, 2(2): 023173
https://doi.org/10.1103/PhysRevResearch.2.023173
|
60 |
Cheng W. , Hu G. . Acoustic skin effect with non-reciprocal Willis materials. Appl. Phys. Lett., 2022, 121(4): 041701
https://doi.org/10.1063/5.0093247
|
61 |
See Supplementary Information for experimental setup and measurement, the nonlinear topological band theory, nonlinear Berry phase, and topological phase transitions.
|
62 |
F. Vakakis (Ed.) A., Normal Modes and Localization in Nonlinear Systems, Springer Dordrecht, 2001
|
63 |
Shang C. , Zheng Y. , A. Malomed B. . Weyl solitons in three-dimensional optical lattices. Phys. Rev. A, 2018, 97(4): 043602
https://doi.org/10.1103/PhysRevA.97.043602
|
[1] |
fop-21292-OF-lifeng_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|