Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (3) : 261-269    https://doi.org/10.1007/s12200-013-0340-z
RESEARCH ARTICLE
Hybrid surface plasmon modes in metal-clad Si/SiO2 waveguide for compact integration
Xiaoliu ZUO, Zhijun SUN()
Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
 Download: PDF(771 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper investigated characteristics of hybrid surface plasmon waveguiding modes in metal-clad Si/SiO2 waveguide. Mode characteristics are shown to be highly dependent on structure dimensions and polarization states. By controlling the structure dimensions, a compromise between propagation loss and field confinement can be made for the waveguiding modes. Here, the waveguide had been particularly designed to have very low loss, in which power is mainly confined in the high-index Si-core region to propagate. This waveguide showed excellent bending, isolation and coupling properties that is suitable for high-density integrated photonic circuits.

Keywords waveguides      surface plasmon (SP)      photonic integrated circuits      metal     
Corresponding Author(s): SUN Zhijun,Email:sunzj@xmu.edu.cn   
Issue Date: 05 September 2013
 Cite this article:   
Xiaoliu ZUO,Zhijun SUN. Hybrid surface plasmon modes in metal-clad Si/SiO2 waveguide for compact integration[J]. Front Optoelec, 2013, 6(3): 261-269.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0340-z
https://academic.hep.com.cn/foe/EN/Y2013/V6/I3/261
Fig.1  Schematic cross-section of metal-clad Si/SiO waveguide
Fig.2  Distributions of field components in transverse cross-sections for - (top) and -polarization (bottom) modes of a waveguide with dimensions = = 300 nm and = = 400 nm. Labels (, , ; , , ) in the images indicate the electric and magnetic field components projected in the directions of -, -, and -axis as defined in Fig. 1. As the modes are non-transverse electromagnetic (EM) modes, all six components of the fields are demonstrated
Fig.3  Dependences of real and imaginary parts of the mode index () of a waveguide ( = = 300 nm, = 400 nm, and = 600 nm) on its structure dimensions. The propagation lengths () at = 1550 nm are also indicated, corresponding to the imaginary part
Fig.4  (a, b) Transverse distributions of -field and power flow for -mode of waveguides ( = = 300 nm, = 600 nm) with very narrow or wide side oxide layers ( = 20 nm in (a), = 400 nm in (b)); (c, d) transverse distributions of -field and power flow for -mode of waveguides ( = = 300 nm, = 400 nm) with a very thin or thick top oxide layer ( = 20 nm in (c), = 400 nm in (d)). On right side of each color image is an - or -scan of the field or across the core center
Fig.5  (a) Schematic illustration of 90° circular-round waveguide bending; (b) dependence of bending loss on bend radius () for waveguides with and without metal Ag clad in - or -mode. Here = 300 nm, = = 400 nm, and = = 500 nm; (c) and (d) show longitudinal cross-sectional ( = 0.7 μm) view of the power flow for - and -mode waves propagating through a bend with = 0.6 μm. The small panels on the right side of (c) and (d) show transverse cross-section distributions of power flow || and (or ) field after propagating through the bend, at the positions indicated with dash-lines and
Fig.6  Schematic illustrations of waveguide structure for inter-waveguide isolation (a), directional coupling (b) and connection with its non-metal-clad Si/SiO waveguide (c); (d) dependence of coupling length on the interspacing between neighboring waveguide cores for directional coupling, calculated with FDTD and FEM methods. The waveguides have = 300 nm, = = 400 nm, and = = 500 nm; (e) field distributions of even (left column) and odd (right column) supermodes of coupled waveguides ( = 300 nm) fore corresponding - (upper row) and -modes (lower row) of individual ones
1 Pavesi L, Guillot G, eds. Optical Interconnects: The Silicon Approach. Berlin: Springer, 2006
2 Wehrspohn R B, Kitzerow H S, Busch K, eds. Nanophotonic Materials: Photonic Crystals, Plasmonics, and Metamaterials. Weinheim: WILEY-VCH Verlag GmbH & Co KGaA, 2007
3 Joannopoulos J D, Meade R D, Winn J N. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton: Princeton University Press, 2008
4 Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters , 2004, 29(11): 1209-1211
doi: 10.1364/OL.29.001209 pmid:15209249
5 Bozhevolnyi S I. Plasmonic Nanoguides and Circuits. Singapore: Pan Stanford Publishing Pte Ltd, 2009
6 Vlasov Y A, McNab S J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Optics Express , 2004, 12(8): 1622-1631
doi: 10.1364/OPEX.12.001622 pmid:19474988
7 Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics , 2008, 2(8): 496-500
doi: 10.1038/nphoton.2008.131
8 Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express , 2009, 17(19): 16646-16653
doi: 10.1364/OE.17.016646 pmid:19770880
9 Avrutsky I, Soref R, Buchwald W. Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap. Optics Express , 2010, 18(1): 348-363
doi: 10.1364/OE.18.000348 pmid:20173855
10 Wu M, Han Z, Van V. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. Optics Express , 2010, 18(11): 11728-11736
doi: 10.1364/OE.18.011728 pmid:20589033
11 Goykhman I, Desiatov B, Levy U. Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide. Applied Physics Letters , 2010, 97(14): 141106
doi: 10.1063/1.3496463
12 Kim J T, Ju J J, Park S, Kim M S, Park S K, Shin S Y. Hybrid plasmonic waveguide for low-loss lightwave guiding. Optics Express , 2010, 18(3): 2808-2813
doi: 10.1364/OE.18.002808 pmid:20174109
13 Dai D, He S. Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Optics Express , 2010, 18(17): 17958-17966
doi: 10.1364/OE.18.017958 pmid:20721182
14 Zhu S, Liow T Y, Lo G Q, Kwong D L. Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits. Applied Physics Letters , 2011, 98(2): 021107
doi: 10.1063/1.3537964
15 Kim J T, Choi S E. Hybric plasmonic slot waveguides with sidewall slope. IEEE Photonics Technology Letters , 2012, 24(3): 170-172
doi: 10.1109/LPT.2011.2174977
16 Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Optics Express , 2011, 19(9): 8379-8393
doi: 10.1364/OE.19.008379 pmid:21643089
17 Kim J T. CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits. IEEE Photonics Technology Letters , 2011, 23(20): 1481-1483
doi: 10.1109/LPT.2011.2163500
18 Sun Z, Zuo X, Li J, Liu B. Hybridized low-loss plasmonic-optical waveguides for ultra-compact integration. In: Proceedings of the Society for Photo-Instrumentation Engineers , 2010, 7874: 78470O, 78470O-8
doi: 10.1117/12.868558
19 Zuo X, Sun Z. Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate. Optics Letters , 2011, 36(15): 2946-2948
doi: 10.1364/OL.36.002946 pmid:21808367
20 Takano T, Hamasaki J. Propagating modes of a metal-clad-dielectric-slab waveguide for integrated optics. IEEE Journal of Quantum Electronics , 1972, 8(2): 206-212
doi: 10.1109/JQE.1972.1076923
21 Dai D, Shi Y, He S. Comparative study of the integration density for passive linear planar light-wave circuits based on three different kinds of nanophotonic waveguide. Applied Optics , 2007, 46(7): 1126-1131
doi: 10.1364/AO.46.001126 pmid:17304311
[1] Peipei DU, Liang GAO, Jiang TANG. Focus on performance of perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 235-245.
[2] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[3] Chong ZHAO, Qixin WAN, Jiangnan DAI, Jun ZHANG, Feng WU, Shuai WANG, Hanling LONG, Jingwen CHEN, Cheng CHEN, Changqing CHEN. Diluted magnetic characteristics of Ni-doped AlN films via ion implantation[J]. Front. Optoelectron., 2017, 10(4): 363-369.
[4] Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
[5] Dong XU, Sheng YIN, Xiangbin ZENG, Song YANG, Xixing WEN. Structural, optical and electrical properties of ZnO: B thin films with different thickness for bifacial a-Si:H/c-Si heterojunction solar cells[J]. Front. Optoelectron., 2017, 10(1): 31-37.
[6] Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Front. Optoelectron., 2016, 9(3): 428-435.
[7] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[8] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[9] Cheng ZHANG,Jie ZHONG,Jiang TANG. Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents[J]. Front. Optoelectron., 2015, 8(3): 252-268.
[10] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[11] Changping CHEN, Xiangliang JIN, Lizhen TANG, Hongjiao YANG, Jun LUO. Simulation analysis of combined UV/blue photodetector in CMOS process by technology computer-aided design[J]. Front Optoelec, 2014, 7(1): 69-73.
[12] Meirong SUI, Ping GONG, Xiuquan GU. Review on one-dimensional ZnO nanostructures for electron field emitters[J]. Front Optoelec, 2013, 6(4): 386-412.
[13] Yajuan ZHENG, Xiangbin ZENG, Xiaohu SUN, Diqiu HUANG. Influence of substrate temperature on in situ-textured ZnO thin films grown by MOCVD[J]. Front Optoelec, 2013, 6(3): 270-274.
[14] Bipin Kumar VERMA, Shyam Babu SINGH, Shyam AKASHE. Ground bounce noise reduction aware combinational multi threshold CMOS circuits for nanoscale CMOS multiplier[J]. Front Optoelec, 2013, 6(3): 327-337.
[15] Guangzhao RAN, Hongqiang LI, Chong WANG. On-chip silicon light source: from photonics to plasmonics[J]. Front Optoelec, 2012, 5(1): 3-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed