Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 53203    https://doi.org/10.1007/s11467-024-1395-6
High-mobility spin-polarized two-dimensional electron gas at the interface of LaTiO3/SrTiO3 (110) heterostructures
Zhao-Cai Wang1, Zheng-Nan Li1, Shuang-Shuang Li1, Weiyao Zhao2, Ren-Kui Zheng1,3()
1. School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
2. Department of Materials Science & Engineering, Monash University, Clayton VIC 3800, Australia
3. School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
 Download: PDF(10875 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High-quality antiferromagnetic Mott insulator thin films of LaTiO3 (LTO) were epitaxially grown onto SrTiO3 (STO) (110) substrates using the pulsed laser deposition. The LTO/STO heterostructures are not only highly conducting and ferromagnetic, but also show Kondo effect, Shubnikov‒de Haas (SdH) oscillations with a nonzero Berry phase of π, and low-field hysteretic negative magnetoresistance (MR). Angle-dependent SdH oscillations and a calculation of the thickness of the interfacial conducting layer indicate the formation of a 4-nm high mobility two-dimensional electron gas (2DEG) layer at the interface. Moreover, an amazingly large low-field negative MR of ∼61.8% is observed at 1.8 K and 200 Oe, which is approximately one to two orders of magnitude larger than those observed in other spin-polarized 2DEG oxide systems. All these results demonstrate that the 2DEG is spin-polarized and the 4-nm interfacial layer is ferromagnetic, which are attributed to the presence of magnetic Ti3+ ions due to interfacial oxygen vacancies and the diffusion of La3+ ions into the STO substrate. The localized Ti3+ magnetic moments couple to high mobility itinerant electrons under magnetic fields, giving rise to the observed low-field MR. Our work demonstrates the great potential of antiferromagnetic titanate oxide interface for designing spin-polarized 2DEG and spintronic devices.

Keywords two-dimensional electron gas      heterostructure      spin polarization      electronic transport      interface     
Corresponding Author(s): Ren-Kui Zheng   
Issue Date: 09 April 2024
 Cite this article:   
Zhao-Cai Wang,Zheng-Nan Li,Shuang-Shuang Li, et al. High-mobility spin-polarized two-dimensional electron gas at the interface of LaTiO3/SrTiO3 (110) heterostructures[J]. Front. Phys. , 2024, 19(5): 53203.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1395-6
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/53203
Fig.1  (a) XRD θ2θ scan pattern for a 56-nm LTO (110) thin film. Inset: φ scan patterns of the LTO film and STO substrate. (b) A rocking curve taken on the LTO (110) diffraction peak. Insets: An X-ray RSM pattern and AFM image of the LTO film. (c) XRR pattern of the LTO film with theoretical fitting. Inset: AFM image of an as-received STO (110) substrate. (d) A TEM image of the LTO/STO heterostructure. (e) Left panel: A HAADF-STEM image taken from the interface region. Middle and right panels: EELS mapping of the La and Ti elements. (f) Schematic structure of a LTO (110) film on a STO (110) substrate. The red, green, and gray circles are the oxygen, strontium, and titanium atoms, respectively. Right panel: Schematic of the density of states at the interface of the LTO/STO structure with ferromagnetic state.
Fig.2  (a) Temperature dependence of the sheet resistance of the LTO/STO (red curve) and LTO/LSAT (blue curve) heterostructures in zero magnetic field. Inset: Magnified view of the resistance upturn at low temperatures. (b) Areal carrier density ( nHall) and mobility ( μ Hall) derived from Hall measurements as a function of temperature. Inset: Hall resistance Rxy as a function of the magnetic field for the LTO/STO heterostructure, as measured at different fixed temperatures. (c) Normalized resistance R(T)/R(2 K) of the LTO/STO structure. Inset: Enlarged view. (d) Experimentally (open blue squares and green circles) and theoretically (red curve) scaled Kondo resistance [RK(T/TK)/RK0]. Inset: Temperature dependence of the resistance of a bare STO substrate that has been treated with the same conditions as those for growing LTO films on STO (110) substrates.
Fig.3  (a) MR vs. B curves at fixed temperatures ranging from 1.8 to 20 K. (b) Oscillatory patterns obtained by subtracting a smoothed background. (c) The fast Fourier transform (FFT) spectra of the oscillatory patterns. (d) Temperature dependence of the normalized FFT amplitude at F = 40 T. (e) The Dingle plot of the l n[ΔRs inh(αT)/(4R0α T)] vs. the inverse field 1/B at 1.8 K. (f) The Landau fan diagram is plotted to illustrate the Berry phase.
Fig.4  (a) MR as a function of the magnetic field B for different θ angles at T = 1.8 K. Inset: schematic illustration of the direction of the magnetic field with respective to the normal of the film plane. (b) Second derivative of Rxx with respective to B (d2Rxx/dB2) plotted against 1/B. (c) d2Rxx/dB2 plotted against 1/(Bcosθ).
Fig.5  (a) Out-of-plane MR of the LTO/STO heterostructure, as measured at different temperatures with the direction of the magnetic field perpendicular to the film plane. (b) In-plane MR of the LTO/STO heterostructure, as measured at different temperatures with the direction of the magnetic field parallel to the film plane and electric current. (c) MR vs. B curve at 1.8 K, with the direction of the magnetic field perpendicular to the film plane. (d) Out-of-plane and in-plane MR plotted against temperature for B = 0.05 T.
Fig.6  Temperature dependence of the resistance for (a) LTO/LSAT and (b) LTO/LAO heterostructures in zero magnetic field and a magnetic field of 14 T, and magnetic field dependence of MR at T = 2 K for (c) LTO/LSAT and (d) LTO/LAO heterostructures.
Fig.7  (a) Temperature dependence of the zero-field-cooled (ZFC) and field-cooled (FC) magnetization for the LTO/STO heterostructure, as measured with a magnetic field of 100 Oe applied perpendicular and parallel to the film plane, respectively. (b) Out-of-plane and in-plane magnetization vs. magnetic field at 1.8 K for a 56-nm LTO/STO heterostructure. (c) XPS spectra around the binding energy of Ti 2p for the LTO film grown on STO (110). (d) Out-of-plane and in-plane magnetization vs. magnetic field at 1.8 K for a 56-nm LTO/LSAT heterostructure. (e) Schematically illustration of the origin of the interfacial ferromagnetism in the LTO/STO (110) heterostructure.
1 Ohtomo A.Y. Hwang H., A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004)
2 Reyren N., Thiel S., D. Caviglia A., F. Kourkoutis L., Hammerl G., Richter C., W. Schneider C., Kopp T., S. Ruetschi A., Jaccard D., Gabay M., A. Muller D., M. Triscone J., Mannhart J.. Superconducting interfaces between insulating oxides. Science, 2007, 317(5842): 1196
https://doi.org/10.1126/science.1146006
3 A. Bert J., Kalisky B., Bell C., Kim M., Hikita Y., Y. Hwang H., A. Moler K.. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat. Phys., 2011, 7(10): 767
https://doi.org/10.1038/nphys2079
4 Cao C., G Chen S., Deng J., Li G., H Zhang Q., Gu L., P. Ying T., J. Guo E., G. Guo J., L. Chen X.. Two-dimensional electron gas with high mobility forming at BaO/SrTiO3 interface. Chin. Phys. Lett., 2022, 39(4): 047301
https://doi.org/10.1088/0256-307X/39/4/047301
5 M. Jiang W., Zhao Q, Z. Ling J., N. Shao T., T. Zhang Z., R. Liu M., L. Yao C., J. Qiao Y., H. Chen M., Y. Chen X., F. Dou R., M. Xiong C., C. Nie J.. Gate tunable Rashba spin‒orbit coupling at CaZrO3/SrTiO3 heterointerface. Chin. Phys. B, 2022, 31(6): 066801
https://doi.org/10.1088/1674-1056/ac5396
6 Brinkman A., Huijben M., Van Zalk M., Huijben J., Zeitler U., C. Maan J., G. Van der Wiel W., Rijnders G., H. A. Blank D., Hilgenkamp H.. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater., 2007, 6(7): 493
https://doi.org/10.1038/nmat1931
7 R. Zhang H., Yun Y., J. Zhang X., Zhang H., Ma Y., Yan X., Wang F., Li G., Li R., Khan T., S. Chen Y., Liu W., X. Hu F., G. Liu B., G. Shen B., Han W., R. Sun J.. High-mobility spin-polarized two-dimensional electron gases at EuO/KTaO3 interfaces. Phys. Rev. Lett., 2018, 121(11): 116803
https://doi.org/10.1103/PhysRevLett.121.116803
8 Stornaiuolo D., Cantoni C., M. De Luca G., Di Capua R., Di. Gennaro E., Ghiringhelli G., Jouault B., Marrè D., Massarotti D., Miletto Granozio F., Pallecchi I., Piamonteze C., Rusponi S., Tafuri F., Salluzzo M.. Tunable spin polarization and superconductivity in engineered oxide interfaces. Nat. Mater., 2016, 15(3): 278
https://doi.org/10.1038/nmat4491
9 Stornaiuolo D., Jouault B., Di Gennaro E., Sambri A., D’Antuono M., Massarotti D., M. Granozio F., Di Capua R., M. De Luca G., P. Pepe G., Tafuri F., Salluzzo M.. Interplay between spin‒orbit coupling and ferromagnetism in magnetotransport properties of a spin-polarized oxide two-dimensional electron system. Phys. Rev. B, 2018, 98(7): 075409
https://doi.org/10.1103/PhysRevB.98.075409
10 Arima T., Tokura Y., B. Torrance J.. Variation of optical gaps in perovskite-type 3d transition-metal oxides. Phys. Rev. B, 1993, 48(23): 17006
https://doi.org/10.1103/PhysRevB.48.17006
11 Eylem C., C. Hung Y., L. Ju H., Y. Kim J., C. Green D., Vogt T., A. Hriljac J., W. Eichhorn B., L. Greene R., Salamanca-Riba L.. Unusual metal‒insulator transitions in the LaTi1−xVxO3 perovskite phases. Chem. Mater., 1996, 8(2): 418
https://doi.org/10.1021/cm950351q
12 Okada Y., Arima T., Tokura Y., Murayama C., Môri N.. Doping- and pressure-induced change of electrical and magnetic properties in the Mott‒Hubbard insulator LaTiO3. Phys. Rev. B, 1993, 48(13): 9677
https://doi.org/10.1103/PhysRevB.48.9677
13 C. Hays C., S. Zhou J., T. Markert J., B. Goodenough J.. Electronic transition in La1−xSrxTiO3. Phys. Rev. B, 1999, 60(14): 10367
https://doi.org/10.1103/PhysRevB.60.10367
14 Katsufuji T., Taguchi Y., Tokura Y.. Transport and magnetic properties of a Mott‒Hubbard system whose bandwidth and band filling are both controllable: R1−xCaxTiO3+y/2. Phys. Rev. B, 1997, 56(16): 10145
https://doi.org/10.1103/PhysRevB.56.10145
15 J. Wong F., H. Baek S., V. Chopdekar R., V. Mehta V., W. Jang H., B. Eom C., Suzuki Y.. Metallicity in LaTiO3 thin films induced by lattice deformation. Phys. Rev. B, 2010, 81(16): 161101(R)
https://doi.org/10.1103/PhysRevB.81.161101
16 He C., D. Sanders T., T. Gray M., J. Wong F., V. Mehta V., Suzuki Y.. Metal‒insulator transitions in epitaxial LaVO3 and LaTiO3 films. Phys. Rev. B, 2012, 86(8): 081401(R)
https://doi.org/10.1103/PhysRevB.86.081401
17 Biscaras J., Bergeal N., Kushwaha A., Wolf T., Rastogi A., C. Budhani R., Lesueur J.. Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3. Nat. Commun., 2010, 1(1): 89
https://doi.org/10.1038/ncomms1084
18 T. Zhang T., Y. Gu C., W. Mao Z., F. Chen X., B. Gu Z., Wang P., F. Nie Y., Q. Pan X.. Mott insulator to metal transition driven by oxygen incorporation in epitaxial LaTiO3 films. Appl. Phys. Lett., 2019, 115(26): 261604
https://doi.org/10.1063/1.5132568
19 J. Veit M., K. Chan M., J. Ramshaw B., Arras R., Pentcheva R., Suzuki Y.. Three-dimensional character of the Fermi surface in ultrathin LaTiO3/SrTiO3 heterostructures. Phys. Rev. B, 2019, 99(11): 115126
https://doi.org/10.1103/PhysRevB.99.115126
20 Biscaras J., Bergeal N., Hurand S., Grossetete C., Rastogi A., C. Budhani R., LeBoeuf D., Proust C., Lesueur J.. Two-dimensional superconducting phase in LaTiO3/SrTiO3 heterostructures induced by high-mobility carrier doping. Phys. Rev. Lett., 2012, 108(24): 247004
https://doi.org/10.1103/PhysRevLett.108.247004
21 D. Wen F., W. Cao Y., R. Liu X., Pal B., Middey S., Kareev M., Chakhalian J.. Evolution of ferromagnetism in two-dimensional electron gas of LaTiO3/SrTiO3. Appl. Phys. Lett., 2018, 112(12): 122405
https://doi.org/10.1063/1.5009768
22 Ohtomo A., A. Muller D., L. Grazul J., Y. Hwang H.. Artificial charge-modulationin atomic-scale perovskite titanate superlattices. Nature, 2002, 419(6905): 378
https://doi.org/10.1038/nature00977
23 Okamoto S., J. Millis A.. Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature, 2004, 428(6983): 630
https://doi.org/10.1038/nature02450
24 Okamoto S., J. Millis A., A. Spaldin N.. Lattice relaxation in oxide heterostructures: LaTiO3/SrTiO3 superlattices. Phys. Rev. Lett., 2006, 97(5): 056802
https://doi.org/10.1103/PhysRevLett.97.056802
25 Yang F., Z. Wang Z., H. Liu Y., Yang S., Yu Z., C. An Q., Q. Ding Z., Q. Meng F., W. Cao Y., H. Zhang Q., Gu L., Liu M., Q. Li Y., D. Guo J., R. Liu X.. Engineered Kondo screening and nonzero Berry phase in SrTiO3/LaTiO3/SrTiO3 heterostructures. Phys. Rev. B, 2022, 106(16): 165421
https://doi.org/10.1103/PhysRevB.106.165421
26 W. Cao Y., Z. Yang Z., Kareev M., R. Liu X., Meyers D., Middey S., Choudhury D., Shafer P., D. Guo J., W. Freeland J., Arenholz E., Gu L., Chakhalian J.. Magnetic interactions at the nanoscale in trilayer titanates. Phys. Rev. Lett., 2016, 116(7): 076802
https://doi.org/10.1103/PhysRevLett.116.076802
27 Y. Hwang H.. Atomic control of the electronic structure at complex oxide heterointerfaces. MRS Bull., 2006, 31(1): 28
https://doi.org/10.1557/mrs2006.3
28 Mukunoki Y., Nakagawa N., Susaki T., Y. Hwang H.. Atomically flat (110) SrTiO3 and heteroepitaxy. Appl. Phys. Lett., 2005, 86(17): 171908
https://doi.org/10.1063/1.1920415
29 Annadi A., Zhang Q., Renshaw Wang X., Tuzla N., Gopinadhan K., M. Lü W., Roy Barman A., Q. Liu Z., Srivastava A., Saha S., L. Zhao Y., W. Zeng S., Dhar S., Olsson E., Gu B., Yunoki S., Maekawa S., Hilgenkamp H., Venkatesan T.. Anisotropic two-dimensional electron gas at the LaAlO3/SrTiO3 (110) interface. Nat. Commun., 2013, 4(1): 1838
https://doi.org/10.1038/ncomms2804
30 L. Han Y., W. Fang Y., Z. Yang Z., J. Li C., He L., C. Shen S., Z. Luo Z., L. Qu G., M. Xiong C., F. Dou R., Wei X., Gu L., G. Duan C., C. Nie J.. Reconstruction of electrostatic field at the interface leads to formation of two-dimensional electron gas at multivalent (110) LaAlO3/SrTiO3 interfaces. Phys. Rev. B, 2015, 92(11): 115304
https://doi.org/10.1103/PhysRevB.92.115304
31 Z. Chen Y.Bovet N.Trier F.V. Christensen D.M. Qu F.H. Andersen N.Kasama T.Zhang W. Giraud R.Dufouleur J.S. Jespersen T.R. Sun J.Smith A. Nygard J.Lu L.Buchner B.G. Shen B.Linderoth S.Pryds N., A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3, Nat. Commun. 4(1), 1371 (2013)
32 F. Gantmakher V., Electrons and Disorder in Solids, New York: Oxford University Press, 2005
33 L. Altshuler B.G. Aronov A., Modern Problems in Condensed Matter Sciences, New York: Elsevier, 1985, Vol. 10, Ch. 1, pp 1–153
34 Das S., Rastogi A., J. Wu L., C. Zheng J., Hossain Z., M. Zhu Y., C. Budhani R.. Kondo scattering in δ-doped LaTiO3/SrTiO3 interfaces: Renormalization by spin‒orbit interactions. Phys. Rev. B, 2014, 90(8): 081107(R)
https://doi.org/10.1103/PhysRevB.90.081107
35 Das S., Hossain Z., C. Budhani R.. Signature of enhanced spin‒orbit interaction in the magnetoresistance of LaTiO3/SrTiO3 interfaces on δ doping. Phys. Rev. B, 2016, 94(11): 115165
https://doi.org/10.1103/PhysRevB.94.115165
36 A. Costi T., C. Hewson A., Zlatic V.. Transport coefficients of the Anderson model via the numerical renormalization group. J. Phys.: Condens. Matter, 1994, 6(13): 2519
https://doi.org/10.1088/0953-8984/6/13/013
37 Goldhaber-Gordon D., Gores J., A. Kastner M., Shtrikman H., Mahalu D., Meirav U.. From the Kondo regime to the mixed-valence regime in a single-electron transistor. Phys. Rev. Lett., 1998, 81(23): 5225
https://doi.org/10.1103/PhysRevLett.81.5225
38 Lee M., R. Williams J., Zhang S., D. Frisbie C., Goldhaber-Gordon D.. Electrolyte gate-controlled Kondo effect in SrTiO3. Phys. Rev. Lett., 2011, 107(25): 256601
https://doi.org/10.1103/PhysRevLett.107.256601
39 Mozaffari S., Guchhait S., T. Markert J.. Spin‒orbit interaction and Kondo scattering at the PrAlO3/SrTiO3 interface: Effects of oxygen content. J. Phys.: Condens. Matter, 2017, 29(39): 395002
https://doi.org/10.1088/1361-648X/aa7f43
40 Shoenberg D., Magnetic Oscillations in Metals, Cambridge: Cambridge University Press, 2009
41 D. Caviglia A., Gariglio S., Cancellieri C., Sacépé B., Fête A., Reyren N., Gabay M., F. Morpurgo A., M. Triscone J.. Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett., 2010, 105(23): 236802
https://doi.org/10.1103/PhysRevLett.105.236802
42 Murakawa H., S. Bahramy M., Tokunaga M., Kohama Y., Bell C., Kaneko Y., Nagaosa N., Y. Hwang H., Tokura Y.. Detection of Berry’s phase in a bulk Rashba semiconductor. Science, 2013, 342(6165): 1490
https://doi.org/10.1126/science.1242247
43 J. Veit M., Arras R., J. Ramshaw B., Pentcheva R., Suzuki Y.. Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures. Nat. Commun., 2018, 9(1): 1458
https://doi.org/10.1038/s41467-018-04014-0
44 Ben Shalom M., W. Tai C., Lereah Y., Sachs M., Levy E., Rakhmilevitch D., Palevski A., Dagan Y.. Anisotropic magnetotransport at the SrTiO3/LaAlO3 interface. Phys. Rev. B, 2009, 80(14): 140403(R)
https://doi.org/10.1103/PhysRevB.80.140403
45 Basletic M., L. Maurice J., Carrétéro C., Herranz G., Copie O., Bibes M., Jacquet E., Bouzehouane K., Fusil S., Barthélémy A.. Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nat. Mater., 2008, 7(8): 621
https://doi.org/10.1038/nmat2223
46 Copie O., Garcia V., Bödefeld C., Carrétéro C., Bibes M., Herranz G., Jacquet E., L. Maurice J., Vinter B., Fusil S., Bouzehouane K., Jaffrés H., Barthélémy A.. Towards two-dimensional metallic behavior at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett., 2009, 102(21): 216804
https://doi.org/10.1103/PhysRevLett.102.216804
47 Q. Xiao J., S. Jiang J., L. Chien C.. Giant magnetoresistance in nonmultilayer magnetic systems. Phys. Rev. Lett., 1992, 68(25): 3749
https://doi.org/10.1103/PhysRevLett.68.3749
48 Shin H., Liu C., Godin S., Li F., Sutarto R., A. Davidson B., Zou K.. Highly tunable ferromagnetic 2D electron gases at oxide interfaces. Adv. Mater. Interfaces, 2022, 9(32): 2201475
https://doi.org/10.1002/admi.202201475
49 Ayino Y., Xu P., Tigre-Lazo J., Yue J., Jalan B., S. Pribiag V.. Ferromagnetism and spin-dependent transport at a complex oxide interface. Phys. Rev. Mater., 2018, 2(3): 231401(R)
https://doi.org/10.1103/PhysRevMaterials.2.031401
50 Schmehl A., Lichtenberg F., Bielefeldt H., Mannhart J., G. Schlom D.. Transport properties of LaTiO3+x films and heterostructures. Appl. Phys. Lett., 2003, 82(18): 3077
https://doi.org/10.1063/1.1572960
51 S. Popovic Z., Satpathy S.. Wedge-shaped potential and airy-function electron localization in oxide superlattices. Phys. Rev. Lett., 2005, 94(17): 176805
https://doi.org/10.1103/PhysRevLett.94.176805
[1] Siwei Li, Ke Wei, Qirui Liu, Yuxiang Tang, Tian Jiang. Twistronics and moiré excitonic physics in van der Waals heterostructures[J]. Front. Phys. , 2024, 19(4): 42501-.
[2] Xiangkun Zeng, Chenyu Wan, Zhichen Zhao, Di Huang, Zhanshan Wang, Xinbin Cheng, Tao Jiang. Nonlinear optics of two-dimensional heterostructures[J]. Front. Phys. , 2024, 19(3): 33301-.
[3] Fahhad Alsubaie, Munirah Muraykhan, Lei Zhang, Dongchen Qi, Ting Liao, Liangzhi Kou, Aijun Du, Cheng Tang. Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material[J]. Front. Phys. , 2024, 19(1): 13201-.
[4] Hui Zeng, Yao Wen, Lei Yin, Ruiqing Cheng, Hao Wang, Chuansheng Liu, Jun He. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides[J]. Front. Phys. , 2023, 18(5): 53603-.
[5] Wenhua Wang, Guangdong Zhou. Moisture influence in emerging neuromorphic device[J]. Front. Phys. , 2023, 18(5): 53601-.
[6] Junchao Hu, Xinglin Wen, Dehui Li. Optical properties of two-dimensional perovskites[J]. Front. Phys. , 2023, 18(3): 33602-.
[7] Tao Zhu, Yao Zhang, Xin Wei, Man Jiang, Hua Xu. The rise of two-dimensional tellurium for next-generation electronics and optoelectronics[J]. Front. Phys. , 2023, 18(3): 33601-.
[8] Yanyan Li, Mingjun Yang, Yanan Lu, Dan Cao, Xiaoshuang Chen, Haibo Shu. Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures[J]. Front. Phys. , 2023, 18(3): 33307-.
[9] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[10] Qingyun Zhou, Yusheng Hou, Tianshu Lai. Electronic properties and tunability in graphene/3D-InP mixed-dimensional van der Waals heterostructure[J]. Front. Phys. , 2023, 18(2): 23301-.
[11] Guangqiang Mei, Pengfei Suo, Li Mao, Min Feng, Limin Cao. Demonstration and operation of quantum harmonic oscillators in an AlGaAs−GaAs heterostructure[J]. Front. Phys. , 2023, 18(1): 13310-.
[12] Zhen Ma, Shuai Li, Meng-Meng Xiao, Ya-Wen Zheng, Ming Lu, Haiwen Liu, Jin-Hua Gao, X. C. Xie. Moiré flat bands of twisted few-layer graphite[J]. Front. Phys. , 2023, 18(1): 13307-.
[13] Xueping Li, Peize Yuan, Lin Li, Ting Liu, Chenhai Shen, Yurong Jiang, Xiaohui Song, Congxin Xia. Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment[J]. Front. Phys. , 2023, 18(1): 13305-.
[14] Hui Yang, Junjie Zeng, Sanyi You, Yulei Han, Zhenhua Qiao. Equipartition of current in metallic armchair nanoribbon of graphene-based device[J]. Front. Phys. , 2022, 17(6): 63508-.
[15] Rui Yang, Jianuo Fan, Mengtao Sun. Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties[J]. Front. Phys. , 2022, 17(4): 43202-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed