|
|
First-principles investigation of two-dimensional iron molybdenum nitride: A double transition-metal cousin of MoSi2N4(MoN) monolayer with distinctive electronic and topological properties |
Yi Ding1( ), Yanli Wang2( ) |
1. School of Physics, Hangzhou Normal University, Hangzhou 311121, China 2. Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China |
|
|
Abstract As the homologous compounds of MoSi2N4, the MoSi2N4(MoN)n monolayers have been synthesized in a recent experiment. These systems consist of homogeneous metal nitride multilayers sandwiched between two SiN surfaces, which extends the septuple-atomic-layer MSi2N4 system to ultra-thick MSi2N4(MN)n forms. In this paper, we perform a first-principles study on the MoSi2N4(FeN) monolayer, which is constructed by iron molybdenum nitride intercalated into the SiN layers. As a cousin of MoSi2N4(MoN), this double transition-metal system exhibits robust structural stability from the energetic, mechanical, dynamical and thermal perspectives. Different from the MoSi2N4(MoN) one, the MoSi2N4(FeN) monolayer possesses intrinsic ferromagnetism and presents a bipolar magnetic semiconducting behaviour. The ferromagnetism can be further enhanced by the surface hydrogenation, which raises the Curie temperature to 310 K around room temperature. More interestingly, the hydrogenated MoSi2N4(FeN) monolayer exhibits a quantum anomalous Hall (QAH) insulating behaviour with a sizeable nontrivial band gap of 0.23 eV. The nontrivial topological character can be well described by a two-band model, confirming a non-zero Chern number of . Similar bipolar magnetic semiconducting feature and hydrogenation-induced QAH state are also present in the WSi2N4(FeN) monolayer. Our study demonstrates that the double transition-metal MSi2N4() system will be a fertile platform to achieve fascinating spintronic and topological properties.
|
Keywords
quantum anomalous Hall state
MA2Z4(M′Z) family
first-principles
double transition-metal nitride
|
Corresponding Author(s):
Yi Ding,Yanli Wang
|
Issue Date: 17 July 2024
|
|
1 |
L. Hong Y., Liu Z., Wang L., Zhou T., Ma W., Xu C., Feng S., Chen L., L. Chen M., M. Sun D., Q. Chen X., M. Cheng H., and Ren W., Chemical vapor deposition of layered two-dimensional MoSi2N4 materials, Science 369(6504), 670 (2020)
https://doi.org/10.1126/science.abb7023
|
2 |
Yin Y., Gong Q., Yi M., and Guo W., Emerging versatile two-dimensional MoSi2N4 family, Adv. Funct. Mater. 33(26), 2214050 (2023)
https://doi.org/10.1002/adfm.202214050
|
3 |
C. Tho C.D. Guo S.J. Liang S.L. Ong W.S. Lau C. Cao L.Wang G.S. Ang Y., MA2Z4 family heterostructures: Promises and prospects, Appl. Phys. Rev. 10(4), 041307 (2023)
|
4 |
Huang D., Liang F., Guo R., Lu D., Wang J., Yu H., and Zhang H., MoSi2N4: A 2D regime with strong exciton–phonon coupling, Adv. Opt. Mater. 10(9), 2102612 (2022)
https://doi.org/10.1002/adom.202102612
|
5 |
S. Novoselov K., Discovery of 2D van der Waals layered MoSi2N4 family, Natl. Sci. Rev. 7(12), 1842 (2020)
https://doi.org/10.1093/nsr/nwaa190
|
6 |
Mortazavi B., Javvaji B., Shojaei F., Rabczuk T., V. Shapeev A., and Zhuang X., Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles, Nano Energy 82, 105716 (2021)
https://doi.org/10.1016/j.nanoen.2020.105716
|
7 |
Li S., Wu W., Feng X., Guan S., Feng W., Yao Y., and A. Yang S., Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4, Phys. Rev. B 102(23), 235435 (2020)
https://doi.org/10.1103/PhysRevB.102.235435
|
8 |
Yang C., Song Z., Sun X., and Lu J., Valley pseudospin in monolayer MoSi2N4 and MoSi2As4, Phys. Rev. B 103(3), 035308 (2021)
https://doi.org/10.1103/PhysRevB.103.035308
|
9 |
Wu Y., Tang Z., Xia W., Gao W., Jia F., Zhang Y., Zhu W., Zhang W., and Zhang P., Prediction of protected band edge states and dielectric tunable quasiparticle and excitonic properties of monolayer MoSi2N4, npj Comput. Mater. 8(1), 129 (2022)
https://doi.org/10.1038/s41524-022-00815-6
|
10 |
Yu J., Zhou J., Wan X., and Li Q., High intrinsic lattice thermal conductivity in monolayer MoSi2N4, New J. Phys. 23(3), 033005 (2021)
https://doi.org/10.1088/1367-2630/abe8f7
|
11 |
Wang X., Ju W., Wang D., Li X., and Wan J., Flexible MA2Z4 (M = Mo, W; A = Si, Ge and Z = N, P, As) monolayers with outstanding mechanical, dynamical, electronic, and piezoelectric properties and anomalous dynamic polarization, Phys. Chem. Chem. Phys. 25(27), 18247 (2023)
https://doi.org/10.1039/D3CP01452E
|
12 |
Priydarshi A., S. Chauhan Y., Bhowmick S., and Agarwal A., Large and anisotropic carrier mobility in monolayers of the MA2Z4 series (M = Cr, Mo, W; A = Si, Ge; and Z = N, P), Nanoscale 14(33), 11988 (2022)
https://doi.org/10.1039/D2NR02382B
|
13 |
Wang L., Shi Y., Liu M., Zhang A., L. Hong Y., Li R., Gao Q., Chen M., Ren W., M. Cheng H., Li Y., and Q. Chen X., Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties, Nat. Commun. 12(1), 2361 (2021)
https://doi.org/10.1038/s41467-021-22324-8
|
14 |
Ding Y. and Wang Y., Computational exploration of stable 4d/5d transition-metal MSi2N4 (M = Y−Cd and Hf−Hg) nanosheets and their versatile electronic and magnetic properties, J. Phys. Chem. C 125(35), 19580 (2021)
https://doi.org/10.1021/acs.jpcc.1c06734
|
15 |
T. Ren Y., Hu L., T. Chen Y., J. Hu Y., L. Wang J., L. Gong P., Zhang H., Huang L., and Q. Shi X., Two-dimensional MSi2N4 monolayers and van der Waals heterostructures: Promising spintronic properties and band alignments, Phys. Rev. Mater. 6(6), 064006 (2022)
https://doi.org/10.1103/PhysRevMaterials.6.064006
|
16 |
Wang Y., Legut D., Liu X., Li Y., Li C., Sun Y., Zhang R., and Zhang Q., Mott transition and superexchange mechanism in magnetically doped XSi2N4 caused by large 3d orbital onsite coulomb interaction, Phys. Rev. B 106(10), 104421 (2022)
https://doi.org/10.1103/PhysRevB.106.104421
|
17 |
An Z., Lv L., Su Y., Jiang Y., and Guan Z., Carrier doping modulates the magnetoelectronic and magnetic anisotropic properties of two-dimensional MSi2N4 (M = Cr, Mn, Fe, and Co) monolayers, Phys. Chem. Chem. Phys. 26(5), 4208 (2024)
https://doi.org/10.1039/D3CP05032G
|
18 |
Cui Q., Zhu Y., Liang J., Cui P., and Yang H., Spin-valley coupling in a two-dimensional VSi2N4 monolayer, Phys. Rev. B 103(8), 085421 (2021)
https://doi.org/10.1103/PhysRevB.103.085421
|
19 |
Li S., Wang Q., Zhang C., Guo P., and A. Yang S., Correlation-driven topological and valley states in monolayer VSi2P4, Phys. Rev. B 104(8), 085149 (2021)
https://doi.org/10.1103/PhysRevB.104.085149
|
20 |
Wang Y. and Ding Y., Switchable valley polarization and quantum anomalous Hall state in the VN2X2Y2 nanosheets (X = group-III and Y = group-VI elements), Appl. Phys. Lett. 119(19), 193101 (2021)
https://doi.org/10.1063/5.0072220
|
21 |
Liu P., Liu S., Jia M., Yin H., Zhang G., Ren F., Wang B., and Liu C., Strain-driven valley states and phase transitions in Janus VSiGeN4 monolayer, Appl. Phys. Lett. 121(6), 063103 (2022)
https://doi.org/10.1063/5.0104477
|
22 |
Li P., Yang X., S. Jiang Q., Z. Wu Y., and Xun W., Built-in electric field and strain tunable valley-related multiple topological phase transitions in VSiXN4 (X = C, Si, Ge, Sn, Pb) monolayers, Phys. Rev. Mater. 7(6), 064002 (2023)
https://doi.org/10.1103/PhysRevMaterials.7.064002
|
23 |
Jia K., J. Dong X., S. Li S., X. Ji W., and W. Zhang C., Strain-engineering induced topological phase transitions and multiple valley states in Janus monolayer VCSiN4, J. Mater. Chem. C 11(30), 10359 (2023)
https://doi.org/10.1039/D3TC01369C
|
24 |
Gao Z., He Y., and Xiong K., Two-dimensional Janus SVAN2 (A = Si, Ge) monolayers with intrinsic semiconductor character and room temperature ferromagnetism: Tunable electronic properties via strain and an electric field, Dalton Trans. 52(46), 17416 (2023)
https://doi.org/10.1039/D3DT03031H
|
25 |
Zhou X., W. Zhang R., Zhang Z., Feng W., Mokrousov Y., and Yao Y., Sign-reversible valley-dependent berry phase effects in 2D valley-half-semiconductors, npj Comput. Mater. 7(1), 160 (2021)
https://doi.org/10.1038/s41524-021-00632-3
|
26 |
Z. Chang C., X. Liu C., and H. MacDonald A., Colloquium: Quantum anomalous Hall effect, Rev. Mod. Phys. 95(1), 011002 (2023)
https://doi.org/10.1103/RevModPhys.95.011002
|
27 |
Wang K., Li Y., Mei H., Li P., and X. Guo Z., Quantum anomalous Hall and valley quantum anomalous Hall effects in two-dimensional d0 orbital XY monolayers, Phys. Rev. Mater. 6(4), 044202 (2022)
https://doi.org/10.1103/PhysRevMaterials.6.044202
|
28 |
Li P., Prediction of intrinsic two dimensional ferromagnetism realized quantum anomalous Hall effect, Phys. Chem. Chem. Phys. 21(12), 6712 (2019)
https://doi.org/10.1039/C8CP07781A
|
29 |
P. Wang H., Luo W., and J. Xiang H., Prediction of high-temperature quantum anomalous Hall effect in two-dimensional transition-metal oxides, Phys. Rev. B 95(12), 125430 (2017)
https://doi.org/10.1103/PhysRevB.95.125430
|
30 |
Li P., Li X., Zhao W., Chen H., X. Chen M., X. Guo Z., Feng J., G. Gong X., and H. MacDonald A., Topological Dirac states beyond π-orbitals for silicene on SiC(0001) surface, Nano Lett. 17(10), 6195 (2017)
https://doi.org/10.1021/acs.nanolett.7b02855
|
31 |
Ding Y. and Wang Y., Two-dimensional T′ MA 2N4 (M = Mo/W, A = Si/Ge) nanosheets: First-principles insights into the structural stability, electronic property and catalytic performance for hydrogen evolution reaction, Appl. Surf. Sci. 627, 157256 (2023)
https://doi.org/10.1016/j.apsusc.2023.157256
|
32 |
Islam R., Verma R., Ghosh B., Muhammad Z., Bansil A., Autieri C., and Singh B., Switchable large-gap quantum spin Hall state in the two-dimensional MSi2Z4 class of materials, Phys. Rev. B 106(24), 245149 (2022)
https://doi.org/10.1103/PhysRevB.106.245149
|
33 |
Islam R., Hussain G., Verma R., S. Talezadehlari M., Muhammad Z., Singh B., and Autieri C., Fast electrically switchable large gap quantum spin Hall states in MGe2Z4, Adv. Electron. Mater. 9(8), 2300156 (2023)
https://doi.org/10.1002/aelm.202300156
|
34 |
Wei X., Zhao B., Zhang J., Xue Y., Li Y., and Yang Z., Chern insulators without band inversion in MoS2 monolayers with 3d adatoms, Phys. Rev. B 95(7), 075419 (2017)
https://doi.org/10.1103/PhysRevB.95.075419
|
35 |
Deng X., Yang H., Qi S., Xu X., and Qiao Z., Quantum anomalous Hall effect and giant Rashba spin‒orbit splitting in graphene system Co-doped with boron and 5d transition-metal atoms, Front. Phys. 13(5), 137308 (2018)
https://doi.org/10.1007/s11467-018-0806-y
|
36 |
A. Abdelati M., A. Maarouf A., and M. Fadlallah M., Substitutional transition metal doping in MoSi2N4 monolayer: Structural, electronic and magnetic properties, Phys. Chem. Chem. Phys. 24(5), 3035 (2022)
https://doi.org/10.1039/D1CP04191F
|
37 |
Wang Y., Wang G., Huang M., Luo Z., Wang J., Ding Z., Guo X., and Liu X., Electrocatalytic activity of MoSi2N4 monolayers decorated with single transition metal atoms: A computational study, Nanotechnology 34(24), 245705 (2023)
https://doi.org/10.1088/1361-6528/acc409
|
38 |
Liu Z., Wang L., L. Hong Y., Q. Chen X., M. Cheng H., and Ren W., Two-dimensional superconducting MoSi2N4(MoN)4n homologous compounds, Natl. Sci. Rev. 10(4), nwac273 (2023)
https://doi.org/10.1093/nsr/nwac273
|
39 |
Wang Y. and Ding Y., Large-gap quantum spin hall state in double-transition-metal homologous compounds of WSi2N4: A first-principles study, Phys. Status Solidi Rapid Res. Lett. 18(3), 2300376 (2024)
https://doi.org/10.1002/pssr.202300376
|
40 |
Miura A., Tadanaga K., Magome E., Moriyoshi C., Kuroiwa Y., Takahiro T., Kumada N., and coordination preferences in Nb- Octahedral, Ta-, and W-based ABX2 layered oxides, oxynitrides, and nitrides, J. Solid State Chem. 229, 272 (2015)
https://doi.org/10.1016/j.jssc.2015.06.028
|
41 |
Enriquez E., Zhang Y., Chen A., Bi Z., Wang Y., Fu E., Harrell Z., Lu X., Dowden P., Wang H., Chen C., and Jia Q., Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition, Appl. Phys. Lett. 109(8), 081907 (2016)
https://doi.org/10.1063/1.4961880
|
42 |
Kresse G. and Furthmuller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
|
43 |
C. Moore G., K. Horton M., Linscott E., M. Ganose A., Siron M., D. O’Regan D., and A. Persson K., High-throughput determination of Hubbard U and Hund J values for transition metal oxides via the linear response formalism, Phys. Rev. Mater. 8(1), 014409 (2024)
https://doi.org/10.1103/PhysRevMaterials.8.014409
|
44 |
Panda R. and Gajbhiye N., Chemical synthesis and magnetic properties of nanocrystalline FeMoN2, J. Cryst. Growth 191(1−2), 92 (1998)
https://doi.org/10.1016/S0022-0248(98)00011-6
|
45 |
Togo A. and Tanaka I., First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)
https://doi.org/10.1016/j.scriptamat.2015.07.021
|
46 |
Mouhat F. and M. C. X. Coudert F., Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90(22), 224104 (2014)
https://doi.org/10.1103/PhysRevB.90.224104
|
47 |
Li X., Wu X., and Yang J., Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping, J. Am. Chem. Soc. 136(31), 11065 (2014)
https://doi.org/10.1021/ja505097m
|
48 |
C. Tho C., Feng X., Cao L., Wang G., J. Liang S., S. Lau C., D. Guo S., and S. Ang Y., Ultrathick MA2N4(M′ N) intercalated monolayers with sublayer-protected Fermi surface conduction states: Interconnect and metal contact applications, Adv. Phys. Res. 2300156, 2300156 (2024)
https://doi.org/10.1002/apxr.202300156
|
49 |
B. Goodenough J., Theory of the role of covalence in the perovskite-type manganites [La,m(II)]MnO3, Phys. Rev. 100(2), 564 (1955)
https://doi.org/10.1103/PhysRev.100.564
|
50 |
Wang Y., Xu X., Ji W., Li S., Li Y., and Zhao X., Exploitable magnetic anisotropy and half-metallicity controls in multiferroic van der Waals heterostructure, npj Comput. Mater. 9(1), 223 (2023)
https://doi.org/10.1038/s41524-023-01178-2
|
51 |
Liu C., Zhao G., Hu T., Chen Y., Cao S., Bellaiche L., and Ren W., Jahn‒Teller effect, and orbital order in the two-dimensional monolayer perovskite Rb2CuCl4, Phys. Rev. B 104, L241105 (2021)
https://doi.org/10.1103/PhysRevB.104.L241105
|
52 |
R. K. Akanda M. and K. Lake R., Magnetic properties of NbSi2N4, VSi2N4, and VSi2P4 monolayers, Appl. Phys. Lett. 119(5), 052402 (2021)
https://doi.org/10.1063/5.0055878
|
53 |
M. Henderson T., Paier J., and E. Scuseria G., Accurate treatment of solids with the HSE screened hybrid, Phys. Status Solidi B 248(4), 767 (2011)
https://doi.org/10.1002/pssb.201046303
|
54 |
Li J.Li X. Yang J., A review of bipolar magnetic semiconductors from theoretical aspects, Fund. Res. 2(4), 511 (2022)
|
55 |
A. Manz T. and G. Limas N., Introducing ddec6 atomic population analysis. Part 1. Charge partitioning theory and methodology, RSC Adv. 6(53), 47771 (2016)
https://doi.org/10.1039/C6RA04656H
|
56 |
S. Botana A. and R. Norman M., Electronic structure and magnetism of transition metal dihalides: Bulk to monolayer, Phys. Rev. Mater. 3(4), 044001 (2019)
https://doi.org/10.1103/PhysRevMaterials.3.044001
|
57 |
Barnowsky T., Curtarolo S., V. Krasheninnikov A., Heine T., and Friedrich R., Magnetic state control of non-van der Waals 2D materials by hydrogenation, Nano Lett. 24(13), 3874 (2024)
https://doi.org/10.1021/acs.nanolett.3c04777
|
58 |
Wang K., Ren K., Hou Y., Cheng Y., and Zhang G., Physical insights into enhancing magnetic stability of 2D magnets, J. Appl. Phys. 133(11), 110902 (2023)
https://doi.org/10.1063/5.0135908
|
59 |
Wang Y. and Ding Y., Tunable structural phases and electronic properties of group V MSi2N4 (M = V, Nb, Ta) nanosheets via surface hydrogenation: A first-principles study, J. Mater. Chem. C 11(48), 17034 (2023)
https://doi.org/10.1039/D3TC02881J
|
60 |
Wu Y., Deng L., Tong J., Yin X., Tian F., Qin G., and Zhang X., Ferrovalley and topological phase transition behavior in monolayer Ru(OH)2, J. Mater. Chem. C 11(40), 13714 (2023)
https://doi.org/10.1039/D3TC02877A
|
61 |
Zhang X., Lu Q., Liu W., Niu W., Sun J., Cook J., Vaninger M., F. Miceli P., J. Singh D., W. Lian S., R. Chang T., He X., Du J., He L., Zhang R., Bian G., and Xu Y., Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films, Nat. Commun. 12(1), 2492 (2021)
https://doi.org/10.1038/s41467-021-22777-x
|
62 |
R. Fuh H., R. Chang C., K. Wang Y., F. L. Evans R., W. Chantrell R., and T. Jeng H., New type single-layer magnetic semiconductor in transition-metal dichalcogenides VX2 (X = S, Se and Te), Sci. Rep. 6(1), 32625 (2016)
https://doi.org/10.1038/srep32625
|
63 |
Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., and Xu X., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
https://doi.org/10.1038/nature22391
|
64 |
Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Q. Qiu Z., J. Cava R., G. Louie S., Xia J., and Zhang X., Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
https://doi.org/10.1038/nature22060
|
65 |
Deng Y., Yu Y., Song Y., Zhang J., Z. Wang N., Sun Z., Yi Y., Z. Wu Y., Wu S., Zhu J., Wang J., H. Chen X., and Zhang Y., Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
https://doi.org/10.1038/s41586-018-0626-9
|
66 |
Gong J., Ding G., Xie C., Wang W., Liu Y., Zhang G., and Wang X., Genuine Dirac half-metals in two-dimensions, Adv. Sci. 11, 2307297 (2024)
https://doi.org/10.1002/advs.202307297
|
67 |
Wang X., P. Li X., Li J., Xie C., Wang J., Yuan H., Wang W., Cheng Z., M. Yu Z., and Zhang G., Magnetic second-order topological insulator: An experimentally feasible 2D CrSiTe3, Adv. Funct. Mater. 33(49), 2304499 (2023)
https://doi.org/10.1002/adfm.202304499
|
68 |
Yao Y., Kleinman L., H. MacDonald A., Sinova J., Jungwirth T., S. Wang D., Wang E., and Niu Q., First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe, Phys. Rev. Lett. 92(3), 037204 (2004)
https://doi.org/10.1103/PhysRevLett.92.037204
|
69 |
Yao Y. and Fang Z., Sign changes of intrinsic spin Hall effect in semiconductors and simple metals: First-principles calculations, Phys. Rev. Lett. 95(15), 156601 (2005)
https://doi.org/10.1103/PhysRevLett.95.156601
|
70 |
J. Zhang S., W. Zhang C., F. Zhang S., X. Ji W., Li P., J. Wang P., S. Li S., and S. Yan S., Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice, Phys. Rev. B 96(20), 205433 (2017)
https://doi.org/10.1103/PhysRevB.96.205433
|
71 |
Zhu X., Chen Y., Liu Z., Han Y., and Qiao Z., Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials, Front. Phys. 18(2), 23302 (2023)
https://doi.org/10.1007/s11467-022-1228-4
|
72 |
Kong X., Li L., Liang L., M. Peeters F., and J. Liu X., The magnetic, electronic, and light-induced topological properties in two-dimensional hexagonal FeX2 (X = Cl, Br, I) monolayers, Appl. Phys. Lett. 116(19), 192404 (2020)
https://doi.org/10.1063/5.0006446
|
73 |
Sun H., S. Li S., X. Ji W., and W. Zhang C., Valley-dependent topological phase transition and quantum anomalous valley Hall effect in single-layer RuClBr, Phys. Rev. B 105(19), 195112 (2022)
https://doi.org/10.1103/PhysRevB.105.195112
|
74 |
F. Liang Q., Yu R., Zhou J., and Hu X., Topological states of non-Dirac electrons on a triangular lattice, Phys. Rev. B 93(3), 035135 (2016)
https://doi.org/10.1103/PhysRevB.93.035135
|
75 |
Si C., H. Jin K., Zhou J., Sun Z., and Liu F., Large-gap quantum spin Hall state in MXenes: d-band topological order in a triangular lattice, Nano Lett. 16(10), 6584 (2016)
https://doi.org/10.1021/acs.nanolett.6b03118
|
76 |
Zhang Z., Zhao L., and Shi J., Mechanics and strategies for wrinkling suppression: A review, Front. Mech. Eng. 8, 910415 (2022)
https://doi.org/10.3389/fmech.2022.910415
|
77 |
Yang S., Chen Y., and Jiang C., Strain engineering of two-dimensional materials: Methods, properties, and applications, InfoMat 3(4), 397 (2021)
https://doi.org/10.1002/inf2.12177
|
78 |
Wang J., He L., Zhang Y., Nong H., Li S., Wu Q., Tan J., and Liu B., Locally strained 2D materials: Preparation, properties, and applications, Adv. Mater. 36(23), 2314145 (2024)
https://doi.org/10.1002/adma.202314145
|
[1] |
FOP-24431-of-dingyi_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|