|
|
High-mobility spin-polarized two-dimensional electron gas at the interface of LaTiO3/SrTiO3 (110) heterostructures |
Zhao-Cai Wang1, Zheng-Nan Li1, Shuang-Shuang Li1, Weiyao Zhao2, Ren-Kui Zheng1,3( ) |
1. School of Physics and Materials Science, Nanchang University, Nanchang 330031, China 2. Department of Materials Science & Engineering, Monash University, Clayton VIC 3800, Australia 3. School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China |
|
|
Abstract High-quality antiferromagnetic Mott insulator thin films of LaTiO3 (LTO) were epitaxially grown onto SrTiO3 (STO) (110) substrates using the pulsed laser deposition. The LTO/STO heterostructures are not only highly conducting and ferromagnetic, but also show Kondo effect, Shubnikov‒de Haas (SdH) oscillations with a nonzero Berry phase of , and low-field hysteretic negative magnetoresistance (MR). Angle-dependent SdH oscillations and a calculation of the thickness of the interfacial conducting layer indicate the formation of a 4-nm high mobility two-dimensional electron gas (2DEG) layer at the interface. Moreover, an amazingly large low-field negative MR of ∼61.8% is observed at 1.8 K and 200 Oe, which is approximately one to two orders of magnitude larger than those observed in other spin-polarized 2DEG oxide systems. All these results demonstrate that the 2DEG is spin-polarized and the 4-nm interfacial layer is ferromagnetic, which are attributed to the presence of magnetic Ti3+ ions due to interfacial oxygen vacancies and the diffusion of La3+ ions into the STO substrate. The localized Ti3+ magnetic moments couple to high mobility itinerant electrons under magnetic fields, giving rise to the observed low-field MR. Our work demonstrates the great potential of antiferromagnetic titanate oxide interface for designing spin-polarized 2DEG and spintronic devices.
|
Keywords
two-dimensional electron gas
heterostructure
spin polarization
electronic transport
interface
|
Corresponding Author(s):
Ren-Kui Zheng
|
Issue Date: 09 April 2024
|
|
1 |
Ohtomo A.Y. Hwang H., A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004)
|
2 |
Reyren N., Thiel S., D. Caviglia A., F. Kourkoutis L., Hammerl G., Richter C., W. Schneider C., Kopp T., S. Ruetschi A., Jaccard D., Gabay M., A. Muller D., M. Triscone J., Mannhart J.. Superconducting interfaces between insulating oxides. Science, 2007, 317(5842): 1196
https://doi.org/10.1126/science.1146006
|
3 |
A. Bert J., Kalisky B., Bell C., Kim M., Hikita Y., Y. Hwang H., A. Moler K.. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat. Phys., 2011, 7(10): 767
https://doi.org/10.1038/nphys2079
|
4 |
Cao C., G Chen S., Deng J., Li G., H Zhang Q., Gu L., P. Ying T., J. Guo E., G. Guo J., L. Chen X.. Two-dimensional electron gas with high mobility forming at BaO/SrTiO3 interface. Chin. Phys. Lett., 2022, 39(4): 047301
https://doi.org/10.1088/0256-307X/39/4/047301
|
5 |
M. Jiang W., Zhao Q, Z. Ling J., N. Shao T., T. Zhang Z., R. Liu M., L. Yao C., J. Qiao Y., H. Chen M., Y. Chen X., F. Dou R., M. Xiong C., C. Nie J.. Gate tunable Rashba spin‒orbit coupling at CaZrO3/SrTiO3 heterointerface. Chin. Phys. B, 2022, 31(6): 066801
https://doi.org/10.1088/1674-1056/ac5396
|
6 |
Brinkman A., Huijben M., Van Zalk M., Huijben J., Zeitler U., C. Maan J., G. Van der Wiel W., Rijnders G., H. A. Blank D., Hilgenkamp H.. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater., 2007, 6(7): 493
https://doi.org/10.1038/nmat1931
|
7 |
R. Zhang H., Yun Y., J. Zhang X., Zhang H., Ma Y., Yan X., Wang F., Li G., Li R., Khan T., S. Chen Y., Liu W., X. Hu F., G. Liu B., G. Shen B., Han W., R. Sun J.. High-mobility spin-polarized two-dimensional electron gases at EuO/KTaO3 interfaces. Phys. Rev. Lett., 2018, 121(11): 116803
https://doi.org/10.1103/PhysRevLett.121.116803
|
8 |
Stornaiuolo D., Cantoni C., M. De Luca G., Di Capua R., Di. Gennaro E., Ghiringhelli G., Jouault B., Marrè D., Massarotti D., Miletto Granozio F., Pallecchi I., Piamonteze C., Rusponi S., Tafuri F., Salluzzo M.. Tunable spin polarization and superconductivity in engineered oxide interfaces. Nat. Mater., 2016, 15(3): 278
https://doi.org/10.1038/nmat4491
|
9 |
Stornaiuolo D., Jouault B., Di Gennaro E., Sambri A., D’Antuono M., Massarotti D., M. Granozio F., Di Capua R., M. De Luca G., P. Pepe G., Tafuri F., Salluzzo M.. Interplay between spin‒orbit coupling and ferromagnetism in magnetotransport properties of a spin-polarized oxide two-dimensional electron system. Phys. Rev. B, 2018, 98(7): 075409
https://doi.org/10.1103/PhysRevB.98.075409
|
10 |
Arima T., Tokura Y., B. Torrance J.. Variation of optical gaps in perovskite-type 3d transition-metal oxides. Phys. Rev. B, 1993, 48(23): 17006
https://doi.org/10.1103/PhysRevB.48.17006
|
11 |
Eylem C., C. Hung Y., L. Ju H., Y. Kim J., C. Green D., Vogt T., A. Hriljac J., W. Eichhorn B., L. Greene R., Salamanca-Riba L.. Unusual metal‒insulator transitions in the LaTi1−xVxO3 perovskite phases. Chem. Mater., 1996, 8(2): 418
https://doi.org/10.1021/cm950351q
|
12 |
Okada Y., Arima T., Tokura Y., Murayama C., Môri N.. Doping- and pressure-induced change of electrical and magnetic properties in the Mott‒Hubbard insulator LaTiO3. Phys. Rev. B, 1993, 48(13): 9677
https://doi.org/10.1103/PhysRevB.48.9677
|
13 |
C. Hays C., S. Zhou J., T. Markert J., B. Goodenough J.. Electronic transition in La1−xSrxTiO3. Phys. Rev. B, 1999, 60(14): 10367
https://doi.org/10.1103/PhysRevB.60.10367
|
14 |
Katsufuji T., Taguchi Y., Tokura Y.. Transport and magnetic properties of a Mott‒Hubbard system whose bandwidth and band filling are both controllable: R1−xCaxTiO3+y/2. Phys. Rev. B, 1997, 56(16): 10145
https://doi.org/10.1103/PhysRevB.56.10145
|
15 |
J. Wong F., H. Baek S., V. Chopdekar R., V. Mehta V., W. Jang H., B. Eom C., Suzuki Y.. Metallicity in LaTiO3 thin films induced by lattice deformation. Phys. Rev. B, 2010, 81(16): 161101(R)
https://doi.org/10.1103/PhysRevB.81.161101
|
16 |
He C., D. Sanders T., T. Gray M., J. Wong F., V. Mehta V., Suzuki Y.. Metal‒insulator transitions in epitaxial LaVO3 and LaTiO3 films. Phys. Rev. B, 2012, 86(8): 081401(R)
https://doi.org/10.1103/PhysRevB.86.081401
|
17 |
Biscaras J., Bergeal N., Kushwaha A., Wolf T., Rastogi A., C. Budhani R., Lesueur J.. Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3. Nat. Commun., 2010, 1(1): 89
https://doi.org/10.1038/ncomms1084
|
18 |
T. Zhang T., Y. Gu C., W. Mao Z., F. Chen X., B. Gu Z., Wang P., F. Nie Y., Q. Pan X.. Mott insulator to metal transition driven by oxygen incorporation in epitaxial LaTiO3 films. Appl. Phys. Lett., 2019, 115(26): 261604
https://doi.org/10.1063/1.5132568
|
19 |
J. Veit M., K. Chan M., J. Ramshaw B., Arras R., Pentcheva R., Suzuki Y.. Three-dimensional character of the Fermi surface in ultrathin LaTiO3/SrTiO3 heterostructures. Phys. Rev. B, 2019, 99(11): 115126
https://doi.org/10.1103/PhysRevB.99.115126
|
20 |
Biscaras J., Bergeal N., Hurand S., Grossetete C., Rastogi A., C. Budhani R., LeBoeuf D., Proust C., Lesueur J.. Two-dimensional superconducting phase in LaTiO3/SrTiO3 heterostructures induced by high-mobility carrier doping. Phys. Rev. Lett., 2012, 108(24): 247004
https://doi.org/10.1103/PhysRevLett.108.247004
|
21 |
D. Wen F., W. Cao Y., R. Liu X., Pal B., Middey S., Kareev M., Chakhalian J.. Evolution of ferromagnetism in two-dimensional electron gas of LaTiO3/SrTiO3. Appl. Phys. Lett., 2018, 112(12): 122405
https://doi.org/10.1063/1.5009768
|
22 |
Ohtomo A., A. Muller D., L. Grazul J., Y. Hwang H.. Artificial charge-modulationin atomic-scale perovskite titanate superlattices. Nature, 2002, 419(6905): 378
https://doi.org/10.1038/nature00977
|
23 |
Okamoto S., J. Millis A.. Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature, 2004, 428(6983): 630
https://doi.org/10.1038/nature02450
|
24 |
Okamoto S., J. Millis A., A. Spaldin N.. Lattice relaxation in oxide heterostructures: LaTiO3/SrTiO3 superlattices. Phys. Rev. Lett., 2006, 97(5): 056802
https://doi.org/10.1103/PhysRevLett.97.056802
|
25 |
Yang F., Z. Wang Z., H. Liu Y., Yang S., Yu Z., C. An Q., Q. Ding Z., Q. Meng F., W. Cao Y., H. Zhang Q., Gu L., Liu M., Q. Li Y., D. Guo J., R. Liu X.. Engineered Kondo screening and nonzero Berry phase in SrTiO3/LaTiO3/SrTiO3 heterostructures. Phys. Rev. B, 2022, 106(16): 165421
https://doi.org/10.1103/PhysRevB.106.165421
|
26 |
W. Cao Y., Z. Yang Z., Kareev M., R. Liu X., Meyers D., Middey S., Choudhury D., Shafer P., D. Guo J., W. Freeland J., Arenholz E., Gu L., Chakhalian J.. Magnetic interactions at the nanoscale in trilayer titanates. Phys. Rev. Lett., 2016, 116(7): 076802
https://doi.org/10.1103/PhysRevLett.116.076802
|
27 |
Y. Hwang H.. Atomic control of the electronic structure at complex oxide heterointerfaces. MRS Bull., 2006, 31(1): 28
https://doi.org/10.1557/mrs2006.3
|
28 |
Mukunoki Y., Nakagawa N., Susaki T., Y. Hwang H.. Atomically flat (110) SrTiO3 and heteroepitaxy. Appl. Phys. Lett., 2005, 86(17): 171908
https://doi.org/10.1063/1.1920415
|
29 |
Annadi A., Zhang Q., Renshaw Wang X., Tuzla N., Gopinadhan K., M. Lü W., Roy Barman A., Q. Liu Z., Srivastava A., Saha S., L. Zhao Y., W. Zeng S., Dhar S., Olsson E., Gu B., Yunoki S., Maekawa S., Hilgenkamp H., Venkatesan T.. Anisotropic two-dimensional electron gas at the LaAlO3/SrTiO3 (110) interface. Nat. Commun., 2013, 4(1): 1838
https://doi.org/10.1038/ncomms2804
|
30 |
L. Han Y., W. Fang Y., Z. Yang Z., J. Li C., He L., C. Shen S., Z. Luo Z., L. Qu G., M. Xiong C., F. Dou R., Wei X., Gu L., G. Duan C., C. Nie J.. Reconstruction of electrostatic field at the interface leads to formation of two-dimensional electron gas at multivalent (110) LaAlO3/SrTiO3 interfaces. Phys. Rev. B, 2015, 92(11): 115304
https://doi.org/10.1103/PhysRevB.92.115304
|
31 |
Z. Chen Y.Bovet N.Trier F.V. Christensen D.M. Qu F.H. Andersen N.Kasama T.Zhang W. Giraud R.Dufouleur J.S. Jespersen T.R. Sun J.Smith A. Nygard J.Lu L.Buchner B.G. Shen B.Linderoth S.Pryds N., A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3, Nat. Commun. 4(1), 1371 (2013)
|
32 |
F. Gantmakher V., Electrons and Disorder in Solids, New York: Oxford University Press, 2005
|
33 |
L. Altshuler B.G. Aronov A., Modern Problems in Condensed Matter Sciences, New York: Elsevier, 1985, Vol. 10, Ch. 1, pp 1–153
|
34 |
Das S., Rastogi A., J. Wu L., C. Zheng J., Hossain Z., M. Zhu Y., C. Budhani R.. Kondo scattering in δ-doped LaTiO3/SrTiO3 interfaces: Renormalization by spin‒orbit interactions. Phys. Rev. B, 2014, 90(8): 081107(R)
https://doi.org/10.1103/PhysRevB.90.081107
|
35 |
Das S., Hossain Z., C. Budhani R.. Signature of enhanced spin‒orbit interaction in the magnetoresistance of LaTiO3/SrTiO3 interfaces on δ doping. Phys. Rev. B, 2016, 94(11): 115165
https://doi.org/10.1103/PhysRevB.94.115165
|
36 |
A. Costi T., C. Hewson A., Zlatic V.. Transport coefficients of the Anderson model via the numerical renormalization group. J. Phys.: Condens. Matter, 1994, 6(13): 2519
https://doi.org/10.1088/0953-8984/6/13/013
|
37 |
Goldhaber-Gordon D., Gores J., A. Kastner M., Shtrikman H., Mahalu D., Meirav U.. From the Kondo regime to the mixed-valence regime in a single-electron transistor. Phys. Rev. Lett., 1998, 81(23): 5225
https://doi.org/10.1103/PhysRevLett.81.5225
|
38 |
Lee M., R. Williams J., Zhang S., D. Frisbie C., Goldhaber-Gordon D.. Electrolyte gate-controlled Kondo effect in SrTiO3. Phys. Rev. Lett., 2011, 107(25): 256601
https://doi.org/10.1103/PhysRevLett.107.256601
|
39 |
Mozaffari S., Guchhait S., T. Markert J.. Spin‒orbit interaction and Kondo scattering at the PrAlO3/SrTiO3 interface: Effects of oxygen content. J. Phys.: Condens. Matter, 2017, 29(39): 395002
https://doi.org/10.1088/1361-648X/aa7f43
|
40 |
Shoenberg D., Magnetic Oscillations in Metals, Cambridge: Cambridge University Press, 2009
|
41 |
D. Caviglia A., Gariglio S., Cancellieri C., Sacépé B., Fête A., Reyren N., Gabay M., F. Morpurgo A., M. Triscone J.. Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett., 2010, 105(23): 236802
https://doi.org/10.1103/PhysRevLett.105.236802
|
42 |
Murakawa H., S. Bahramy M., Tokunaga M., Kohama Y., Bell C., Kaneko Y., Nagaosa N., Y. Hwang H., Tokura Y.. Detection of Berry’s phase in a bulk Rashba semiconductor. Science, 2013, 342(6165): 1490
https://doi.org/10.1126/science.1242247
|
43 |
J. Veit M., Arras R., J. Ramshaw B., Pentcheva R., Suzuki Y.. Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures. Nat. Commun., 2018, 9(1): 1458
https://doi.org/10.1038/s41467-018-04014-0
|
44 |
Ben Shalom M., W. Tai C., Lereah Y., Sachs M., Levy E., Rakhmilevitch D., Palevski A., Dagan Y.. Anisotropic magnetotransport at the SrTiO3/LaAlO3 interface. Phys. Rev. B, 2009, 80(14): 140403(R)
https://doi.org/10.1103/PhysRevB.80.140403
|
45 |
Basletic M., L. Maurice J., Carrétéro C., Herranz G., Copie O., Bibes M., Jacquet E., Bouzehouane K., Fusil S., Barthélémy A.. Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nat. Mater., 2008, 7(8): 621
https://doi.org/10.1038/nmat2223
|
46 |
Copie O., Garcia V., Bödefeld C., Carrétéro C., Bibes M., Herranz G., Jacquet E., L. Maurice J., Vinter B., Fusil S., Bouzehouane K., Jaffrés H., Barthélémy A.. Towards two-dimensional metallic behavior at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett., 2009, 102(21): 216804
https://doi.org/10.1103/PhysRevLett.102.216804
|
47 |
Q. Xiao J., S. Jiang J., L. Chien C.. Giant magnetoresistance in nonmultilayer magnetic systems. Phys. Rev. Lett., 1992, 68(25): 3749
https://doi.org/10.1103/PhysRevLett.68.3749
|
48 |
Shin H., Liu C., Godin S., Li F., Sutarto R., A. Davidson B., Zou K.. Highly tunable ferromagnetic 2D electron gases at oxide interfaces. Adv. Mater. Interfaces, 2022, 9(32): 2201475
https://doi.org/10.1002/admi.202201475
|
49 |
Ayino Y., Xu P., Tigre-Lazo J., Yue J., Jalan B., S. Pribiag V.. Ferromagnetism and spin-dependent transport at a complex oxide interface. Phys. Rev. Mater., 2018, 2(3): 231401(R)
https://doi.org/10.1103/PhysRevMaterials.2.031401
|
50 |
Schmehl A., Lichtenberg F., Bielefeldt H., Mannhart J., G. Schlom D.. Transport properties of LaTiO3+x films and heterostructures. Appl. Phys. Lett., 2003, 82(18): 3077
https://doi.org/10.1063/1.1572960
|
51 |
S. Popovic Z., Satpathy S.. Wedge-shaped potential and airy-function electron localization in oxide superlattices. Phys. Rev. Lett., 2005, 94(17): 176805
https://doi.org/10.1103/PhysRevLett.94.176805
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|