Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2014, Vol. 7 Issue (1) : 37-45    https://doi.org/10.1007/s12200-014-0389-3
RESEARCH ARTICLE
Hydrazine processed Cu2SnS3 thin film and their application for photovoltaic devices
Jun HAN1, Ying ZHOU2, Yang Tian3, Ziheng HUANG4, Xiaohua WANG1(), Jie ZHONG2, Zhe XIA2, Bo YANG2, Haisheng SONG2, Jiang TANG2()
1. School of Science, Changchun University of Science and Technology, Changchun 130022, China; 2. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China; 3. Department of Environmental Science, College of Environmental Sciences, Minzu University of China, Beijing 100081, China; 4. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(633 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Copper tin sulfide (Cu2SnS3) was a potential earth abundant absorber material for photovoltaic device application. In this contribution, triclinic Cu2SnS3 film with phase pure composition and large grain size was fabricated from a hydrazine solution process using Cu, Sn and S as the precursors. Absorption measurement revealed this Cu2SnS3 film had a direct optical band gap of 0.88 eV, and Hall effect measurement indicated the film was p-type with hole mobility of 0.86 cm2/Vs. Finally Mo/Cu2SnS3/CdS/ZnO/AZO/Au was produced and the best device efficiency achieved was 0.78%. Also, this device showed improved device performance during ambient storage. This study laid some foundation for the further improvement of Cu2SnS3 solar cell.

Keywords copper tin sulfide (Cu2SnS3)      solar cell      hydrazine      solution process      triclinic     
Corresponding Author(s): WANG Xiaohua,Email:jtang@mail.hust.edu.cn; TANG Jiang,Email:biewang2001@126.com   
Issue Date: 05 March 2014
 Cite this article:   
Jun HAN,Ziheng HUANG,Xiaohua WANG, et al. Hydrazine processed Cu2SnS3 thin film and their application for photovoltaic devices[J]. Front Optoelec, 2014, 7(1): 37-45.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0389-3
https://academic.hep.com.cn/foe/EN/Y2014/V7/I1/37
Fig.1  CuSnS solution preparation and film fabrication. (a) Digital images of Cu-S, Sn-S and Cu-Sn-S hydrazine solution; (b) TGA curve of Cu-Sn-S precursor powder (dried inside glovebox) measured in N atmosphere; (c) flowing chart of CuSnS film fabrication procedure
Fig.2  Top-view SEM images of CuSnS film annealed at different temperature for 10 min. (a) and (e) 450°C; (b) and (f) 500°C; (c) and (g) 550°C; (d) and (h) 600°C. Sulfur addition was kept as 5 mg for all samples
Fig.3  Top-view and cross-sectional SEM images of CuSnS film annealed at 600 °C with different amount of sulfur addition. (a) and (d) 0 mg; (b) and (e) 1 mg; (c) and (f) 10 mg
Fig.4  Characterization of CuSnS film. (a) XRD pattern of CuSnS film on Mo substrate. The major diffraction peaks of (2,1,1), (2,0,10) and (3,2,10) and the standard triclinic CuSnS diffraction peaks (JCPDS 027-0198) were included; (b) Raman spectrum of CuSnS film with the position of 4 peaks included; (c) absorption spectrum and corresponding () vs. () fitting to extract the optical band gap of CuSnS film
Fig.5  XPS spectra of Cu, Sn and S element in CuSnS film. (a) Cu; (b) Sn. (c) S. Black curves were original data and pink and green curves were Gaussian-Lorentzian fitting curves
Fig.6  Solar cell configuration, performance and stability. (a) Schematic demonstration of the device configuration of CuSnS solar cell; (b) dark and light curves of CuSnS solar cell. Light was simulated AM1.5G irradiation at an intensity of 100 mW/cm; (c) efficiency evolution of three representative unencapsulated devices A, B, C when stored in lab environment for 0, 40, 55 and 80 days; (d) comparison of device characteristics , , and between fresh (0 day storage) and aged (80 days ambient storage) of CuSnS photovoltaic device B
1 Zhai Y T, Chen S, Yang J H, Xiang H J, Gong X G, Walsh A, Kang J, Wei S H. Structural diversity and electronic properties of Cu2SnX3 (X= S, Se): a first-principles investigation. Physical Review B: Condensed Matter and Materials Physics , 2011, 84(7): 075213-075216
doi: 10.1103/PhysRevB.84.075213
2 Bouaziz M, Ouerfelli J, Srivastava S K, Bernede J C, Amlouk M. Growth of Cu2SnS3 thin films by solid reaction under sulphur atmosphere. Vacuum , 2011, 85(8): 783-786
doi: 10.1016/j.vacuum.2010.10.001
3 Avellaneda D, Nair M T S, Nair P K. Cu2SnS3 and Cu4SnS4 thin films via chemical deposition for photovoltaic application. Journal of the Electrochemical Society , 2010, 157(6): D346-D352
doi: 10.1149/1.3384660
4 Chen S Y, Walsh A, Gong X G, Wei S H. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Advanced Materials , 2013, 25(11): 1522-1539
doi: 10.1002/adma.201203146 pmid:23401176
5 Chen S Y, Wang L W, Walsh A, Gong X G, Wei S H. Abundance of CuZn+ SnZn and 2CuZn+ SnZn defect clusters in kesterite solar cells. Applied Physics Letters , 2012, 101(22): 223901-223904
doi: 10.1063/1.4768215
6 Tiwari D, Chaudhuri T K, Shripathi T, Deshpande U, Rawat R. Non-toxic, earth-abundant 2% efficient Cu2SnS3 solar cell based on tetragonal films direct-coated from single metal-organic precursor solution. Solar Energy Materials and Solar Cells , 2013, 113: 165-170
doi: 10.1016/j.solmat.2013.02.017
7 Chen Q M, Dou X M, Ni Y, Cheng S Y, Zhuang S L. Study and enhance the photovoltaic properties of narrow-bandgap Cu2SnS3 solar cell by p-n junction interface modification. Journal of Colloid and Interface Science , 2012, 376(1): 327-330
doi: 10.1016/j.jcis.2012.03.015 pmid:22475201
8 Berg D M, Djemour R, Gutay L, Zoppi G, Siebentritt S, Dale P J. Thin film solar cells based on the ternary compound Cu2SnS3. Thin Solid Films , 2012, 520(19): 6291-6294
doi: 10.1016/j.tsf.2012.05.085
9 Koike J, Chino K, Aihara N, Araki H, Nakamura R, Jimbo K, Katagiri H. Cu2SnS3 thin-film solar cells from electroplated precursors. Japanese Journal of Applied Physics , 2012, 51(10): 10NC34-1-10NC34-3
10 Mitzi D B. Solution processing of chalcogenide semiconductors via dimensional reduction. Advanced Materials , 2009, 21(31): 3141-3158
doi: 10.1002/adma.200802027
11 Mitzi D B, Kosbar L L, Murray C E, Copel M, Afzali A. High-mobility ultrathin semiconducting films prepared by spin coating. Nature , 2004, 428(6980): 299-303
doi: 10.1038/nature02389 pmid:15029191
12 Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B. Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells. Advanced Energy Materials. , 2013, 3(1): 34-38
doi: 10.1002/aenm.201200348
13 Todorov T K, Reuter K B, Mitzi D B. High-efficiency solar cell with Earth-abundant liquid-processed absorber. Advanced Materials , 2010, 22(20): E156-E159
doi: 10.1002/adma.200904155 pmid:20641095
14 Contreras M A, Romero M J, To B, Hasoon F, Noufi R, Ward S, Ramanathan K. Optimization of CBD CdS process in high-efficiency Cu(In,Ga)Se2-based solar cells. Thin Solid Films , 2002, 403-404: 204-211
doi: 10.1016/S0040-6090(01)01538-3
15 Yang W B, Duan H S, Bob B, Zhou H P, Lei B, Chung C H, Li S H, Hou W W, Yang Y. Novel solution processing of high-efficiency Earth-abundant Cu2 ZnSn(S,Se)4 solar cells. Advanced Materials , 2012, 24(47): 6323-6329
doi: 10.1002/adma.201201785 pmid:22969055
16 Yuan M, Mitzi D B, Liu W, Kellock A J, Chey S J, Deline V R. Optimization of CIGS-based PV dedvice through antimony doping. Chemistry of Materials , 2010, 22(2): 285-287
doi: 10.1021/cm903428f
17 Cao Q, Gunawan O, Copel M, Reuter K B, Chey S J, Deline V R, Mitzi D B. Defects in Cu(In,Ga)Se2 chalcopyrite semiconductors: a comparative study of material properties, defect states, and photovoltaic performance. Advanced Energy Materials. , 2011, 1(5): 845-853
doi: 10.1002/aenm.201100344
18 Redinger A, Berg D M, Dale P J, Siebentritt S. The consequences of kesterite equilibria for efficient solar cells. Journal of the American Chemical Society , 2011, 133(10): 3320-3323
doi: 10.1021/ja111713g pmid:21329385
19 Tang J, Brzozowski L, Barkhouse D A R, Wang X H, Debnath R, Wolowiec R, Palmiano E, Levina L, Pattantyus-Abraham A G, Jamakosmanovic D, Sargent E H. Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. ACS Nano , 2010, 4(2): 869-878
doi: 10.1021/nn901564q pmid:20104859
20 Tian Q W, Xu X F, Han L B, Tang M H, Zou R J, Chen Z G, Yu M H, Yang J M, Hu J Q. Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells. CrystEngComm , 2012, 14(11): 3847-3850
doi: 10.1039/c2ce06552e
21 Berg D M, Djemour R, Gütay L, Siebentritt S, Dale P J, Fontane X, Izquierdo-Roca V, Pérez-Rodriguez A. Raman analysis of monoclinic Cu2SnS3 thin films. Applied Physics Letters , 2012, 100(19): 192103-192104
doi: 10.1063/1.4712623
22 Fernandes P A, Salomé P M P, Cunha A F. A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. Journal of Physics D, Applied Physics , 2010, 43(21): 215403, 215403-215411
doi: 10.1088/0022-3727/43/21/215403
23 Chino K, Koike J, Eguchi S, Araki H, Nakamura R, Jimbo K, Katagiri H. Preparation of Cu2SnS3 thin films by sulfurization of Cu/Sn stacked precursors. Japanese Journal of Applied Physics , 2012, 51(10): 10NC35-1-10NC35-4
24 Umehara M, Takeda Y, Motohiro T, Sakai T, Awano H, Maekawa R. Cu2Sn1-xGexS3 (x= 0.17) thin-film solar cells with high conversion efficiency of 6.0%. Applied Physics Express , 2013, 6(4): 045501-045503
doi: 10.7567/APEX.6.045501
25 Naumkin A V, Kraut-Vass A, Gaarenstroom S W, Powell C J. NIST X-ray Photoelectron Spectroscopy Database, Version 4.1. 2013
[1] Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 272-281.
[2] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[3] Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI, Hongwei HAN. Influence of precursor concentration on printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 256-264.
[4] Shuaicheng LU, Chao CHEN, Jiang TANG. Possible top cells for next-generation Si-based tandem solar cells[J]. Front. Optoelectron., 2020, 13(3): 246-255.
[5] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[6] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
[7] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[8] Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Front. Optoelectron., 2018, 11(4): 333-347.
[9] Xiaoyan HU, Heng WANG. ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells[J]. Front. Optoelectron., 2018, 11(3): 285-290.
[10] Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
[11] Yuqin LIAO, Xianyuan JIANG, Wenjia ZHOU, Zhifang SHI, Binghan LI, Qixi MI, Zhijun NING. Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells[J]. Front. Optoelectron., 2017, 10(2): 103-110.
[12] Dong XU, Sheng YIN, Xiangbin ZENG, Song YANG, Xixing WEN. Structural, optical and electrical properties of ZnO: B thin films with different thickness for bifacial a-Si:H/c-Si heterojunction solar cells[J]. Front. Optoelectron., 2017, 10(1): 31-37.
[13] Zhuo DENG,Jiqiang NING,Rongxin WANG,Zhicheng SU,Shijie XU,Zheng XING,Shulong LU,Jianrong DONG,Hui YANG. Influence of temperature and reverse bias on photocurrent spectrum and supra-bandgap spectral response of monolithic GaInP/GaAs double-junction solar cell[J]. Front. Optoelectron., 2016, 9(2): 306-311.
[14] Yinan ZHANG,Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
[15] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed