Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2024, Vol. 18 Issue (1) : 240678    https://doi.org/10.1007/s11706-024-0678-8
Hydroxyapatite/palmitic acid superhydrophobic composite coating on AZ31 magnesium alloy with both corrosion resistance and bacterial inhibition
Hang Zhang1, Shu Cai1(), Huanlin Zhang1, Lei Ling1, You Zuo1, Hao Tian1, Tengfei Meng1, Guohua Xu2(), Xiaogang Bao2, Mintao Xue2
1. Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
2. Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
 Download: PDF(6642 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The coating-modified magnesium (Mg) alloys exhibit controllable corrosion resistance, but the insufficient antibacterial performance limits their clinical applications as degradable implants. Superhydrophobic coatings show excellent performance in terms of both corrosion resistance and inhibition of bacterial adhesion and growth. In this work, a hydroxyapatite (HA)/palmitic acid (PA) superhydrophobic composite coating was fabricated on the Mg alloy by the hydrothermal technique and immersion treatment. The HA/PA composite coating showed superhydrophobicity with a contact angle of 153° and a sliding angle of 2°. The coated Mg alloy exhibited excellent corrosion resistance in the simulated body fluid, with high polarization resistance (77.10 kΩ·cm2) and low corrosion current density ((0.491 ± 0.015) μA·cm−2). Meanwhile, the antibacterial efficiency of the composite coating was over 98% against E. coli and S. aureus in different periods. The results indicate that the construction of such superhydrophobic composite coating (HA/PA) on the Mg alloy can greatly improve the corrosion resistance of Mg alloy implants within the human body and avoid bacterial infection during the initial stages of implantation.

Keywords superhydrophobic coating      hydroxyapatite      corrosion resistance      antibacterial     
Corresponding Author(s): Shu Cai,Guohua Xu   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Issue Date: 22 April 2024
 Cite this article:   
Hang Zhang,Shu Cai,Huanlin Zhang, et al. Hydroxyapatite/palmitic acid superhydrophobic composite coating on AZ31 magnesium alloy with both corrosion resistance and bacterial inhibition[J]. Front. Mater. Sci., 2024, 18(1): 240678.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-024-0678-8
https://academic.hep.com.cn/foms/EN/Y2024/V18/I1/240678
Fig.1  XRD patterns of samples: HA (a); P0.05 (b); P0.1 (c); P0.15 (d).
Fig.2  FTIR patterns of sample HA, sample P0.1, and pure PA.
Fig.3  Contact angles and sliding angles for different samples.
Fig.4  SEM images (upper) and EDS patterns (lower) of samples: (a)(e) HA; (b)(f) P0.05; (c)(g) P0.1; (d)(h) P0.15.
Fig.5  Surface roughnesses of samples: (a) HA; (b) P0.05; (c) P0.1; (d) P0.15.
SampleEcorr/V vs. SCEicorr/(μA·cm?2)
Naked Mg alloy?1.833 ± 0.01238.550 ± 2.910
HA?1.518 ± 0.0150.805 ± 0.056
P0.1?1.622 ± 0.0130.491 ± 0.015
Tab.1  Ecorr and icorr values of naked Mg alloy, sample HA, and sample P0.1
Fig.6  Electrochemical test results for naked Mg alloy, HA, and P0.1 in SBF: (a) DPP curves; (b) EIS curves; (c) equivalent circuit for naked Mg alloy; (d) equivalent circuit for sample HA; (e) equivalent circuit for sample P0.1.
SampleRs/(Ω·cm2)R1/(kΩ·cm2)n1CPE1/(S·cm?2·sn)R2/(kΩ·cm2)n2CPE2/(S·cm?2·sn)R3/(kΩ·cm2)
Naked Mg alloy24.810.30
HA140.120.988.32 × 10?812.99
P0.1836.600.671.11 × 10?53.810.905.41 × 10?917.15
Samplen3CPE3/(S·cm?2·sn)Rct/(kΩ·cm2)ndlCPEdl/(S·cm?2·sn)Rp/(kΩ·cm2)chi-squared
Naked Mg alloy0.832.18 × 10?50.040.922.28 × 10?30.348.82×10?4
HA0.581.32 × 10?517.970.985.53 × 10?631.081.19×10?3
P0.10.552.26 × 10?619.5416.79 × 10?577.102.06×10?3
Tab.2  EIS spectral fitting parameters for naked Mg alloy, sample HA, and sample P0.1
Fig.7  SEM images of different samples after incubation for 4, 6, and 8 h in the E. coli bacterial solution: (a)(d)(g) naked Mg alloy; (b)(e)(h) HA; (c)(f)(i) P0.1.
Fig.8  SEM images of different samples after incubation for 4, 6, and 8 h in the S. aureus bacterial solution: (a)(d)(g) naked Mg alloy; (b)(e)(h) HA; (c)(f)(i) P0.1.
Fig.9  Fluorescence images (left) and fluorescence area percentages (right) of sample HA and sample P0.1 after incubation for 4, 6, and 8 h in different bacterial solutions: (a)(b) E. coli; (c)(d) S. aureus.
1 A, Kashirina Y T, Yao Y J, Liu et al.. Biopolymers as bone substitutes: a review.Biomaterials Science, 2019, 7(10): 3961–3983
https://doi.org/10.1039/C9BM00664H
2 M S, Song R C, Zeng Y F, Ding et al.. Recent advances in biodegradation controls over Mg alloys for bone fracture management: a review.Journal of Materials Science and Technology, 2019, 35(4): 535–544
https://doi.org/10.1016/j.jmst.2018.10.008
3 V, Tsakiris C, Tardei F M Clicinschi . Biodegradable Mg alloys for orthopedic implants — a review.Journal of Magnesium and Alloys, 2021, 9(6): 1884–1905
https://doi.org/10.1016/j.jma.2021.06.024
4 Z Q, Shen M, Zhao X, Zhou et al.. A numerical corrosion-fatigue model for biodegradable Mg alloy stents.Acta Biomaterialia, 2019, 97: 671–680
https://doi.org/10.1016/j.actbio.2019.08.004
5 R, Moaref M H, Shahini H E, Mohammadloo et al.. Application of sustainable polymers for reinforcing bio-corrosion protection of magnesium implants — a review.Sustainable Chemistry and Pharmacy, 2022, 29(Oct): 100780
https://doi.org/10.1016/j.scp.2022.100780
6 D, Li D N, Dai G G, Xiong et al.. Composite nanocoatings of biomedical magnesium alloy implants: advantages, mechanisms, and design strategies.Advanced Science, 2023, 10(18): 2300658 (19 pages)
https://doi.org/10.1002/advs.202300658
7 P, Wan L L, Tan K Yang . Surface modification on biodegradable magnesium alloys as orthopedic implant materials to improve the bio-adaptability: a review.Journal of Materials Science and Technology, 2016, 32(9): 827–834
https://doi.org/10.1016/j.jmst.2016.05.003
8 M, Ali M, Elsherif A E, Salih et al.. Surface modification and cytotoxicity of Mg-based bio-alloys: an overview of recent advances.Journal of Alloys and Compounds, 2020, 825: 154140
https://doi.org/10.1016/j.jallcom.2020.154140
9 X, Sun Q S, Yao Y C, Li et al.. Biocorrosion resistance and biocompatibility of Mg‒Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31.Frontiers of Materials Science, 2020, 14(4): 426–441
https://doi.org/10.1007/s11706-020-0522-8
10 Z, Asemabadi A M, Korrani M M, Dolatabadi et al.. Modification of hydroxyapatite coating in the presence of adipic acid for Mg-based implant application.Progress in Organic Coatings, 2022, 172: 107088
https://doi.org/10.1016/j.porgcoat.2022.107088
11 A, Rezaei R B, Golenji F, Alipour et al.. Hydroxyapatite/hydroxyapatite‒magnesium double-layer coatings as potential candidates for surface modification of 316 LVM stainless steel implants.Ceramics International, 2020, 46(16): 25374–25381
https://doi.org/10.1016/j.ceramint.2020.07.005
12 S, Roshan H E, Mohammadloo A A, Sarabi et al.. Biocompatible hybrid chitosan/hydroxyapatite coating applied on the AZ31 Mg alloy substrate: in-vitro corrosion, surface and structure studies.Materials Today: Communications, 2022, 30: 103153
https://doi.org/10.1016/j.mtcomm.2022.103153
13 M, Rahman Y C, Li C E Wen . HA coating on Mg alloys for biomedical applications: a review.Journal of Magnesium and Alloys, 2020, 8(3): 929–943
https://doi.org/10.1016/j.jma.2020.05.003
14 H, Asadi S, Ghalei H, Handa et al.. Cellulose nanocrystal reinforced silk fibroin coating for enhanced corrosion protection and biocompatibility of Mg-based alloys for orthopedic implant applications.Progress in Organic Coatings, 2021, 161: 106525
https://doi.org/10.1016/j.porgcoat.2021.106525
15 Z Y, Zhang D, Wang L X, Liang et al.. Corrosion resistance of Ca‒P coating induced by layer-by-layer assembled polyvinylpyrrolidone/DNA multilayer on magnesium AZ31 alloy.Frontiers of Materials Science, 2021, 15(3): 391–405
https://doi.org/10.1007/s11706-021-0560-x
16 D, Arcos M Vallet-Regi . Substituted hydroxyapatite coatings of bone implants.Journal of Materials Chemistry B: Materials for Biology and Medicine, 2020, 8(9): 1781–1800
https://doi.org/10.1039/C9TB02710F
17 T T, Li L, Ling M C, Lin et al.. Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition.Journal of Materials Science, 2020, 55(15): 6352–6374
https://doi.org/10.1007/s10853-020-04467-z
18 Q X, Hu Y H, Wang S H, Liu et al.. 3D printed polyetheretherketone bone tissue substitute modified via amoxicillin-laden hydroxyapatite nanocoating.Journal of Materials Science, 2022, 57(39): 18601–18614
https://doi.org/10.1007/s10853-022-07782-9
19 L, Chang X, Li X, Tang et al.. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg‒Zn‒Y‒Nd‒Zr alloys for better corrosion resistance and cell behavior guidance.Frontiers of Materials Science, 2020, 14(4): 413–425
https://doi.org/10.1007/s11706-020-0525-5
20 S B, Shen S, Cai Y, Li et al.. Microwave aqueous synthesis of hydroxyapatite bilayer coating on magnesium alloy for orthopedic application.Chemical Engineering Journal, 2017, 309: 278–287
https://doi.org/10.1016/j.cej.2016.10.043
21 A M, Zhang P, Lenin R C, Zeng et al.. Advances in hydroxyapatite coatings on biodegradable magnesium and its alloys.Journal of Magnesium and Alloys, 2022, 10(5): 1154–1170
https://doi.org/10.1016/j.jma.2022.01.001
22 Y K, Wang W, Teng Z, Zhang et al.. A trilogy antimicrobial strategy for multiple infections of orthopedic implants throughout their life cycle.Bioactive Materials, 2021, 6(7): 1853–1866
https://doi.org/10.1016/j.bioactmat.2020.11.030
23 N, Wang Y T, Ma H X, Shi et al.. Mg-, Zn-, and Fe-based alloys with antibacterial properties as orthopedic implant materials.Frontiers in Bioengineering and Biotechnology, 2022, 10: 888084
https://doi.org/10.3389/fbioe.2022.888084
24 G Q, Xu X K, Shen L L, Dai et al.. Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates.Materials Science and Engineering C, 2017, 70: 386–395
https://doi.org/10.1016/j.msec.2016.08.050
25 M, Tian S, Cai L, Ling et al.. Superhydrophilic hydroxyapatite/hydroxypropyltrimethyl ammonium chloride chitosan composite coating for enhancing the antibacterial and corrosion resistance of magnesium alloy.Progress in Organic Coatings, 2022, 165: 106745
https://doi.org/10.1016/j.porgcoat.2022.106745
26 X J, He G, Zhang H, Zhang et al.. Cu and Si co-doped microporous TiO2 coating for osseointegration by the coordinated stimulus action.Applied Surface Science, 2020, 503: 144072
https://doi.org/10.1016/j.apsusc.2019.144072
27 P, Mahmoudi M R, Akbarpour H B, Lakeh et al.. Antibacterial Ti‒Cu implants: a critical review on mechanisms of action.Materials Today: Bio, 2022, 17: 100447
https://doi.org/10.1016/j.mtbio.2022.100447
28 P, Makvandi C Y, Wang E N, Zare et al.. Metal-based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects.Advanced Functional Materials, 2020, 30(22): 1910021
https://doi.org/10.1002/adfm.201910021
29 J Y, Sun X, Liu C, Lyu et al.. Synergistic antibacterial effect of graphene-coated titanium loaded with levofloxacin.Colloids and Surfaces B: Biointerfaces, 2021, 208: 112090
https://doi.org/10.1016/j.colsurfb.2021.112090
30 M K, Peng F, Hu M, Du et al.. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities.Frontiers of Materials Science, 2020, 14(1): 14–23
https://doi.org/10.1007/s11706-020-0489-5
31 X J, Ji Q, Cheng J, Wang et al.. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy.Frontiers of Materials Science, 2019, 13(1): 87–98
https://doi.org/10.1007/s11706-019-0448-1
32 H, Ahmadi R, Ghamsarizade V, Haddadi-Asl et al.. Designing a novel bio-compatible hydroxyapatite (HA)/hydroxyquinoline (8-HQ)-inbuilt polyvinylalcohol (PVA) composite coatings on Mg AZ31 implants via electrospinning and immersion protocols: smart anti-corrosion and anti-bacterial properties reinforcements.Journal of Industrial and Engineering Chemistry, 2022, 116: 556–571
https://doi.org/10.1016/j.jiec.2022.09.043
33 Y T, Guo S, Jia L, Qiao et al.. A multifunctional polypyrrole/zinc oxide composite coating on biodegradable magnesium alloys for orthopedic implants.Colloids and Surfaces B: Biointerfaces, 2020, 194: 111186
https://doi.org/10.1016/j.colsurfb.2020.111186
34 X J, Ji L, Gao J C, Liu et al.. Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys.Colloids and Surfaces B: Biointerfaces, 2019, 179: 429–436
https://doi.org/10.1016/j.colsurfb.2019.04.029
35 E M, Darby E, Trampari P, Siasat et al.. Molecular mechanisms of antibiotic resistance revisited.Nature Reviews: Microbiology, 2023, 21(5): 280–295
https://doi.org/10.1038/s41579-022-00820-y
36 C H, Moon S, Yasmeen K, Park et al.. Icephobic coating through a self-formed superhydrophobic surface using a polymer and microsized particles.ACS Applied Materials & Interfaces, 2022, 14(2): 3334–3343
https://doi.org/10.1021/acsami.1c22404
37 M P, Yang W Q, Liu C, Jiang et al.. Facile fabrication of robust fluorine-free superhydrophobic cellulosic fabric for self-cleaning, photocatalysis and UV shielding.Cellulose, 2019, 26(13–14): 8153–8164
https://doi.org/10.1007/s10570-019-02640-5
38 Q H, Zeng H, Zhou J X, Huang et al.. Review on the recent development of durable superhydrophobic materials for practical applications.Nanoscale, 2021, 13(27): 11734–11764
https://doi.org/10.1039/D1NR01936H
39 A, Khadak B, Subeshan R Asmatulu . Studies on de-icing and anti-icing of carbon fiber-reinforced composites for aircraft surfaces using commercial multifunctional permanent superhydrophobic coatings.Journal of Materials Science, 2021, 56(4): 3078–3094
https://doi.org/10.1007/s10853-020-05459-9
40 Y H, Sun Z G Guo . Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature.Nanoscale Horizons, 2019, 4(1): 52–76
https://doi.org/10.1039/C8NH00223A
41 Y F, Si Z C, Dong L Jiang . Bioinspired designs of superhydrophobic and superhydrophilic materials.ACS Central Science, 2018, 4(9): 1102–1112
https://doi.org/10.1021/acscentsci.8b00504
42 K D, Esmeryan I A, Avramova C E, Castano et al.. Early stage anti-bioadhesion behavior of superhydrophobic soot based coatings towards Pseudomonas putida.Materials & Design, 2018, 160: 395–404
https://doi.org/10.1016/j.matdes.2018.09.037
43 E, Sharifikolouei Z, Najmi A, Cochis et al.. Generation of cytocompatible superhydrophobic Zr‒Cu‒Ag metallic glass coatings with antifouling properties for medical textiles.Materials Today: Bio, 2021, 12: 100148
https://doi.org/10.1016/j.mtbio.2021.100148
44 X H, Wu Y K, Liew W M, Lim et al.. Blood compatible and noncytotoxic superhydrophobic graphene/titanium dioxide coating with antibacterial and antibiofilm properties.Journal of Applied Polymer Science, 2023, 140(11): e53629
https://doi.org/10.1002/app.53629
45 X Y, Wu F, Yang J, Gan et al.. A superhydrophobic, antibacterial, and durable surface of poplar wood.Nanomaterials, 2021, 11(8): 1885
https://doi.org/10.3390/nano11081885
46 S, Izadyar M, Aghabozorgi M Azadfallah . Palmitic acid functionalization of cellulose fibers for enhancing hydrophobic property.Cellulose, 2020, 27(10): 5871–5878
https://doi.org/10.1007/s10570-020-03174-x
47 J, Li R, Gao Y, Wang et al.. Superhydrophobic palmitic acid modified Cu(OH)2/CuS nanocomposite-coated copper foam for efficient separation of oily wastewater.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637: 128249
https://doi.org/10.1016/j.colsurfa.2022.128249
48 S M Innis . Palmitic acid in early human development.Critical Reviews in Food Science and Nutrition, 2016, 56(12): 1952–1959
https://doi.org/10.1080/10408398.2015.1018045
49 S, Fatima X, Hu R H, Gong et al.. Palmitic acid is an intracellular signaling molecule involved in disease development.Cellular and Molecular Life Sciences, 2019, 76(13): 2547–2557
https://doi.org/10.1007/s00018-019-03092-7
50 A, Bahmani M, Lotfpour M, Taghizadeh et al.. Corrosion behavior of severely plastically deformed Mg and Mg alloys.Journal of Magnesium and Alloys, 2022, 10(10): 2607–2648
https://doi.org/10.1016/j.jma.2022.09.007
51 J Y, Sun S, Cai J, Wei et al.. Long-term corrosion resistance and fast mineralization behavior of micro‒nano hydroxyapatite coated magnesium alloy in vitro.Ceramics International, 2020, 46(1): 824–832
https://doi.org/10.1016/j.ceramint.2019.09.038
52 Y Y, Ouyang Z, Zhang W, Huang et al.. Electrodeposition of F-doped hydroxyapatite‒TiO2 coating on AZ31 magnesium alloy for enhancing corrosion protection and biocompatibility.Journal of Materials Science, 2022, 57(36): 17188–17202
https://doi.org/10.1007/s10853-022-07732-5
53 L, Ling S, Cai Q Q, Li et al.. Recent advances in hydrothermal modification of calcium phosphorus coating on magnesium alloy.Journal of Magnesium and Alloys, 2022, 10(1): 62–80
https://doi.org/10.1016/j.jma.2021.05.014
54 W S W, Harun R I M, Asri J, Alias et al.. A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials.Ceramics International, 2018, 44(2): 1250–1268
https://doi.org/10.1016/j.ceramint.2017.10.162
55 J U, Jeong Y G, Heo J A, Cho et al.. Nanostructure-based wettability modification of TiAl6V4 alloy surface for modulating biofilm production: superhydrophilic, superhydrophobic, and slippery surfaces.Journal of Alloys and Compounds, 2022, 923: 166492
https://doi.org/10.1016/j.jallcom.2022.166492
56 H C, Park D J, Baek Y M, Park et al.. Thermal stability of hydroxyapatite whiskers derived from the hydrolysis of α-TCP.Journal of Materials Science, 2004, 39(7): 2531–2534
https://doi.org/10.1023/B:JMSC.0000020021.82216.6b
57 H Q, Zhang Y H, Yan Y F, Wang et al.. Thermal stability of hydroxyapatite whiskers prepared by homogenous precipitation.Advanced Engineering Materials, 2002, 4(12): 916–919
https://doi.org/10.1002/adem.200290003
58 J Y, Li S, Lu W, Xu et al.. Fabrication of stable Ni‒Al4Ni3‒Al2O3 superhydrophobic surface on aluminum substrate for self-cleaning, anti-corrosive and catalytic performance.Journal of Materials Science, 2018, 53(2): 1097–1109
https://doi.org/10.1007/s10853-017-1569-5
59 Z Y, Ding Q H, Yuan H, Wang et al.. Anticorrosion behaviour and tribological properties of AZ31 magnesium alloy coated with Nb2O5/Nb2O5‒Mg/Mg layer by magnetron sputtering.RSC Advances, 2022, 12(43): 28196–28206
https://doi.org/10.1039/D2RA04907D
60 C, Zhang Z, Zhou X, Wang et al.. A multifunctional coating with silk fibroin/chitosan quaternary ammonium salt/heparin sodium for AZ31B magnesium alloy.Materials Today: Communications, 2023, 34(Mar): 105070
https://doi.org/10.1016/j.mtcomm.2022.105070
61 C H, Hsu F Mansfeld . Technical note: concerning the conversion of the constant phase element parameter Y0 into a capacitance.Corrosion, 2001, 57(9): 747–748
https://doi.org/10.5006/1.3280607
62 J P, Gittings C R, Bowen A C E, Dent et al.. Electrical characterization of hydroxyapatite-based bioceramics.Acta Biomaterialia, 2009, 5(2): 743–754
https://doi.org/10.1016/j.actbio.2008.08.012
63 M H, Lin Y H, Wang C H, Kuo et al.. Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants.Carbohydrate Polymers, 2021, 257: 117639
https://doi.org/10.1016/j.carbpol.2021.117639
64 Z S, Lin X T, Sun H Z Yang . The role of antibacterial metallic elements in simultaneously improving the corrosion resistance and antibacterial activity of magnesium alloys.Materials & Design, 2021, 198: 109350
https://doi.org/10.1016/j.matdes.2020.109350
65 M N, Tian Z F, Lin W Y, Tang et al.. Electrophoretic deposition of tetracycline loaded bioactive glasses/chitosan as antibacterial and bioactive composite coatings on magnesium alloys.Progress in Organic Coatings, 2023, 184: 107841
https://doi.org/10.1016/j.porgcoat.2023.107841
66 K, Xing Q, Chen J, Lin et al.. Polycaprolactone/ZnO coating on WE43 magnesium alloy combined with a MgO/MgCO3 transition layer for promoting anticorrosion and interfacial adhesion.Progress in Organic Coatings, 2022, 171: 107029
https://doi.org/10.1016/j.porgcoat.2022.107029
[1] FMS-24678-OF-Zh_suppl_1 Download
[1] Yechen Hu, Lin Zhang, Yafeng Huang, Xiufang Chen, Fengtao Chen, Wangyang Lu. Facile fabrication of superior antibacterial cotton fabric based on ZnO nanoparticles/quaternary ammonium salts hybrid composites and mechanism study[J]. Front. Mater. Sci., 2023, 17(2): 230643-.
[2] Fangling Li, Xiaoman Han, Dongdong Cao, Junxia Yin, Li Chen, Dongmei Li, Lin Cui, Zhiyong Liu, Xuhong Guo. Heat preservation, antifouling, hemostatic and antibacterial aerogel wound dressings for emergency treatment[J]. Front. Mater. Sci., 2023, 17(2): 230641-.
[3] Ziming Liao, Jingxuan Li, Yimeng Su, Fenyan Miao, Xiumei Zhang, Yu Gu, Jingjing Du, Ruiqiang Hang, Yan Wei, Weiyi Chen, Di Huang. Antibacterial hydroxyapatite coatings on titanium dental implants[J]. Front. Mater. Sci., 2023, 17(1): 230628-.
[4] Wentao HUANG, Qihui YE, Changying REN, Youwei LU, Yuxin CAI, Wenbiao ZHANG, Jingda HUANG. Facile preparation and property analyses of L-CNC/SiO2-based composite superhydrophobic coating[J]. Front. Mater. Sci., 2022, 16(4): 220626-.
[5] Chuang XIAO, Ge ZHANG, Wencheng LIANG, Zhaochuang WANG, Qiaohui LU, Weibin SHI, Yan ZHOU, Yong GUAN, Meidong LANG. Preparation of green cellulose diacetate-based antibacterial wound dressings for wound healing[J]. Front. Mater. Sci., 2022, 16(2): 220599-.
[6] Wenbo ZHUANG, Dafeng HU, Xudong ZHANG, Kai XIONG, Xiao DING, Jian LU, Yong MAO, Peng YANG, Chao LIU, Yanfen WAN. Antimicrobial power of biosynthesized Ag nanoparticles using refined Ginkgo biloba leaf extracts[J]. Front. Mater. Sci., 2022, 16(2): 220594-.
[7] Xia HE, Qingchun LIU, Ying ZHOU, Zhan CHEN, Chenlu ZHU, Wanhui JIN. Graphene oxide-silver/cotton fiber fabric with anti-bacterial and anti-UV properties for wearable gas sensors[J]. Front. Mater. Sci., 2021, 15(3): 406-415.
[8] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[9] Lei CHANG, Xiangrui LI, Xuhui TANG, He ZHANG, Ding HE, Yujun WANG, Jiayin ZHAO, Jingan LI, Jun WANG, Shijie ZHU, Liguo WANG, Shaokang GUAN. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance[J]. Front. Mater. Sci., 2020, 14(4): 413-425.
[10] Yuxuan MAO, Mingming PAN, Huilin YANG, Xiao LIN, Lei YANG. Injectable hydrogel wound dressing based on strontium ion cross-linked starch[J]. Front. Mater. Sci., 2020, 14(2): 232-241.
[11] Zai-Meng QIU, Fen ZHANG, Jun-Tong CHU, Yu-Chao LI, Liang SONG. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
[12] Zhihong JING, Xiue LIU, Yan DU, Yuanchun HE, Tingjiang YAN, Wenliang WANG, Wenjuan LI. Synthesis, characterization, antibacterial and photocatalytic performance of Ag/AgI/TiO2 hollow sphere composites[J]. Front. Mater. Sci., 2020, 14(1): 1-13.
[13] Wei WU, Fen ZHANG, Yu-Chao LI, Yong-Feng ZHOU, Qing-Song YAO, Liang SONG, Rong-Chang ZENG, Sie Chin TJONG, Dong-Chu CHEN. Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy[J]. Front. Mater. Sci., 2019, 13(4): 420-430.
[14] Xiao-Jing JI, Qiang CHENG, Jing WANG, Yan-Bin ZHAO, Zhuang-Zhuang HAN, Fen ZHANG, Shuo-Qi LI, Rong-Chang ZENG, Zhen-Lin WANG. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
[15] Ming LI,Pan XIONG,Maosong MO,Yan CHENG,Yufeng ZHENG. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications[J]. Front. Mater. Sci., 2016, 10(3): 270-280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed