Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (6) : 63207    https://doi.org/10.1007/s11467-024-1431-6
First-principles investigation of two-dimensional iron molybdenum nitride: A double transition-metal cousin of MoSi2N4(MoN) monolayer with distinctive electronic and topological properties
Yi Ding1(), Yanli Wang2()
1. School of Physics, Hangzhou Normal University, Hangzhou 311121, China
2. Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
 Download: PDF(8271 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As the homologous compounds of MoSi2N4, the MoSi2N4(MoN)n monolayers have been synthesized in a recent experiment. These systems consist of homogeneous metal nitride multilayers sandwiched between two SiN surfaces, which extends the septuple-atomic-layer MSi2N4 system to ultra-thick MSi2N4(MN)n forms. In this paper, we perform a first-principles study on the MoSi2N4(FeN) monolayer, which is constructed by iron molybdenum nitride intercalated into the SiN layers. As a cousin of MoSi2N4(MoN), this double transition-metal system exhibits robust structural stability from the energetic, mechanical, dynamical and thermal perspectives. Different from the MoSi2N4(MoN) one, the MoSi2N4(FeN) monolayer possesses intrinsic ferromagnetism and presents a bipolar magnetic semiconducting behaviour. The ferromagnetism can be further enhanced by the surface hydrogenation, which raises the Curie temperature to 310 K around room temperature. More interestingly, the hydrogenated MoSi2N4(FeN) monolayer exhibits a quantum anomalous Hall (QAH) insulating behaviour with a sizeable nontrivial band gap of 0.23 eV. The nontrivial topological character can be well described by a two-band kp model, confirming a non-zero Chern number of C=1. Similar bipolar magnetic semiconducting feature and hydrogenation-induced QAH state are also present in the WSi2N4(FeN) monolayer. Our study demonstrates that the double transition-metal MSi2N4(M N) system will be a fertile platform to achieve fascinating spintronic and topological properties.

Keywords quantum anomalous Hall state      MA2Z4(M′Z) family      first-principles      double transition-metal nitride     
Corresponding Author(s): Yi Ding,Yanli Wang   
Issue Date: 17 July 2024
 Cite this article:   
Yi Ding,Yanli Wang. First-principles investigation of two-dimensional iron molybdenum nitride: A double transition-metal cousin of MoSi2N4(MoN) monolayer with distinctive electronic and topological properties[J]. Front. Phys. , 2024, 19(6): 63207.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1431-6
https://academic.hep.com.cn/fop/EN/Y2024/V19/I6/63207
Fig.1  (a) The top and lateral view of the geometrical structure of MoSi 2N4(FeN) monolayer. The in-plane lattice constant (a) and thickness (d) of system are marked. The dashed rectangles denote the overlapping FeN 2 and MoN2 layers, where the letters T and H represent the octahedral and trigonal prismatic coordinations of metal atoms, respectively. (b) A comparison of cohesive energies of the MoSi 2N4(FeN) monolayer and experimentally synthesized Mo-based 2D materials. (c) The phonon dispersions and (d) AIMD simulation results of MoSi 2N4(FeN) monolayer. For clarity, the average values of adjacent data in 1 ps are depicted as dotted lines in (d). The final configuration after the AIMD simulation is also displayed.
Fig.2  (a) The spin charge density and MC simulation result of the MoSi 2N4(FeN) system, and (b) the atomic contributions of its MAE data. The spin-polarized band structures of MoSi 2N4(FeN) monolayer by the (c) PBE and (d) HSE calculations. (e) The total and partial DOSs of MoSi2N4(FeN) monolayer, and (f) the orbital-resolved DOSs for the Fe d orbitals.
Fig.3  Model structures of the hydrogenated MoSi2N 4(FeN)H monolayer with the H atoms on the Fe-side (a−e) and Mo-side (f−j) SiN surface. The octahedral (T) or trigonal-prismatic (H) coordinations for the metal atoms are marked for clarity. (k) The Eb of different model structures. (l) The phonon dispersions and (m) AIMD results of the MoSi2N 4(FeN)H monolayer with the most stable model 3 structure.
Fig.4  (a) The variations of magnetization and specific heat versus the temperature from the MC simulation on the MoSi2N4(FeN)H monolayer, and (b) the atomic contributions of MAE data in it. The spin charge density of MoSi 2N4(FeN)H monolayer is also displayed in the inset with an isosurface of 0.05 e3. (c) PBE and (d) HSE band structures of MoSi2N 4(FeN)H monolayer. (e, f) The orbital-resolved spin down band structures for Fe and Mo atoms, respectively. Here, the blue, green, and purple dots represent the dz2, dx2 y2, and dx y orbitals.
Fig.5  (a) PBE+SOC and (b) HSE+SOC band structures of MoSi2N 4(FeN)H monolayer. (c) The anomalous Hall conductance and (d) edge state of MoSi2N 4(FeN)H monolayer. (e) The low-energy band structures without and with the SOC effect. The dots represent the data from the first-principles calculation and the lines stand for the result from the model Hamiltonian. (f) The berry curvature of MoSi 2N4(FeN)H monolayer around the Γ point from the model Hamiltonian.
Fig.6  (a, b) The band structures of MoSi 2N4(FeN)H monolayer under strains of ? = −6%, −3%, 0%, 3% and 6% without and with SOC effect. (c) The corresponding anomalous Hall conductance of MoSi2N4(FeN)H monolayer under different strains. (d) The global band gap of system as a function of strain from the PBE+SOC calculations. (e, f) A comparison of orbital-resolved spin down band structures at the compressive strains of ? = −4% and −6%, respectively. For clarity, only the orbitals related to the band inversion are displayed.
Fig.7  (a) The HSE band structure of WSi2N 4(FeN) monolayer. (b) The HSE and (c) HSE+SOC band structures of WSi2N 4(FeN)H system. (d) The corresponding edge state calculation on the WSi 2N4(FeN)H monolayer.
1 L. Hong Y., Liu Z., Wang L., Zhou T., Ma W., Xu C., Feng S., Chen L., L. Chen M., M. Sun D., Q. Chen X., M. Cheng H., and Ren W., Chemical vapor deposition of layered two-dimensional MoSi2N4 materials, Science 369(6504), 670 (2020)
https://doi.org/10.1126/science.abb7023
2 Yin Y., Gong Q., Yi M., and Guo W., Emerging versatile two-dimensional MoSi2N4 family, Adv. Funct. Mater. 33(26), 2214050 (2023)
https://doi.org/10.1002/adfm.202214050
3 C. Tho C.D. Guo S.J. Liang S.L. Ong W.S. Lau C. Cao L.Wang G.S. Ang Y., MA2Z4 family heterostructures: Promises and prospects, Appl. Phys. Rev. 10(4), 041307 (2023)
4 Huang D., Liang F., Guo R., Lu D., Wang J., Yu H., and Zhang H., MoSi2N4: A 2D regime with strong exciton–phonon coupling, Adv. Opt. Mater. 10(9), 2102612 (2022)
https://doi.org/10.1002/adom.202102612
5 S. Novoselov K., Discovery of 2D van der Waals layered MoSi2N4 family, Natl. Sci. Rev. 7(12), 1842 (2020)
https://doi.org/10.1093/nsr/nwaa190
6 Mortazavi B., Javvaji B., Shojaei F., Rabczuk T., V. Shapeev A., and Zhuang X., Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles, Nano Energy 82, 105716 (2021)
https://doi.org/10.1016/j.nanoen.2020.105716
7 Li S., Wu W., Feng X., Guan S., Feng W., Yao Y., and A. Yang S., Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4, Phys. Rev. B 102(23), 235435 (2020)
https://doi.org/10.1103/PhysRevB.102.235435
8 Yang C., Song Z., Sun X., and Lu J., Valley pseudospin in monolayer MoSi2N4 and MoSi2As4, Phys. Rev. B 103(3), 035308 (2021)
https://doi.org/10.1103/PhysRevB.103.035308
9 Wu Y., Tang Z., Xia W., Gao W., Jia F., Zhang Y., Zhu W., Zhang W., and Zhang P., Prediction of protected band edge states and dielectric tunable quasiparticle and excitonic properties of monolayer MoSi2N4, npj Comput. Mater. 8(1), 129 (2022)
https://doi.org/10.1038/s41524-022-00815-6
10 Yu J., Zhou J., Wan X., and Li Q., High intrinsic lattice thermal conductivity in monolayer MoSi2N4, New J. Phys. 23(3), 033005 (2021)
https://doi.org/10.1088/1367-2630/abe8f7
11 Wang X., Ju W., Wang D., Li X., and Wan J., Flexible MA2Z4 (M = Mo, W; A = Si, Ge and Z = N, P, As) monolayers with outstanding mechanical, dynamical, electronic, and piezoelectric properties and anomalous dynamic polarization, Phys. Chem. Chem. Phys. 25(27), 18247 (2023)
https://doi.org/10.1039/D3CP01452E
12 Priydarshi A., S. Chauhan Y., Bhowmick S., and Agarwal A., Large and anisotropic carrier mobility in monolayers of the MA2Z4 series (M = Cr, Mo, W; A = Si, Ge; and Z = N, P), Nanoscale 14(33), 11988 (2022)
https://doi.org/10.1039/D2NR02382B
13 Wang L., Shi Y., Liu M., Zhang A., L. Hong Y., Li R., Gao Q., Chen M., Ren W., M. Cheng H., Li Y., and Q. Chen X., Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties, Nat. Commun. 12(1), 2361 (2021)
https://doi.org/10.1038/s41467-021-22324-8
14 Ding Y. and Wang Y., Computational exploration of stable 4d/5d transition-metal MSi2N4 (M = Y−Cd and Hf−Hg) nanosheets and their versatile electronic and magnetic properties, J. Phys. Chem. C 125(35), 19580 (2021)
https://doi.org/10.1021/acs.jpcc.1c06734
15 T. Ren Y., Hu L., T. Chen Y., J. Hu Y., L. Wang J., L. Gong P., Zhang H., Huang L., and Q. Shi X., Two-dimensional MSi2N4 monolayers and van der Waals heterostructures: Promising spintronic properties and band alignments, Phys. Rev. Mater. 6(6), 064006 (2022)
https://doi.org/10.1103/PhysRevMaterials.6.064006
16 Wang Y., Legut D., Liu X., Li Y., Li C., Sun Y., Zhang R., and Zhang Q., Mott transition and superexchange mechanism in magnetically doped XSi2N4 caused by large 3d orbital onsite coulomb interaction, Phys. Rev. B 106(10), 104421 (2022)
https://doi.org/10.1103/PhysRevB.106.104421
17 An Z., Lv L., Su Y., Jiang Y., and Guan Z., Carrier doping modulates the magnetoelectronic and magnetic anisotropic properties of two-dimensional MSi2N4 (M = Cr, Mn, Fe, and Co) monolayers, Phys. Chem. Chem. Phys. 26(5), 4208 (2024)
https://doi.org/10.1039/D3CP05032G
18 Cui Q., Zhu Y., Liang J., Cui P., and Yang H., Spin-valley coupling in a two-dimensional VSi2N4 monolayer, Phys. Rev. B 103(8), 085421 (2021)
https://doi.org/10.1103/PhysRevB.103.085421
19 Li S., Wang Q., Zhang C., Guo P., and A. Yang S., Correlation-driven topological and valley states in monolayer VSi2P4, Phys. Rev. B 104(8), 085149 (2021)
https://doi.org/10.1103/PhysRevB.104.085149
20 Wang Y. and Ding Y., Switchable valley polarization and quantum anomalous Hall state in the VN2X2Y2 nanosheets (X = group-III and Y = group-VI elements), Appl. Phys. Lett. 119(19), 193101 (2021)
https://doi.org/10.1063/5.0072220
21 Liu P., Liu S., Jia M., Yin H., Zhang G., Ren F., Wang B., and Liu C., Strain-driven valley states and phase transitions in Janus VSiGeN4 monolayer, Appl. Phys. Lett. 121(6), 063103 (2022)
https://doi.org/10.1063/5.0104477
22 Li P., Yang X., S. Jiang Q., Z. Wu Y., and Xun W., Built-in electric field and strain tunable valley-related multiple topological phase transitions in VSiXN4 (X = C, Si, Ge, Sn, Pb) monolayers, Phys. Rev. Mater. 7(6), 064002 (2023)
https://doi.org/10.1103/PhysRevMaterials.7.064002
23 Jia K., J. Dong X., S. Li S., X. Ji W., and W. Zhang C., Strain-engineering induced topological phase transitions and multiple valley states in Janus monolayer VCSiN4, J. Mater. Chem. C 11(30), 10359 (2023)
https://doi.org/10.1039/D3TC01369C
24 Gao Z., He Y., and Xiong K., Two-dimensional Janus SVAN2 (A = Si, Ge) monolayers with intrinsic semiconductor character and room temperature ferromagnetism: Tunable electronic properties via strain and an electric field, Dalton Trans. 52(46), 17416 (2023)
https://doi.org/10.1039/D3DT03031H
25 Zhou X., W. Zhang R., Zhang Z., Feng W., Mokrousov Y., and Yao Y., Sign-reversible valley-dependent berry phase effects in 2D valley-half-semiconductors, npj Comput. Mater. 7(1), 160 (2021)
https://doi.org/10.1038/s41524-021-00632-3
26 Z. Chang C., X. Liu C., and H. MacDonald A., Colloquium: Quantum anomalous Hall effect, Rev. Mod. Phys. 95(1), 011002 (2023)
https://doi.org/10.1103/RevModPhys.95.011002
27 Wang K., Li Y., Mei H., Li P., and X. Guo Z., Quantum anomalous Hall and valley quantum anomalous Hall effects in two-dimensional d0 orbital XY monolayers, Phys. Rev. Mater. 6(4), 044202 (2022)
https://doi.org/10.1103/PhysRevMaterials.6.044202
28 Li P., Prediction of intrinsic two dimensional ferromagnetism realized quantum anomalous Hall effect, Phys. Chem. Chem. Phys. 21(12), 6712 (2019)
https://doi.org/10.1039/C8CP07781A
29 P. Wang H., Luo W., and J. Xiang H., Prediction of high-temperature quantum anomalous Hall effect in two-dimensional transition-metal oxides, Phys. Rev. B 95(12), 125430 (2017)
https://doi.org/10.1103/PhysRevB.95.125430
30 Li P., Li X., Zhao W., Chen H., X. Chen M., X. Guo Z., Feng J., G. Gong X., and H. MacDonald A., Topological Dirac states beyond π-orbitals for silicene on SiC(0001) surface, Nano Lett. 17(10), 6195 (2017)
https://doi.org/10.1021/acs.nanolett.7b02855
31 Ding Y. and Wang Y., Two-dimensional T′ MA 2N4 (M = Mo/W, A = Si/Ge) nanosheets: First-principles insights into the structural stability, electronic property and catalytic performance for hydrogen evolution reaction, Appl. Surf. Sci. 627, 157256 (2023)
https://doi.org/10.1016/j.apsusc.2023.157256
32 Islam R., Verma R., Ghosh B., Muhammad Z., Bansil A., Autieri C., and Singh B., Switchable large-gap quantum spin Hall state in the two-dimensional MSi2Z4 class of materials, Phys. Rev. B 106(24), 245149 (2022)
https://doi.org/10.1103/PhysRevB.106.245149
33 Islam R., Hussain G., Verma R., S. Talezadehlari M., Muhammad Z., Singh B., and Autieri C., Fast electrically switchable large gap quantum spin Hall states in MGe2Z4, Adv. Electron. Mater. 9(8), 2300156 (2023)
https://doi.org/10.1002/aelm.202300156
34 Wei X., Zhao B., Zhang J., Xue Y., Li Y., and Yang Z., Chern insulators without band inversion in MoS2 monolayers with 3d adatoms, Phys. Rev. B 95(7), 075419 (2017)
https://doi.org/10.1103/PhysRevB.95.075419
35 Deng X., Yang H., Qi S., Xu X., and Qiao Z., Quantum anomalous Hall effect and giant Rashba spin‒orbit splitting in graphene system Co-doped with boron and 5d transition-metal atoms, Front. Phys. 13(5), 137308 (2018)
https://doi.org/10.1007/s11467-018-0806-y
36 A. Abdelati M., A. Maarouf A., and M. Fadlallah M., Substitutional transition metal doping in MoSi2N4 monolayer: Structural, electronic and magnetic properties, Phys. Chem. Chem. Phys. 24(5), 3035 (2022)
https://doi.org/10.1039/D1CP04191F
37 Wang Y., Wang G., Huang M., Luo Z., Wang J., Ding Z., Guo X., and Liu X., Electrocatalytic activity of MoSi2N4 monolayers decorated with single transition metal atoms: A computational study, Nanotechnology 34(24), 245705 (2023)
https://doi.org/10.1088/1361-6528/acc409
38 Liu Z., Wang L., L. Hong Y., Q. Chen X., M. Cheng H., and Ren W., Two-dimensional superconducting MoSi2N4(MoN)4n homologous compounds, Natl. Sci. Rev. 10(4), nwac273 (2023)
https://doi.org/10.1093/nsr/nwac273
39 Wang Y. and Ding Y., Large-gap quantum spin hall state in double-transition-metal homologous compounds of WSi2N4: A first-principles study, Phys. Status Solidi Rapid Res. Lett. 18(3), 2300376 (2024)
https://doi.org/10.1002/pssr.202300376
40 Miura A., Tadanaga K., Magome E., Moriyoshi C., Kuroiwa Y., Takahiro T., Kumada N., and coordination preferences in Nb- Octahedral, Ta-, and W-based ABX2 layered oxides, oxynitrides, and nitrides, J. Solid State Chem. 229, 272 (2015)
https://doi.org/10.1016/j.jssc.2015.06.028
41 Enriquez E., Zhang Y., Chen A., Bi Z., Wang Y., Fu E., Harrell Z., Lu X., Dowden P., Wang H., Chen C., and Jia Q., Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition, Appl. Phys. Lett. 109(8), 081907 (2016)
https://doi.org/10.1063/1.4961880
42 Kresse G. and Furthmuller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
43 C. Moore G., K. Horton M., Linscott E., M. Ganose A., Siron M., D. O’Regan D., and A. Persson K., High-throughput determination of Hubbard U and Hund J values for transition metal oxides via the linear response formalism, Phys. Rev. Mater. 8(1), 014409 (2024)
https://doi.org/10.1103/PhysRevMaterials.8.014409
44 Panda R. and Gajbhiye N., Chemical synthesis and magnetic properties of nanocrystalline FeMoN2, J. Cryst. Growth 191(1−2), 92 (1998)
https://doi.org/10.1016/S0022-0248(98)00011-6
45 Togo A. and Tanaka I., First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)
https://doi.org/10.1016/j.scriptamat.2015.07.021
46 Mouhat F. and M. C. X. Coudert F., Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90(22), 224104 (2014)
https://doi.org/10.1103/PhysRevB.90.224104
47 Li X., Wu X., and Yang J., Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping, J. Am. Chem. Soc. 136(31), 11065 (2014)
https://doi.org/10.1021/ja505097m
48 C. Tho C., Feng X., Cao L., Wang G., J. Liang S., S. Lau C., D. Guo S., and S. Ang Y., Ultrathick MA2N4(M′ N) intercalated monolayers with sublayer-protected Fermi surface conduction states: Interconnect and metal contact applications, Adv. Phys. Res. 2300156, 2300156 (2024)
https://doi.org/10.1002/apxr.202300156
49 B. Goodenough J., Theory of the role of covalence in the perovskite-type manganites [La,m(II)]MnO3, Phys. Rev. 100(2), 564 (1955)
https://doi.org/10.1103/PhysRev.100.564
50 Wang Y., Xu X., Ji W., Li S., Li Y., and Zhao X., Exploitable magnetic anisotropy and half-metallicity controls in multiferroic van der Waals heterostructure, npj Comput. Mater. 9(1), 223 (2023)
https://doi.org/10.1038/s41524-023-01178-2
51 Liu C., Zhao G., Hu T., Chen Y., Cao S., Bellaiche L., and Ren W., Jahn‒Teller effect, and orbital order in the two-dimensional monolayer perovskite Rb2CuCl4, Phys. Rev. B 104, L241105 (2021)
https://doi.org/10.1103/PhysRevB.104.L241105
52 R. K. Akanda M. and K. Lake R., Magnetic properties of NbSi2N4, VSi2N4, and VSi2P4 monolayers, Appl. Phys. Lett. 119(5), 052402 (2021)
https://doi.org/10.1063/5.0055878
53 M. Henderson T., Paier J., and E. Scuseria G., Accurate treatment of solids with the HSE screened hybrid, Phys. Status Solidi B 248(4), 767 (2011)
https://doi.org/10.1002/pssb.201046303
54 Li J.Li X. Yang J., A review of bipolar magnetic semiconductors from theoretical aspects, Fund. Res. 2(4), 511 (2022)
55 A. Manz T. and G. Limas N., Introducing ddec6 atomic population analysis. Part 1. Charge partitioning theory and methodology, RSC Adv. 6(53), 47771 (2016)
https://doi.org/10.1039/C6RA04656H
56 S. Botana A. and R. Norman M., Electronic structure and magnetism of transition metal dihalides: Bulk to monolayer, Phys. Rev. Mater. 3(4), 044001 (2019)
https://doi.org/10.1103/PhysRevMaterials.3.044001
57 Barnowsky T., Curtarolo S., V. Krasheninnikov A., Heine T., and Friedrich R., Magnetic state control of non-van der Waals 2D materials by hydrogenation, Nano Lett. 24(13), 3874 (2024)
https://doi.org/10.1021/acs.nanolett.3c04777
58 Wang K., Ren K., Hou Y., Cheng Y., and Zhang G., Physical insights into enhancing magnetic stability of 2D magnets, J. Appl. Phys. 133(11), 110902 (2023)
https://doi.org/10.1063/5.0135908
59 Wang Y. and Ding Y., Tunable structural phases and electronic properties of group V MSi2N4 (M = V, Nb, Ta) nanosheets via surface hydrogenation: A first-principles study, J. Mater. Chem. C 11(48), 17034 (2023)
https://doi.org/10.1039/D3TC02881J
60 Wu Y., Deng L., Tong J., Yin X., Tian F., Qin G., and Zhang X., Ferrovalley and topological phase transition behavior in monolayer Ru(OH)2, J. Mater. Chem. C 11(40), 13714 (2023)
https://doi.org/10.1039/D3TC02877A
61 Zhang X., Lu Q., Liu W., Niu W., Sun J., Cook J., Vaninger M., F. Miceli P., J. Singh D., W. Lian S., R. Chang T., He X., Du J., He L., Zhang R., Bian G., and Xu Y., Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films, Nat. Commun. 12(1), 2492 (2021)
https://doi.org/10.1038/s41467-021-22777-x
62 R. Fuh H., R. Chang C., K. Wang Y., F. L. Evans R., W. Chantrell R., and T. Jeng H., New type single-layer magnetic semiconductor in transition-metal dichalcogenides VX2 (X = S, Se and Te), Sci. Rep. 6(1), 32625 (2016)
https://doi.org/10.1038/srep32625
63 Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., and Xu X., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
https://doi.org/10.1038/nature22391
64 Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Q. Qiu Z., J. Cava R., G. Louie S., Xia J., and Zhang X., Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
https://doi.org/10.1038/nature22060
65 Deng Y., Yu Y., Song Y., Zhang J., Z. Wang N., Sun Z., Yi Y., Z. Wu Y., Wu S., Zhu J., Wang J., H. Chen X., and Zhang Y., Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
https://doi.org/10.1038/s41586-018-0626-9
66 Gong J., Ding G., Xie C., Wang W., Liu Y., Zhang G., and Wang X., Genuine Dirac half-metals in two-dimensions, Adv. Sci. 11, 2307297 (2024)
https://doi.org/10.1002/advs.202307297
67 Wang X., P. Li X., Li J., Xie C., Wang J., Yuan H., Wang W., Cheng Z., M. Yu Z., and Zhang G., Magnetic second-order topological insulator: An experimentally feasible 2D CrSiTe3, Adv. Funct. Mater. 33(49), 2304499 (2023)
https://doi.org/10.1002/adfm.202304499
68 Yao Y., Kleinman L., H. MacDonald A., Sinova J., Jungwirth T., S. Wang D., Wang E., and Niu Q., First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe, Phys. Rev. Lett. 92(3), 037204 (2004)
https://doi.org/10.1103/PhysRevLett.92.037204
69 Yao Y. and Fang Z., Sign changes of intrinsic spin Hall effect in semiconductors and simple metals: First-principles calculations, Phys. Rev. Lett. 95(15), 156601 (2005)
https://doi.org/10.1103/PhysRevLett.95.156601
70 J. Zhang S., W. Zhang C., F. Zhang S., X. Ji W., Li P., J. Wang P., S. Li S., and S. Yan S., Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice, Phys. Rev. B 96(20), 205433 (2017)
https://doi.org/10.1103/PhysRevB.96.205433
71 Zhu X., Chen Y., Liu Z., Han Y., and Qiao Z., Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials, Front. Phys. 18(2), 23302 (2023)
https://doi.org/10.1007/s11467-022-1228-4
72 Kong X., Li L., Liang L., M. Peeters F., and J. Liu X., The magnetic, electronic, and light-induced topological properties in two-dimensional hexagonal FeX2 (X = Cl, Br, I) monolayers, Appl. Phys. Lett. 116(19), 192404 (2020)
https://doi.org/10.1063/5.0006446
73 Sun H., S. Li S., X. Ji W., and W. Zhang C., Valley-dependent topological phase transition and quantum anomalous valley Hall effect in single-layer RuClBr, Phys. Rev. B 105(19), 195112 (2022)
https://doi.org/10.1103/PhysRevB.105.195112
74 F. Liang Q., Yu R., Zhou J., and Hu X., Topological states of non-Dirac electrons on a triangular lattice, Phys. Rev. B 93(3), 035135 (2016)
https://doi.org/10.1103/PhysRevB.93.035135
75 Si C., H. Jin K., Zhou J., Sun Z., and Liu F., Large-gap quantum spin Hall state in MXenes: d-band topological order in a triangular lattice, Nano Lett. 16(10), 6584 (2016)
https://doi.org/10.1021/acs.nanolett.6b03118
76 Zhang Z., Zhao L., and Shi J., Mechanics and strategies for wrinkling suppression: A review, Front. Mech. Eng. 8, 910415 (2022)
https://doi.org/10.3389/fmech.2022.910415
77 Yang S., Chen Y., and Jiang C., Strain engineering of two-dimensional materials: Methods, properties, and applications, InfoMat 3(4), 397 (2021)
https://doi.org/10.1002/inf2.12177
78 Wang J., He L., Zhang Y., Nong H., Li S., Wu Q., Tan J., and Liu B., Locally strained 2D materials: Preparation, properties, and applications, Adv. Mater. 36(23), 2314145 (2024)
https://doi.org/10.1002/adma.202314145
[1] FOP-24431-of-dingyi_suppl_1 Download
[1] Ran Ma, Qiuhong Tan, Peizhi Yang, Yingkai Liu, Qianjin Wang. High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction[J]. Front. Phys. , 2024, 19(4): 43204-.
[2] Bocheng Lei, Aolin Li, Wenzhe Zhou, Yunpeng Wang, Wei Xiong, Yu Chen, Fangping Ouyang. Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2[J]. Front. Phys. , 2024, 19(4): 43200-.
[3] Zheng Shu, Huifang Xu, Hejin Yan, Yongqing Cai. Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe[J]. Front. Phys. , 2024, 19(3): 33202-.
[4] Yun-Qin Li, Qi-Wen He, Dai-Song Tang, Xiao Shang, Xiao-Chun Wang. Intrinsically asymmetric atomic character regulates piezoelectricity in two-dimensional materials[J]. Front. Phys. , 2024, 19(3): 33201-.
[5] Huimin Mu, Kun Zhou, Fuyu Tian, Yansong Zhou, Guoqi Zhao, Yuhao Fu, Lijun Zhang. Alloy-induced reduction and anisotropy change of lattice thermal conductivity in Ruddlesden– Popper phase halide perovskites[J]. Front. Phys. , 2023, 18(6): 63304-.
[6] Guibo Zheng, Shuixian Qu, Wenzhe Zhou, Fangping Ouyang. Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties[J]. Front. Phys. , 2023, 18(5): 53302-.
[7] Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301-.
[8] Yuxin Cai, Muhammad Faizan, Huimin Mu, Yilin Zhang, Hongshuai Zou, Hong Jian Zhao, Yuhao Fu, Lijun Zhang. Anisotropic phonon thermal transport in two-dimensional layered materials[J]. Front. Phys. , 2023, 18(4): 43303-.
[9] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[10] Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301-.
[11] Jia-Qi Liu, Qian Gao, Zhen-Peng Hu. HSH-carbon: A novel sp2−sp3 carbon allotrope with an ultrawide energy gap[J]. Front. Phys. , 2022, 17(6): 63505-.
[12] Mingqing Liao, Jumahan Maimaitimusha, Xueting Zhang, Jingchuan Zhu, Fengjiang Wang. P212121-C16: An ultrawide bandgap and ultrahard carbon allotrope with the bandgap larger than diamond[J]. Front. Phys. , 2022, 17(6): 63507-.
[13] Mingyun Huang, Xingxing Jiang, Yueshao Zheng, Zhengwei Xu, Xiong-Xiong Xue, Keqiu Chen, Yexin Feng. Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties[J]. Front. Phys. , 2022, 17(5): 53504-.
[14] Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations[J]. Front. Phys. , 2022, 17(5): 53500-.
[15] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed