|
|
Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents |
Cheng ZHANG1,2,Jie ZHONG1,2,*( ),Jiang TANG2,*( ) |
1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China 2. Wuhan National Laboratory for Optoelectronics, Huazhong Univesity of Science and Technology, Wuhan 430074, China |
|
|
Abstract Cu2ZnSn(S,Se)4 (CZTSSe) is considered as the promising absorbing layer materials for solar cells due to its earth-abundant constituents and excellent semiconductor properties. Through solution-processing, such as various printing methods, the fabrication of high performance CZTSSe solar cell could be applied to mass production with extremely low manufacturing cost and high yield speed. To better fulfill this goal, environmental-friendly inks/solutions are optimum for further reducing the capital investment on instrument, personnel and environmental safety. In this review, we summarized the recent development of CZTSSe thin films solar cells fabricated with benign solvents, such as water and ethanol. The disperse system can be classified to the true solution (consisting of molecules) and the colloidal suspension (consisting of nanoparticles).Three strategies for stabilization (i.e., physical method, chemical capping and self-stabilization) are proposed to prepare homogeneous and stable colloidal nanoinks. The one-pot self-stabilization method stands as an optimum route for preparing benign inks for its low impurity involvement and simple procedure. As-prepared CZTSSe inks would be deposited onto substrates to form thin films through spin-coating, spraying, electrodeposition or successive ionic layer adsorption and reaction (SILAR) method, followed by annealing in a chalcogen (S- or Se-containing) atmosphere to fabricate absorber. The efficiency of CZTSSe solar cell fabricated with benign solvents can also be enhanced by constituent adjustments, doping, surface treatments and blocking layers modifications, etc., and the deeper research will promise it a comparable performance to the non-benign CZTSSe systems.
|
Keywords
Cu2ZnSn(S
Se)4 (CZTSSe)
solar cell
benign solvents
metal chalcogenide complexes (MCCs)
solution processing
|
Corresponding Author(s):
Jie ZHONG,Jiang TANG
|
Just Accepted Date: 17 August 2015
Online First Date: 08 September 2015
Issue Date: 18 September 2015
|
|
1 |
Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw W S, Fukano T, Ito T, Motohiro T. Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Applied Physics Express, 2008, 1(4): 041201
https://doi.org/10.1143/APEX.1.041201
|
2 |
Schubert B A, Marsen B, Cinque S, Unold T, Klenk R, Schorr S, Schock H W. Cu2ZnSnS4 thin film solar cells by fast coevaporation. Progress in Photovoltaics: Research and Applications, 2011, 19(1): 93–96
https://doi.org/10.1002/pip.976
|
3 |
Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 2014, 4(7):
https://doi.org/10.1002/aenm.201301465
|
4 |
Zhang H, Hu B, Sun L, Hovden R, Wise F W, Muller D A, Robinson R D. Surfactant ligand removal and rational fabrication of inorganically connected quantum dots. Nano Letters, 2011, 11(12): 5356–5361
https://doi.org/10.1021/nl202892p
pmid: 22011091
|
5 |
Kamoun N, Bouzouita H, Rezig B. Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films, 2007, 515(15): 5949–5952
https://doi.org/10.1016/j.tsf.2006.12.144
|
6 |
Zeng X, Tai K F, Zhang T, Ho C W J, Chen X, Huan A, Sum T C, Wong L H. Cu2ZnSn(S,Se)4 kesterite solar cell with 5.1% efficiency using spray pyrolysis of aqueous precursor solution followed by selenization. Solar Energy Materials and Solar Cells, 2014, 124: 55–60
https://doi.org/10.1016/j.solmat.2014.01.029
|
7 |
Vigil-Galán O, Courel M, Espindola-Rodriguez M, Izquierdo-Roca V, Saucedo E, Fairbrother A. Toward a high Cu2ZnSnS4 solar cell efficiency processed by spray pyrolysis method. Journal of Renewable and Sustainable Energy, 2013, 5(5): 053137
https://doi.org/10.1063/1.4825253
|
8 |
Yeh M Y, Lee C C, Wuu D S. Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol-gel spin-coated deposition. Journal of Sol-Gel Science and Technology, 2009, 52(1): 65–68
https://doi.org/10.1007/s10971-009-1997-z
|
9 |
Jiang M, Lan F, Yan X, Li G. Cu2ZnSn(S1-xSex)4thin film solar cells prepared by water-based solution process. Physica Status Solidi (RRL)- Rapid Research Letters, 2014, 8(3): 223–227
|
10 |
Jiang M, Li Y, Dhakal R, Thapaliya P, Mastro M, Caldwell J, Kub F, Yan X. Cu2ZnSnS4 polycrystalline thin films with large densely packed grains prepared by sol-gel method. Journal of Photonics for Energy, 2011, 1(1): 019501
https://doi.org/10.1117/1.3628450
|
11 |
Tian Q, Huang L, Zhao W, Yang Y, Wang G, Pan D. Metal sulfide precursor aqueous solutions for fabrication of Cu2ZnSn(S,Se)4 thin film solar cells. Green Chemistry, 2015, 17(2): 1269–1275
https://doi.org/10.1039/C4GC01828A
|
12 |
Kishore Kumar Y B, Suresh Babu G, Uday Bhaskar P, Sundara Raja V. Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 2009, 93(8): 1230–1237
https://doi.org/10.1016/j.solmat.2009.01.011
|
13 |
Zhong J, Xia Z, Zhang C, Li B, Liu X, Cheng Y B, Tang J. One-pot synthesis of self-stabilized aqueous nanoinks for Cu2ZnSn(S,Se)4 solar cells. Chemistry of Materials, 2014, 26(11): 3573–3578
https://doi.org/10.1021/cm501270j
|
14 |
Woo K, Kim Y, Moon J. A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy & Environmental Science, 2012, 5(1): 5340–5345
https://doi.org/10.1039/C1EE02314D
|
15 |
Larramona G, Bourdais S, Jacob A, Choné C, Muto T, Cuccaro Y, Delatouche B, Moisan C, Péré D, Dennler G. Efficient Cu2ZnSnS4 solar cells spray coated from a hydro-alcoholic colloid synthesized by instantaneous reaction. RSC Advances, 2014, 4(28): 14655–14662
https://doi.org/10.1039/c4ra01707b
|
16 |
Larramona G, Bourdais S, Jacob A, Choné C, Muto T, Cuccaro Y, Delatouche B, Moisan C, Péré D, Dennler G. 8.6% efficient CZTSSe solar cells sprayed from water-ethanol CZTS colloidal solutions. Journal of Physical Chemistry Letters, 2014, 5(21): 3763–3767
https://doi.org/10.1021/jz501864a
|
17 |
Li Z, Ho J C W, Lee K K, Zeng X, Zhang T, Wong L H, Lam Y M. Environmentally friendly solution route to kesterite Cu2ZnSn(S,Se)4 thin films for solar cell applications. RSC Advances, 2014, 4(51): 26888–26894
https://doi.org/10.1039/c4ra03349c
|
18 |
Chen G, Yuan C, Liu J, Huang Z, Chen S, Liu W, Jiang G, Zhu C. Fabrication of Cu2ZnSnS4 thin films using oxides nanoparticles ink for solar cell. Journal of Power Sources, 2015, 276: 145–152
https://doi.org/10.1016/j.jpowsour.2014.11.112
|
19 |
van Embden J, Chesman A S, Della Gaspera E, Duffy N W, Watkins S E, Jasieniak J J. Cu?ZnSnS4xSe4(1-x) solar cells from polar nanocrystal inks. Journal of the American Chemical Society, 2014, 136(14): 5237–5240
https://doi.org/10.1021/ja501218u
pmid: 24690032
|
20 |
Kang C C, Chen H F, Yu T C, Lin T C. Aqueous synthesis of wurtzite Cu2ZnSnS4 nanocrystals. Materials Letters, 2013, 96: 24–26
https://doi.org/10.1016/j.matlet.2013.01.014
|
21 |
Kush P, Ujjain S K, Mehra N C, Jha P, Sharma R K, Deka S. Development and properties of surfactant-free water-dispersible Cu2ZnSnS4 nanocrystals: a material for low-cost photovoltaics. Chemphyschem: a European journal of Chemical Physics and Physical Chemistry, 2013, 14(12): 2793–2799
|
22 |
Liu W, Guo B, Mak C, Li A, Wu X, Zhang F. Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin Solid Films, 2013, 535: 39–43
https://doi.org/10.1016/j.tsf.2012.11.073
|
23 |
Tian Q, Xu X, Han L, Tang M, Zou R, Chen Z, Yu M, Yang J, Hu J. Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells. CrystEngComm, 2012, 14(11): 3847–3850
https://doi.org/10.1039/c2ce06552e
|
24 |
Hsu K C, Liao J D, Chao L M, Fu Y S. Fabrication and characterization of Cu2ZnSnS4 powders by a hydrothermal method. Japanese Journal of Applied Physics, 2013, 52(6R): 061202
https://doi.org/10.7567/JJAP.52.061202
|
25 |
Camara S M, Wang L, Zhang X. Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application. Nanotechnology, 2013, 24(49): 495401
https://doi.org/10.1088/0957-4484/24/49/495401
pmid: 24231683
|
26 |
Jiang H, Dai P, Feng Z, Fan W, Zhan J. Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. Journal of Materials Chemistry, 2012, 22(15): 7502–7506
https://doi.org/10.1039/c2jm16870g
|
27 |
Tiong V T, Bell J, Wang H. One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals- a hydrothermal approach. Beilstein Journal of Nanotechnology, 2014, 5: 438–446
https://doi.org/10.3762/bjnano.5.51
pmid: 24778970
|
28 |
Tiong V T, Zhang Y, Bell J, Wang H. Phase-selective hydrothermal synthesis of Cu2ZnSnS4 nanocrystals: the effect of the sulphur precursor. CrystEngComm, 2014, 16(20): 4306–4313
https://doi.org/10.1039/C3CE42606H
|
29 |
Zhao Y, Zhou W H, Jiao J, Zhou Z J, Wu S X. Aqueous synthesis and characterization of hydrophilic Cu2ZnSnS4 nanocrystals. Materials Letters, 2013, 96: 174–176
https://doi.org/10.1016/j.matlet.2013.01.059
|
30 |
Kovalenko M V, Scheele M, Talapin D V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science, 2009, 324(5933): 1417–1420
https://doi.org/10.1126/science.1170524
pmid: 19520953
|
31 |
Kovalenko M V, Bodnarchuk M I, Zaumseil J, Lee J S, Talapin D V. Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. Journal of the American Chemical Society, 2010, 132(29): 10085–10092
https://doi.org/10.1021/ja1024832
pmid: 20593874
|
32 |
Jiang C, Lee J S, Talapin D V. Soluble precursors for CuInSe2, CuIn1-xGaxSe2, and Cu2ZnSn(S,Se)4 based on colloidal nanocrystals and molecular metal chalcogenide surface ligands. Journal of the American Chemical Society, 2012, 134(11): 5010–5013
https://doi.org/10.1021/ja2105812
pmid: 22329720
|
33 |
Zhou H, Duan H S, Yang W, Chen Q, Hsu C J, Hsu W C, Chen C C, Yang Y. Facile single-component precursor for Cu2ZnSnS4 with enhanced phase and composition controllability. Energy & Environmental Science, 2014, 7(3): 998–1005
https://doi.org/10.1039/c3ee43101k
|
34 |
Su Z, Sun K, Han Z, Cui H, Liu F, Lai Y, Li J, Hao X, Liu Y, Green M A. Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(2): 500–509
https://doi.org/10.1039/C3TA13533K
|
35 |
Kim S, Kim J. Effect of selenization on sprayed Cu2ZnSnS4 thin film solar cell. Thin Solid Films, 2013, 547: 178–180
https://doi.org/10.1016/j.tsf.2013.03.094
|
36 |
Scragg J J, Berg D M, Dale P J A. 3.2% efficient Kesterite device from electrodeposited stacked elemental layers. Journal of Electroanalytical Chemistry, 2010, 646(1–2): 52–59
https://doi.org/10.1016/j.jelechem.2010.01.008
|
37 |
Araki H, Kubo Y, Mikaduki A, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Oishi K, Takeuchi A. Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 996–999
https://doi.org/10.1016/j.solmat.2008.11.045
|
38 |
Scragg J J, Dale P J, Peter L M. Towards sustainable materials for solar energy conversion: preparation and photoelectrochemical characterization of Cu2ZnSnS4. Electrochemistry Communications, 2008, 10(4): 639–642
https://doi.org/10.1016/j.elecom.2008.02.008
|
39 |
Scragg J J, Dale P J, Peter L M. Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealin88g route. Thin Solid Films, 2009, 517(7): 2481–2484
https://doi.org/10.1016/j.tsf.2008.11.022
|
40 |
Iljina J, Zhang R, Ganchev M, Raadik T, Volobujeva O, Altosaar M, Traksmaa R, Mellikov E. Formation of Cu2ZnSnS4 absorber layers for solar cells by electrodeposition-annealing route. Thin Solid Films, 2013, 537: 85–89
https://doi.org/10.1016/j.tsf.2013.04.038
|
41 |
Ennaoui A, Lux-Steiner M, Weber A, Abou-Ras D, K?tschau I, Schock H W, Schurr R, H?lzing A, Jost S, Hock R, Vo? T, Schulze J, Kirbs A. Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films, 2009, 517(7): 2511–2514
https://doi.org/10.1016/j.tsf.2008.11.061
|
42 |
Wang Y, Ma J, Liu P, Chen Y, Li R, Gu J, Lu J, Yang S, Gao X. Cu2ZnSnS4 films deposited by a co-electrodeposition-annealing route. Materials Letters, 2012, 77: 13–16
https://doi.org/10.1016/j.matlet.2012.02.120
|
43 |
Pawar S M, Pawar B S, Moholkar A V, Choi D S, Yun J H, Moon J H, Kolekar S S, Kim J H. Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta, 2010, 55(12): 4057–4061
https://doi.org/10.1016/j.electacta.2010.02.051
|
44 |
Schurr R, H?lzing A, Jost S, Hock R, Vo? T, Schulze J, Kirbs A, Ennaoui A, Lux-Steiner M, Weber A, K?tschau I, Schock H W. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors. Thin Solid Films, 2009, 517(7): 2465–2468
https://doi.org/10.1016/j.tsf.2008.11.019
|
45 |
Chan C P, Lam H, Surya C. Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids. Solar Energy Materials and Solar Cells, 2010, 94(2): 207–211
https://doi.org/10.1016/j.solmat.2009.09.003
|
46 |
Mali S S, Patil B M, Betty C A, Bhosale P N, Oh Y W, Jadkar S R, Devan R S, Ma Y R, Patil P S. Novel synthesis of kesterite Cu2ZnSnS4 nanoflakes by successive ionic layer adsorption and reaction echnique: characterization and application. Electrochimica Acta, 2012, 66: 216–221
https://doi.org/10.1016/j.electacta.2012.01.079
|
47 |
Mali S S, Shinde P S, Betty C A, Bhosale P N, Oh Y W, Patil P S. Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. Journal of Physics and Chemistry of Solids, 2012, 73(6): 735–740
https://doi.org/10.1016/j.jpcs.2012.01.008
|
48 |
Shinde N M, Dubal D P, Dhawale D S, Lokhande C D, Kim J H, Moon J H. Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application. Materials Research Bulletin, 2012, 47(2): 302–307
https://doi.org/10.1016/j.materresbull.2011.11.020
|
49 |
Shinde N M, Deshmukh P R, Patil S V, Lokhande C D. Aqueous chemical growth of Cu2ZnSnS4 (CZTS) thin films: air annealing and photoelectrochemical properties. Materials Research Bulletin, 2013, 48(5): 1760–1766
https://doi.org/10.1016/j.materresbull.2012.12.053
|
50 |
Patel K, Shah D V, Kheraj V. Influence of deposition parameters and annealing on Cu2ZnSnS4 thin films grown by SILAR. Journal of Alloys and Compounds, 2015, 622: 942–947
https://doi.org/10.1016/j.jallcom.2014.11.019
|
51 |
Su Z, Yan C, Sun K, Han Z, Liu F, Liu J, Lai Y, Li J, Liu Y. Preparation of Cu2ZnSnS4 thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method. Applied Surface Science, 2012, 258(19): 7678–7682
https://doi.org/10.1016/j.apsusc.2012.04.120
|
52 |
Gao C, Shen H, Jiang F, Guan H. Preparation of Cu2ZnSnS4 film by sulfurizing solution deposited precursors. Applied Surface Science, 2012, 261: 189–192
https://doi.org/10.1016/j.apsusc.2012.07.137
|
53 |
Wangperawong A, King J S, Herron S M, Tran B P, Pangan-Okimoto K, Bent S F. Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films, 2011, 519(8): 2488–2492
https://doi.org/10.1016/j.tsf.2010.11.040
|
54 |
Moriya K, Tanaka K, Uchiki H. Characterization of Cu2ZnSnS4thin films prepared by photo-chemical deposition. Japanese Journal of Applied Physics, 2005, 44(1B): 715–717
https://doi.org/10.1143/JJAP.44.715
|
55 |
Shinde N M, Lokhande C D, Kim J H, Moon J H. Low cost and large area novel chemical synthesis of Cu2ZnSnS4 (CZTS) thin films. Journal of Photochemistry and Photobiology A Chemistry, 2012, 235: 14–20
https://doi.org/10.1016/j.jphotochem.2012.02.006
|
56 |
Chen S, Walsh A, Gong X G, Wei S H. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Advanced Materials, 2013, 25(11): 1522–1539
https://doi.org/10.1002/adma.201203146
pmid: 23401176
|
57 |
Hergert F, Hock R. Predicted formation reactions for the solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4 (X = S, Se) starting from binary chalcogenides. Thin Solid Films, 2007, 515(15): 5953–5956
https://doi.org/10.1016/j.tsf.2006.12.096
|
58 |
Shin S W, Pawar S M, Park C Y, Yun J H, Moon J H, Kim J H, Lee J Y. Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films. Solar Energy Materials and Solar Cells, 2011, 95(12): 3202–3206
https://doi.org/10.1016/j.solmat.2011.07.005
|
59 |
Mitzi D B, Gunawan O, Todorov T K, Wang K, Guha S. The path towards a high-performance solution-processed kesterite solar cell. Solar Energy Materials and Solar Cells, 2011, 95(6): 1421–1436
https://doi.org/10.1016/j.solmat.2010.11.028
|
60 |
Polizzotti A, Repins I L, Noufi R, Wei S H, Mitzi D B. The state and future prospects of kesterite photovoltaics. Energy & Environmental Science, 2013, 6(11): 3171–3182
https://doi.org/10.1039/c3ee41781f
|
61 |
Vigil-Galán O, Courel M, Andrade-Arvizu J A, Sánchez Y, Espíndola-Rodríguez M, Saucedo E, Seuret-Jiménez D, Titsworth M. Route towards low cost-high efficiency second generation solar cells: current status and perspectives. Journal of Materials Science Materials in Electronics, 2015, 26(8): 5562–5573
https://doi.org/10.1007/s10854-014-2196-4
|
62 |
Chen S, Gong X G, Walsh A, Wei S H. Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Applied Physics Letters, 2010, 96(2): 021902
https://doi.org/10.1063/1.3275796
|
63 |
Vigil-Galán O, Espíndola-Rodríguez M, Courel M, Fontané X, Sylla D, Izquierdo-Roca V, Fairbrother A, Saucedo E, Pérez-Rodríguez A. Secondary phases dependence on composition ratio in sprayed Cu2ZnSnS4 thin films and its impact on the high power conversion efficiency. Solar Energy Materials and Solar Cells, 2013, 117: 246–250
https://doi.org/10.1016/j.solmat.2013.06.008
|
64 |
Wen Q, Li Y, Yan J, Wang C. Crystal size-controlled growth of Cu2ZnSnS4 films by optimizing the Na doping concentration. Materials Letters, 2015, 140: 16–19
https://doi.org/10.1016/j.matlet.2014.10.147
|
65 |
Prabhakar T, Jampana N. Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 2011, 95(3): 1001–1004
https://doi.org/10.1016/j.solmat.2010.12.012
|
66 |
Tong Z, Yan C, Su Z, Zeng F, Yang J, Li Y, Jiang L, Lai Y, Liu F. Effects of potassium doping on solution processed kesterite Cu2ZnSnS4 thin film solar cells. Applied Physics Letters, 2014, 105(22): 223903
https://doi.org/10.1063/1.4903500
|
67 |
Johnson M, Baryshev S V, Thimsen E, Manno M, Zhang X, Veryovkin I V, Leighton C, Aydil E S. Alkali-metal-enhanced grain growth in Cu2ZnSnS4thin films. Energy & Environmental Science, 2014, 7(6): 1931–1938
https://doi.org/10.1039/C3EE44130J
|
68 |
Zhou H, Song T B, Hsu W C, Luo S, Ye S, Duan H S, Hsu C J, Yang W, Yang Y. Rational defect passivation of Cu2ZnSn(S,Se)4 photovoltaics with solution-processed Cu2ZnSnS4:Na nanocrystals. Journal of the American Chemical Society, 2013, 135(43): 15998–16001
https://doi.org/10.1021/ja407202u
pmid: 24128165
|
69 |
Nagaoka A, Miyake H, Taniyama T, Kakimoto K, Nose Y, Scarpulla M A, Yoshino K. Effects of sodium on electrical properties in Cu2ZnSnS4 single crystal. Applied Physics Letters, 2014, 104(15): 152101
https://doi.org/10.1063/1.4871208
|
70 |
Todorov T, Mitzi D B. Direct liquid coating of chalcopyrite light-absorbing layers for photovoltaic devices. European Journal of Inorganic Chemistry, 2010, 2010(1): 17–28
https://doi.org/10.1002/ejic.200900837
|
71 |
Zhong J, Xia Z, Luo M, Zhao J, Chen J, Wang L, Liu X, Xue D J, Cheng Y B, Song H, Tang J. Sulfurization induced surface constitution and its correlation to the performance of solution-processed Cu2ZnSn(S,Se)4 solar cells. Scientific Reports, 2014, 4: 6288–6296
https://doi.org/10.1038/srep06288
pmid: 25190491
|
72 |
Walter T, Herberholz R, Müller C, Schock H W. Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions. Journal of Applied Physics, 1996, 80(8): 4411
https://doi.org/10.1063/1.363401
|
73 |
Shin B, Bojarczuk N A, Guha S. On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact. Applied Physics Letters, 2013, 102(9): 091907
https://doi.org/10.1063/1.4794422
|
74 |
Cui H, Lee C Y, Li W, Liu X, Wen X, Hao X. Improving efficiency of evaporated Cu2ZnSnS4 thin film solar cells by a thin Ag intermediate layer between absorber and back contact. International Journal of Photoenergy, 2015, 170507
https://doi.org/10.1155/2015/170507
|
75 |
Liu X, Cui H, Li W, Song N, Liu F, Conibeer G, Hao X. Improving Cu2ZnSnS4 (CZTS) solar cell performance by an ultrathin ZnO intermediate layer between CZTS absorber and Mo back contact. Physica Status Solidi (RRL)- Rapid Research Letters, 2014, 8(12): 966–970
|
76 |
Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Progress in Photovoltaics: Research and Applications, 2013, 21(1): 72–76
https://doi.org/10.1002/pip.1174
|
77 |
Liu F, Sun K, Li W, Yan C, Cui H, Jiang L, Hao X, Green M A. Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface. Applied Physics Letters, 2014, 104(5): 051105
https://doi.org/10.1063/1.4863736
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|