Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2021, Vol. 15 Issue (3) : 391-405    https://doi.org/10.1007/s11706-021-0560-x
RESEARCH ARTICLE
Corrosion resistance of Ca-P coating induced by layer-by-layer assembled polyvinylpyrrolidone/DNA multilayer on magnesium AZ31 alloy
Zhen-Yu ZHANG1, Duo WANG1, Lu-Xian LIANG1, Shen-Cong CHENG1, Lan-Yue CUI1(), Shuo-Qi LI1, Zhen-Lin WANG3, Rong-Chang ZENG1,2
1. College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
3. College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400065, China
 Download: PDF(4061 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A hydrothermal deposition method was utilized to fabricate Ca-P composite coating induced by the layer-by-layer (LbL) assembled polyvinylpyrrolidone/deoxyribonucleic acid (PVP/DNA)20 multilayer on AZ31 alloy. The surface morphology and compositions were characterized by SEM, EDS, FTIR and XRD. Besides, the corrosion resistance and degradation behavior of the coating were tested via electrochemical polarization, impedance spectroscopy and immersion measurements. Results show that the main components of Ca-P coatings are hydroxyapatite, Ca3(PO4)2 and Mg3(PO4)2·nH2O. The LbL-assembled DNA and PVP promote the adsorption of Ca-P deposits on the sample surface, and structures and functional groups of the polyelectrolyte in the outermost layer are the primary influencing factor for the induction of the Ca-P coating. Carboxyl groups have the best biomineralization effect among all related functional groups. The enhanced corrosion resistance and adhesion highlight a promising use of (PVP/DNA)20-induced Ca-P coatings in the field of biomedical magnesium alloys.

Keywords magnesium alloy      biomaterial      corrosion      layer-by-layer assembly      Ca-P coating     
Corresponding Author(s): Lan-Yue CUI   
Online First Date: 13 July 2021    Issue Date: 24 September 2021
 Cite this article:   
Zhen-Yu ZHANG,Duo WANG,Lu-Xian LIANG, et al. Corrosion resistance of Ca-P coating induced by layer-by-layer assembled polyvinylpyrrolidone/DNA multilayer on magnesium AZ31 alloy[J]. Front. Mater. Sci., 2021, 15(3): 391-405.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-021-0560-x
https://academic.hep.com.cn/foms/EN/Y2021/V15/I3/391
Fig.1  Schematic diagram of Coating II by the LbL assembly and hydrothermal treatment process.
Fig.2  SEM images of (a)(b) Coating I and (c)(d) Coating II corresponding with elemental analysis and Ca/P ratio on AZ31 alloys.
Fig.3  Cross-sectional images and corresponding EDS mapping of (a)(b)(c)(d)(e)(f) Coating I and (g)(h)(i)(j)(k)(l) Coating II.
Fig.4  (A) FTIR spectra and (B) XRD patterns of Coating I (a) and Coating II (b).
Fig.5  Scratch track view of the AZ31 substrate in comparison to (a) Coating I and (b) Coating II.
Fig.6  SEM images of Coating II during the film formation: (a)(b) 10 min, (c)(d) 30 min, (e)(f) 1 h, (g)(f) 2 h, and (i)(j) 3 h. (k) EDS spectra and Ca/P ratio of Coating II in the process of formation (Points 16–18 to be equivalent to Points 4–6 in Fig. 2).
Fig.7  (a) FTIR spectra and (b) XRD patterns of Coating II during the film formation.
Fig.8  Potentiodynamic polarization of the AZ31 substrate (a), Coating I (b), the DNA-(Ca-P) coating (c) and Coating II (d) in HBSS.
Sample Ecorr/V vs. SCE icorr/(A·cm−2) βa/(mV·dec−1) βc/(mV·dec−1) Rp/(Ω·cm2)
AZ31 −1.51 1.63×10−5 54.65 153.21 1.07×106
Coating I −1.66 8.89×10−6 167.88 123.02 3.43×106
DNA-(Ca-P) −1.52 4.58×10−6 133.98 111.12 5.76×106
Coating II −1.63 2.29×10−6 129.63 142.77 1.29×107
Tab.1  Electrochemical parameters of polarization curves for samples in HBSS
Fig.9  (A) Nyquist curves (inset: the corresponding EC model) and (B) Bode plots of the AZ31 substrate (a), Coating I (b), the DNA induced Ca-P coating (c) and Coating II (d) in HBSS.
Sample Rs/(Ω·cm2) CPE/(sn·Ω−1·cm−2) n1 Rf/(Ω·cm2) CPE′/(sn·Ω−1·cm−2) n'1 Rct/(Ω·cm2) chi
AZ31 77.91 1.79×10−5 0.84 2036 8.37×10−4 1.00 658.8 2.91×10−3
Coating I 62.56 8.31×10−6 0.71 2181 4.88×10−5 0.53 6276 6.88×10−4
DNA-(Ca-P) 64.59 1.34×10−5 0.59 1203 7.43×10−6 0.71 5294 2.52×10−3
Coating II 62.91 7.72×10−6 0.70 2371 3.03×10−5 0.71 1.11×104 5.83×10−4
Tab.2  Electrochemical data obtained by EC fitting of EIS curves
Fig.10  HER curves with an immersion of 249 h and photographs of the samples after a 249 h immersion in HBSS: (a) the AZ31 substrate; (b) Coating I; (c) Coating II.
Fig.11  SEM images of (a)(b) the AZ31 substrate, (c)(d) Coating I and (e)(f) Coating II after immersion for 249 h in HBSS.
Fig.12  (A) FTIR spectra and (B) XRD patterns of the AZ31 substrate (a), Coating I (b) and Coating II (c) after an immersion of 249 h in HBSS.
Fig.13  The Ca-P ratio and the icorr value of Ca-P coatings by different inducers [26,44,5357].
Fig.14  Comparison of the Ca/P ratio, thickness, icorr value and HER of Coating II and Ca/P/(PVP/PAA)5.5 coating [26].
Fig.15  Schematic diagram of film formation mechanism for Coating II.
1 C Zhang, J Lin, N T Nguyen, et al.. Antimicrobial bioresorbable Mg–Zn–Ca alloy for bone repair in a comparison study with Mg–Zn–Sr alloy and pure Mg. ACS Biomaterials Science & Engineering, 2020, 6(1): 517–538
https://doi.org/10.1021/acsbiomaterials.9b00903 pmid: 33463195
2 J Zhang, L Tang, H Qi, et al.. Dual function of magnesium in bone biomineralization. Advanced Healthcare Materials, 2019, 8(21): 1901030
https://doi.org/10.1002/adhm.201901030 pmid: 31583846
3 Z Q Zhang, L Wang, M Q Zeng, et al.. Biodegradation behavior of micro-arc oxidation coating on magnesium alloy — From a protein perspective. Bioactive Materials, 2020, 5(2): 398–409
https://doi.org/10.1016/j.bioactmat.2020.03.005 pmid: 32258829
4 G Chandra, A Pandey. Preparation strategies for Mg-alloys for biodegradable orthopaedic implants and other biomedical applications: A review. IRBM, 2020 (in press)
https://doi.org/10.1016/j.irbm.2020.06.003
5 C Y Li, C Yu, R C Zeng, et al.. In vitro corrosion resistance of a Ta2O5 nanofilm on MAO coated magnesium alloy AZ31 by atomic layer deposition. Bioactive Materials, 2020, 5(1): 34–43
https://doi.org/10.1016/j.bioactmat.2019.12.001 pmid: 31956734
6 L Y Cui, P H Qin, X L Huang, et al.. Electrodeposition of TiO2 layer-by-layer assembled composite coating and silane treatment on Mg alloy for corrosion resistance. Surface and Coatings Technology, 2017, 324: 560–568
https://doi.org/10.1016/j.surfcoat.2017.06.015
7 L Y Cui, H P Liu, K Xue, et al.. In vitro corrosion and antibacterial performance of micro-arc oxidation coating on AZ31 magnesium alloy: Effects of tannic acid. Journal of the Electrochemical Society, 2018, 165(11): C821–C829
https://doi.org/10.1149/2.0941811jes
8 L Y Cui, G B Wei, Z Z Han, et al.. In vitro corrosion resistance and antibacterial performance of novel tin dioxide-doped calcium phosphate coating on degradable Mg–1Li–1Ca alloy. Journal of Materials Science and Technology, 2019, 35(3): 254–265
https://doi.org/10.1016/j.jmst.2018.09.052
9 L Y Cui, S D Gao, P P Li, et al.. Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2017, 118: 84–95
https://doi.org/10.1016/j.corsci.2017.01.025
10 L Chen, Y Sheng, H Zhou, et al.. Influence of a MAO + PLGA coating on biocorrosion and stress corrosion cracking behavior of a magnesium alloy in a physiological environment. Corrosion Science, 2019, 148: 134–143
https://doi.org/10.1016/j.corsci.2018.12.005
11 Y Q Chen, S Zhao, M Y Chen, et al.. Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection. Corrosion Science, 2015, 96: 67–73
https://doi.org/10.1016/j.corsci.2015.03.020
12 S Kunjukunju, A Roy, M Ramanathan, et al.. A layer-by-layer approach to natural polymer-derived bioactive coatings on magnesium alloys. Acta Biomaterialia, 2013, 9(10): 8690–8703
https://doi.org/10.1016/j.actbio.2013.05.013 pmid: 23707500
13 L Guo, F Zhang, L Song, et al.. Corrosion resistance of ceria/polymethyltrimethoxysilane modified magnesium hydroxide coating on AZ31 magnesium alloy. Surface and Coatings Technology, 2017, 328: 121–133
https://doi.org/10.1016/j.surfcoat.2017.08.039
14 F Wu, T Y Li, S C Su, et al.. STC2 as a novel mediator for Mus81-dependent proliferation and survival in hepatocellular carcinoma. Cancer Science, 2018, 109(S1): 1121
15 A Ali, F Iqbal, A Ahmad, et al.. Hydrothermal deposition of high strength calcium phosphate coatings on magnesium alloy for biomedical applications. Surface and Coatings Technology, 2019, 357: 716–727
https://doi.org/10.1016/j.surfcoat.2018.09.016
16 R J Kavitha, K Ravichandran, T S N S Narayanan. Deposition of strontium phosphate coatings on magnesium by hydrothermal treatment: Characteristics, corrosion resistance and bioactivity. Journal of Alloys and Compounds, 2018, 745: 725–743
https://doi.org/10.1016/j.jallcom.2018.02.200
17 R C Zeng, X X Sun, Y W Song, et al.. Influence of solution temperature on corrosion resistance of Zn–Ca phosphate conversion coating on biomedical Mg–Li–Ca alloys. Transactions of Nonferrous Metals Society of China, 2013, 23(11): 3293–3299
https://doi.org/10.1016/S1003-6326(13)62866-6
18 M Yeganeh, N Mohammadi. Superhydrophobic surface of Mg alloys: A review. Journal of Magnesium and Alloys, 2018, 6(1): 59–70
https://doi.org/10.1016/j.jma.2018.02.001
19 Q Li, Q Zhang, M An. Enhanced corrosion and wear resistance of AZ31 magnesium alloy in simulated body fluid via electrodeposition of nanocrystalline zinc. Materialia, 2018, 4: 282–286
https://doi.org/10.1016/j.mtla.2018.09.038
20 C Wen, X Zhan, X Huang, et al.. Characterization and corrosion properties of hydroxyapatite/graphene oxide bio-composite coating on magnesium alloy by one-step micro-arc oxidation method. Surface and Coatings Technology, 2017, 317: 125–133
https://doi.org/10.1016/j.surfcoat.2017.03.034
21 C Y Li, X L Fan, L Y Cui, et al.. Corrosion resistance and electrical conductivity of a nano ATO-doped MAO/methyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2020, 168: 108570
https://doi.org/10.1016/j.corsci.2020.108570
22 Z Q Zhang, R C Zeng, C G Lin, et al.. Corrosion resistance of self-cleaning silane/polypropylene composite coatings on magnesium alloy AZ31. Journal of Materials Science and Technology, 2020, 41: 43–55
https://doi.org/10.1016/j.jmst.2019.08.056
23 Y Su, K Li, L Zhang, et al.. Ca–P bioactive coating prepared by combining microwave-hydrothermal and supersonic atmospheric plasma spraying methods. Materials Science and Engineering C: Materials for Biological Applications, 2017, 72: 371–377
https://doi.org/10.1016/j.msec.2016.11.099 pmid: 28024599
24 D H He, P Liu, X K Liu, et al.. Hydroxyapatite bioceramic coatings prepared by hydrothermal-electrochemical deposition method. Journal of Wuhan University of Technology: Materials Science Edition, 2014, 29(2): 398–400
https://doi.org/10.1007/s11595-014-0928-1
25 L Y Li, L Y Cui, B Liu, et al.. Corrosion resistance of glucose-induced hydrothermal calcium phosphate coating on pure magnesium. Applied Surface Science, 2019, 465: 1066–1077
https://doi.org/10.1016/j.apsusc.2018.09.203
26 L Y Cui, S C Cheng, L X Liang, et al.. In vitro corrosion resistance of layer-by-layer assembled polyacrylic acid multilayers induced Ca–P coating on magnesium alloy AZ31. Bioactive Materials, 2020, 5(1): 153–163
https://doi.org/10.1016/j.bioactmat.2020.02.001 pmid: 32083229
27 J J van den Beucken, M R Vos, P C Thüne, et al.. Fabrication, characterization, and biological assessment of multilayered DNA-coatings for biomaterial purposes. Biomaterials, 2006, 27(5): 691–701
https://doi.org/10.1016/j.biomaterials.2005.06.015 pmid: 16076484
28 E Duffy, J Florek, S Colon, et al.. Selected DNA aptamers as hydroxyapatite affinity reagents. Analytica Chimica Acta, 2020, 1110: 115–121
https://doi.org/10.1016/j.aca.2020.03.029 pmid: 32278386
29 J J J P van den Beucken, X F Walboomers, S C G Leeuwenburgh, et al.. Multilayered DNA coatings: In vitro bioactivity studies and effects on osteoblast-like cell behavior. Acta Biomaterialia, 2007, 3(4): 587–596
https://doi.org/10.1016/j.actbio.2006.12.007 pmid: 17317349
30 W L Gao, B Feng, Y X Ni, et al.. Protein adsorption and biomimetic mineralization behaviors of PLL-DNA multilayered films assembled onto titanium. Applied Surface Science, 2010, 257(2): 538–546
https://doi.org/10.1016/j.apsusc.2010.07.029
31 T Sakurai, M Yoshinari, T Toyama, et al.. Effects of a multilayered DNA/protamine coating on titanium implants on bone responses. Journal of Biomedical Materials Research Part A, 2016, 104(6): 1500–1509
https://doi.org/10.1002/jbm.a.35679 pmid: 26860353
32 G Zuo, Y Wan, X Meng, et al.. Synthesis and characterization of a lamellar hydroxyapatite/DNA nanohybrid. Materials Chemistry and Physics, 2011, 126(3): 470–475
https://doi.org/10.1016/j.matchemphys.2010.12.060
33 K Hu, J Zhuang, J Ding, et al.. Influence of biomacromolecule DNA corrosion inhibitor on carbon steel. Corrosion Science, 2017, 125: 68–76
https://doi.org/10.1016/j.corsci.2017.06.004
34 S C Ngourn, H A Butts, A R Petty, et al.. Quartz crystal microbalance analysis of DNA-templated calcium phosphate mineralization. Langmuir, 2012, 28(33): 12151–12158
https://doi.org/10.1021/la300949y pmid: 22831705
35 L Y Cui, R C Zeng, S Q Li, et al.. Corrosion resistance of layer-by-layer assembled polyvinylpyrrolidone/polyacrylic acid and amorphous silica films on AZ31 magnesium alloys. RSC Advances, 2016, 6(68): 63107–63116
https://doi.org/10.1039/C6RA08613F
36 S Saravanan, R S Leena, N Selvamurugan. Chitosan based biocomposite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2016, 93(Pt B): 1354–1365
https://doi.org/10.1016/j.ijbiomac.2016.01.112 pmid: 26845481
37 R Sruthi, K Balagangadharan, N Selvamurugan. Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration. Colloids and Surfaces B: Biointerfaces, 2020, 193: 111110
https://doi.org/10.1016/j.colsurfb.2020.111110 pmid: 32416516
38 Q Yao, W Li, S Yu, et al.. Multifunctional chitosan/polyvinyl pyrrolidone/45S5 Bioglass®scaffolds for MC3T3-E1 cell stimulation and drug release. Materials Science and Engineering C: Materials for Biological Applications, 2015, 56: 473–480
https://doi.org/10.1016/j.msec.2015.06.046 pmid: 26249617
39 F Fan, C Zhou, X Wang, et al.. Layer-by-layer assembly of a self-healing anticorrosion coating on magnesium alloys. ACS Applied Materials & Interfaces, 2015, 7(49): 27271–27278
https://doi.org/10.1021/acsami.5b08577 pmid: 26583562
40 Y B Zhao, H P Liu, C Y Li, et al.. Corrosion resistance and adhesion strength of a spin-assisted layer-by-layer assembled coating on AZ31 magnesium alloy. Applied Surface Science, 2018, 434: 787–795
https://doi.org/10.1016/j.apsusc.2017.11.012
41 S A Yavari, M Croes, B Akhavan, et al.. Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials. Additive Manufacturing, 2020, 32: 100991
https://doi.org/10.1016/j.addma.2019.100991
42 K Abdelkebir, S Morin-Grognet, F Gaudière, et al.. Biomimetic layer-by-layer templates for calcium phosphate biomineralization. Acta Biomaterialia, 2012, 8(9): 3419–3428
https://doi.org/10.1016/j.actbio.2012.05.035 pmid: 22683877
43 P Liu, J M Wang, X T Yu, et al.. Corrosion resistance of bioinspired DNA-induced Ca–P coating on biodegradable magnesium alloy. Journal of Magnesium and Alloys, 2019, 7(1): 144–154
https://doi.org/10.1016/j.jma.2019.01.004
44 C Y Li, X L Fan, R C Zeng, et al.. Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31 — Influence of EDTA. Journal of Materials Science and Technology, 2019, 35(6): 1088–1098
https://doi.org/10.1016/j.jmst.2019.01.006
45 Z J Jia, M Li, Q Liu, et al.. Micro-arc oxidization of a novel Mg–1Ca alloy in three alkaline KF electrolytes: Corrosion resistance and cytotoxicity. Applied Surface Science, 2014, 292: 1030–1039
https://doi.org/10.1016/j.apsusc.2013.11.038
46 W Cui, E Beniash, E Gawalt, et al.. Biomimetic coating of magnesium alloy for enhanced corrosion resistance and calcium phosphate deposition. Acta Biomaterialia, 2013, 9(10): 8650–8659
https://doi.org/10.1016/j.actbio.2013.06.031 pmid: 23816653
47 M Isakhani-Zakaria, S R Allahkaram, H A Ramezani-Varzaneh. Evaluation of corrosion behaviour of Pb-Co3O4 electrodeposited coating using EIS method. Corrosion Science, 2019, 157: 472–480
https://doi.org/10.1016/j.corsci.2019.06.023
48 H A Ramezani-Varzaneh, S R Allahkaram, M Isakhani-Zakaria. Effects of phosphorus content on corrosion behavior of trivalent chromium coatings in 3.5 wt.% NaCl solution. Surface and Coatings Technology, 2014, 244: 158–165
https://doi.org/10.1016/j.surfcoat.2014.02.002
49 J B Jorcin, M E Orazem, N Pébère, et al.. CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta, 2006, 51(8–9): 1473–1479
https://doi.org/10.1016/j.electacta.2005.02.128
50 G J Gao, M Q Zeng, E L Zhang, et al.. Dealloying corrosion of anodic and nanometric Mg41Nd5 in solid solution-treated Mg–3Nd–1Li–0.2Zn alloy. Journal of Materials Science and Technology, 2021, 83: 161–178
https://doi.org/10.1016/j.jmst.2020.12.049
51 C Y Li, X L Fan, L Y Cui, et al.. Corrosion resistance and electrical conductivity of a nano ATO-doped MAO/methyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2020, 168: 108570
https://doi.org/10.1016/j.corsci.2020.108570
52 Y Huang, M Hao, X F Nian, et al.. Strontium and copper co-substituted hydroxyapatite-based coatings with improved antibacterial activity and cytocompatibility fabricated by electrodeposition. Ceramics International, 2016, 42(10): 11876–11888
https://doi.org/10.1016/j.ceramint.2016.04.110
53 S Jiang, S Cai, F Zhang, et al.. Synthesis and characterization of magnesium phytic acid/apatite composite coating on AZ31 Mg alloy by microwave assisted treatment. Materials Science and Engineering C: Materials for Biological Applications, 2018, 91: 218–227
https://doi.org/10.1016/j.msec.2018.05.041 pmid: 30033249
54 B P Lin, M Zhong, C D Zheng, et al.. Preparation and characterization of dopamine-induced biomimetic hydroxyapatite coatings on the AZ31 magnesium alloy. Surface and Coatings Technology, 2015, 281: 82–88
https://doi.org/10.1016/j.surfcoat.2015.09.033
55 X J Ji, L Gao, J C Liu, et al.. Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys. Colloids and Surfaces B: Biointerfaces, 2019, 179: 429–436
https://doi.org/10.1016/j.colsurfb.2019.04.029 pmid: 31005002
56 X J Ji, L Gao, J C Liu, et al.. Corrosion resistance and antibacterial activity of hydroxyapatite coating induced by ciprofloxacin-loaded polymeric multilayers on magnesium alloy. Progress in Organic Coatings, 2019, 135: 465–474
https://doi.org/10.1016/j.porgcoat.2019.06.048
57 L Y Cui, X H Fang, W Cao, et al.. In vitro corrosion resistance of a layer-by-layer assembled DNA coating on magnesium alloy. Applied Surface Science, 2018, 457: 49–58
https://doi.org/10.1016/j.apsusc.2018.06.240
58 J Ma, J Wang, X Ai, et al.. Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates. Biotechnology Advances, 2014, 32(4): 744–760
https://doi.org/10.1016/j.biotechadv.2013.10.014 pmid: 24211471
59 R C Zeng, F Zhang, Z D Lan, et al.. Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys. Corrosion Science, 2014, 88: 452–459
https://doi.org/10.1016/j.corsci.2014.08.007
60 R C Zeng, Z D Lan, L H Kong, et al.. Characterization of calcium-modified zinc phosphate conversion coatings and their influences on corrosion resistance of AZ31 alloy. Surface and Coatings Technology, 2011, 205(11): 3347–3355
https://doi.org/10.1016/j.surfcoat.2010.11.027
[1] Lei CHANG, Xiangrui LI, Xuhui TANG, He ZHANG, Ding HE, Yujun WANG, Jiayin ZHAO, Jingan LI, Jun WANG, Shijie ZHU, Liguo WANG, Shaokang GUAN. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance[J]. Front. Mater. Sci., 2020, 14(4): 413-425.
[2] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[3] Zheng-Zheng YIN, Wei HUANG, Xiang SONG, Qiang ZHANG, Rong-Chang ZENG. Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content[J]. Front. Mater. Sci., 2020, 14(3): 296-313.
[4] Huan-Yan XU, Dan LU, Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating[J]. Front. Mater. Sci., 2020, 14(2): 211-220.
[5] Zai-Meng QIU, Fen ZHANG, Jun-Tong CHU, Yu-Chao LI, Liang SONG. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
[6] Wei WU, Fen ZHANG, Yu-Chao LI, Yong-Feng ZHOU, Qing-Song YAO, Liang SONG, Rong-Chang ZENG, Sie Chin TJONG, Dong-Chu CHEN. Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy[J]. Front. Mater. Sci., 2019, 13(4): 420-430.
[7] Xiao-Jing JI, Qiang CHENG, Jing WANG, Yan-Bin ZHAO, Zhuang-Zhuang HAN, Fen ZHANG, Shuo-Qi LI, Rong-Chang ZENG, Zhen-Lin WANG. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
[8] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[9] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[10] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[11] Lan-Yue CUI, Xiao-Ting LI, Rong-Chang ZENG, Shuo-Qi LI, En-Hou HAN, Liang SONG. In vitro corrosion of Mg--Ca alloy --- The influence of glucose content[J]. Front. Mater. Sci., 2017, 11(3): 284-295.
[12] Xuran GUO,Kaile ZHANG,Mohamed EL-AASSAR,Nanping WANG,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Qiang FU,Xiumei MO. The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty[J]. Front. Mater. Sci., 2016, 10(4): 346-357.
[13] Tao JIN,Fan-mei KONG,Rui-qin BAI,Ru-liang ZHANG. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy[J]. Front. Mater. Sci., 2016, 10(4): 367-374.
[14] Li-Da HOU,Zhen LI,Yu PAN,MuhammadIqbal SABIR,Yu-Feng ZHENG,Li LI. A review on biodegradable materials for cardiovascular stent application[J]. Front. Mater. Sci., 2016, 10(3): 238-259.
[15] Yu-Hong ZOU,Rong-Chang ZENG,Qing-Zhao WANG,Li-Jun LIU,Qian-Qian XU,Chuang WANG,Zhiwei LIU. Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy[J]. Front. Mater. Sci., 2016, 10(3): 281-289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed