Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

   Online First

Administered by

30 Most Downloaded Articles
Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

In last 2 years
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Nanoparticles embedded into glass matrices: glass nanocomposites
Javier FONSECA
Front. Mater. Sci.    2022, 16 (3): 220607-null.   https://doi.org/10.1007/s11706-022-0607-7
Abstract   HTML   PDF (10909KB)

Research on glass nanocomposites (GNCs) has been very active in the past decades. GNCs have attracted — and still do — great interest in the fields of optoelectronics, photonics, sensing, electrochemistry, catalysis, biomedicine, and art. In this review, the potential applications of GNCs in these fields are briefly described to show the reader the possibilities of these materials. The most important synthesis methods of GNCs (melt-quenching, sol-gel, ion implantation, ion-exchange, staining process, spark plasma sintering, radio frequency sputtering, spray pyrolysis, and chemical vapor deposition techniques) are extensively explained. The major aim of this review is to systematize our knowledge about the synthesis of GNCs and to explore the mechanisms of formation and growth of NPs within glass matrices. The size-controlled preparation of NPs within glass matrices, which remains a challenge, is essential for advanced applications. Therefore, a thorough understanding of GNC synthesis techniques is expected to facilitate the preparation of innovative GNCs.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(4) WebOfScience(4)
Towards safe lithiumsulfur batteries from liquid-state electrolyte to solid-state electrolyte
Zhiyuan Pang, Hongzhou Zhang, Lu Wang, Dawei Song, Xixi Shi, Yue Ma, Linglong Kong, Lianqi Zhang
Front. Mater. Sci.    2023, 17 (1): 230630-null.   https://doi.org/10.1007/s11706-023-0630-3
Abstract   HTML   PDF (23758KB)

Lithium–sulfur (LiS) battery has been considered as one of the most promising future batteries owing to the high theoretical energy density (2600 W·h·kg−1) and the usage of the inexpensive active materials (elemental sulfur). The recent progress in fundamental research and engineering of the LiS battery, involved in electrode, electrolyte, membrane, binder, and current collector, has greatly promoted the performance of Li‒S batteries from the laboratory level to the approaching practical level. However, the safety concerns still deserve attention in the following application stage. This review focuses on the development of the electrolyte for Li‒S batteries from liquid state to solid state. Some problems and the corresponding solutions are emphasized, such as the soluble lithium polysulfides migration, ionic conductivity of electrolyte, the interface contact between electrolyte and electrode, and the reaction kinetics. Moreover, future perspectives of the safe and high-performance Li‒S batteries are also introduced.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(2) WebOfScience(2)
Recent research progress of master mold manufacturing by nanoimprint technique for the novel microoptics devices
Yuhang LIU, Jianjun LIN, Zuohuan HU, Guoli GAO, Bingyang WANG, Liuyi WANG, Zhiyuan PAN, Jianfei JIA, Qinwei YIN, Dengji GUO, Xujin WANG
Front. Mater. Sci.    2022, 16 (3): 220596-null.   https://doi.org/10.1007/s11706-022-0596-6
Abstract   HTML   PDF (36368KB)

The consumer demand for emerging technologies such as augmented reality (AR), autopilot, and three-dimensional (3D) internet has rapidly promoted the application of novel optical display devices in innovative industries. However, the micro/nanomanufacturing of high-resolution optical display devices is the primary issue restricting their development. The manufacturing technology of micro/nanostructures, methods of display mechanisms, display materials, and mass production of display devices are major technical obstacles. To comprehensively understand the latest state-of-the-art and trigger new technological breakthroughs, this study reviews the recent research progress of master molds produced using nanoimprint technology for new optical devices, particularly AR glasses, new-generation light-emitting diode car lighting, and naked-eye 3D display mechanisms, and their manufacturing techniques of master molds. The focus is on the relationships among the manufacturing process, microstructure, and display of a new optical device. Nanoimprint master molds are reviewed for the manufacturing and application of new optical devices, and the challenges and prospects of the new optical device diffraction grating nanoimprint technology are discussed.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(1) WebOfScience(2)
Facile preparation and property analyses of L-CNC/SiO2-based composite superhydrophobic coating
Wentao HUANG, Qihui YE, Changying REN, Youwei LU, Yuxin CAI, Wenbiao ZHANG, Jingda HUANG
Front. Mater. Sci.    2022, 16 (4): 220626-null.   https://doi.org/10.1007/s11706-022-0626-4
Abstract   HTML   PDF (6391KB)

In recent years, superhydrophobic coatings have received extensive attention due to their functions of waterproof, antifouling, self-cleaning, etc. However, wide applications of superhydrophobic coatings are still affected by their disadvantages of complex preparation, low mechanical properties, and poor ultraviolet (UV) resistance. In this study, cellulose nanocrystal containing a small amount of lignin (L-CNC)/SiO2 composite particles were used as the main material, polydimethylsiloxane (PDMS) as the adhesive and perfluorooctyltrichlorosilane (FOTS) as the modifier to prepare superhydrophobic coatings by a one-step spray method. The resulted coating showed excellent superhydrophobicity (water contact angle (WCA) of 161° and slide angle (SA) of 7°) and high abrasion resistance (capable of withstanding 50 abrasion cycles under the load of 50 g). Moreover, it still maintained good superhydrophobicity after 5 h of exposure to the UV light (1000 W), displaying its good UV resistance. This study provides theoretical and technical reference for the simple preparation of organic‒inorganic composite superhydrophobic coatings with high abrasion resistance and good UV resistance, which is beneficial to improving the practicability and broadening the application scope of superhydrophobic coatings.

Table and Figures | Reference | Related Articles | Metrics
Spray synthesis of rapid recovery ZnO/polyaniline film ammonia sensor at room temperature
Yingze BAI, Xin DONG, Chuanyu GUO, Yingming XU, Bin WANG, Xiaoli CHENG
Front. Mater. Sci.    2022, 16 (4): 220620-null.   https://doi.org/10.1007/s11706-022-0620-x
Abstract   HTML   PDF (13521KB)

As an excellent room temperature sensing material, polyaniline (PANI) needs to be further investigated in the field of high sensitivity and sustainable gas sensors due to its long recovery time and difficulty to complete recovery. The ZnO/PANI film with pn heterogeneous energy levels have successfully prepared by spraying ZnO nanorod synthesized by hydrothermal method on the PANI film rapidly synthesized at the gasliquid interface. The presence of pn heterogeneous energy levels enables the ZnO/PANI film to detect 0.1100 ppm (1 ppm = 10−6) NH3 at room temperature with the response value to 100 ppm NH3 doubled (12.96) and the recovery time shortened to 1/5 (31.2 s). The ability of high response and fast recovery makes the ZnO/PANI film to be able to detect NH3 at room temperature continuously. It provides a new idea for PANI to prepare sustainable room temperature sensor and promotes the development of room temperature sensor in public safety.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(2) WebOfScience(1)
A novel bird-nest-like air superoleophobic/superhydrophilic Cu(OH)2-based composite coating for efficient oil–water separation
Zhiwei ZENG, Xinzhu WU, Yan LIU, Lulu LONG, Bo WANG, Lilin WANG, Gang YANG, Xiaohong ZHANG, Fei SHEN, Yanzong ZHANG
Front. Mater. Sci.    2022, 16 (2): 220602-null.   https://doi.org/10.1007/s11706-022-0602-z
Abstract   HTML   PDF (34748KB)

An air superoleophobic/superhydrophilic composite coating with a unique structure was fabricated by oxidation and further modification of the copper mesh, and its design principle was clarified. This unique bird-nest-like configuration gives it instant superhydrophilicity due to the high surface roughness and high polar surface free energy components, while air superoleophobicity is caused by its extremely low dispersive surface free energy components. Furthermore, a water-resistance mechanism was proposed whereby a polyelectrolyte plays a critical role in improving the water-resistance of fluorosurfactants. It can separate oil–water mixtures with high efficiency (98.72%) and high flux (25185 L·m−2·h−1), and can be reused. In addition, our composite coating had certain anti-acid, anti-alkali, anti-salt and anti-sand impact performance. More importantly, after being soaked in water for a long time or being exposed to the air for a long time, it still retained ultra-high air oil contact angle and showed excellent stability, which provided the possibility for practical applications. Thus, these findings offer the potential for significant practical applications in managing oily wastewater and marine oil spill incidents.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(2) WebOfScience(2)
Regulation effect of osteoblasts towards osteocytes by silk fibroin encapsulation
Dandan LUO, Rui ZHANG, Shibo WANG, M. Zubair IQBAL, Ruibo ZHAO, Xiangdong KONG
Front. Mater. Sci.    2022, 16 (4): 220617-.   https://doi.org/10.1007/s11706-022-0617-5
Abstract   HTML   PDF (24550KB)

Herein, the rational design micromilieus involved silk fibroin (SF)-based materials have been used to encapsulate the osteoblasts, forming an extracellular coated shell on the cells, which exhibited the high potential to shift the regulation of osteoblasts to osteocytes by encapsulation cues. SF coating treated cells showed a change in cell morphology from osteoblasts-like to osteocytes-like shape compared with untreated ones. Moreover, the expression of alkaline phosphatase (ALP), collagen I (Col I) and osteocalcin (OCN) further indicated a potential approach for inducing osteoblasts regulation, which typically accelerates calcium deposition and cell calcification, presenting a key role for the SF encapsulation in controlling osteoblasts behavior. This discovery showed that SF-based cell encapsulation could be used for osteoblasts behavior regulation, which offers a great potential to modulate mammalian cells’ phenotype involving alternating surrounding cues.

Table and Figures | Reference | Related Articles | Metrics
Research and development of nanocrystalline W/W-based materials: novel preparation approaches, formation mechanisms, and unprecedented excellent properties
Zaoming Wu, Qiang Li, Xiaofeng Yang
Front. Mater. Sci.    2023, 17 (1): 230634-null.   https://doi.org/10.1007/s11706-023-0634-z
Abstract   HTML   PDF (19689KB)

Tungsten (W) has become the most promising plasma-facing material (PFM) in fusion reactor, and W still faces performance degradation caused by low-temperature brittleness, low recrystallization temperature, neutron irradiation effects, and plasma irradiation effects. The modification of W/W-based materials in terms of microstructure manipulation is needed, and such techniques to improve the performance of materials are the topics of hot research. Researchers have found that refining the grain can significantly improve the strength and the irradiation resistance of W/W-based materials. In this paper, novel approaches and technique routes, including the “bottom-up” powder metallurgy method and “top-down” severe plastic deformation method, are introduced to the fabrication of nanocrystalline W/W-based materials. The formation mechanisms of nanocrystalline W/W-based materials were revealed, and the nanostructure stabilization mechanisms were introduced. The mechanical properties of nanocrystalline W/W-based materials were tested, and the irradiation behaviors and performances were studied. The mechanisms of their high mechanical properties and excellent irradiation-damage resistance were illustrated. This article may provide an experimental and theoretical basis for the design and development of high-performance novel nanocrystalline W/W-based materials.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(1) WebOfScience(1)
Strategies to assemble therapeutic and imaging molecules into inorganic nanocarriers
Sheikh Tanzina HAQUE, Mark M. BANASZAK HOLL, Ezharul Hoque CHOWDHURY
Front. Mater. Sci.    2022, 16 (3): 220604-null.   https://doi.org/10.1007/s11706-022-0604-x
Abstract   HTML   PDF (3796KB)

Inorganic nanocarriers are potent candidates for delivering conventional anticancer drugs, nucleic acid-based therapeutics, and imaging agents, influencing their blood half-lives, tumor targetability, and bioactivity. In addition to the high surface area-to-volume ratio, they exhibit excellent scalability in synthesis, controllable shape and size, facile surface modification, inertness, stability, and unique optical and magnetic properties. However, only a limited number of inorganic nanocarriers have been so far approved for clinical applications due to burst drug release, poor target specificity, and toxicity. To overcome these barriers, understanding the principles involved in loading therapeutic and imaging molecules into these nanoparticles (NPs) and the strategies employed in enhancing sustainability and targetability of the resultant complexes and ensuring the release of the payloads in extracellular and intracellular compartments of the target site is of paramount importance. Therefore, we will shed light on various loading mechanisms harnessed for different inorganic NPs, particularly involving physical entrapment into porous/hollow nanostructures, ionic interactions with native and surface-modified NPs, covalent bonding to surface-functionalized nanomaterials, hydrophobic binding, affinity-based interactions, and intercalation through co-precipitation or anion exchange reaction.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(2)
Construction of mechanically robust superamphiphobic surfaces on fiber using large particles
Chang LV, Jinyi WANG, Qirong TIAN, Zhicheng ZHANG, Tao WANG, Rongfei LIU, Sheng WANG
Front. Mater. Sci.    2022, 16 (4): 220618-null.   https://doi.org/10.1007/s11706-022-0618-4
Abstract   HTML   PDF (21460KB)

Superamphiphobic surfaces have attracted the attention of researchers because of their broad application prospects. Currently, superamphiphobicity is primarily achieved by minimizing the solid–liquid contact area. Over the past few decades, researchers have primarily focused on using physical deposition methods to construct superamphiphobic surfaces using fine-sized nanoparticles (< 100 nm). However, porous hollow SiO2 particles (PH-SiO2), which are typically large spheres, have a highly hierarchical structure and can provide lower solid–liquid contact fractions than those provided by fine-sized particles. In this study, we used PH-SiO2 as building blocks and combined them with poly (dimethylsiloxane) to construct a mechanically robust coating on fiber by spray-coating. After chemical vapor deposition treatment, the coating exhibited excellent superamphiphobicity and could repel various liquids, covering a wide range of surface tensions (27.4–72.0 mN·m−1).

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(1) WebOfScience(1)
Rational development of a unique family of renewable polymers
Congming Xiao
Front. Mater. Sci.    2023, 17 (1): 230629-null.   https://doi.org/10.1007/s11706-023-0629-9
Abstract   HTML   PDF (4164KB)

A unique family of renewable polymers has been constructed through facile chemical and physical approaches. In viewing of the abundant and renewable characteristics of starch, cellulose, chitosan and alginate, they are adopted as starting materials. Lactic acid and carbon dioxide, which can be regarded as derivates of starch, are also adopted as starting materials since both of them are abundant, non-toxic and renewable. For sake of making the intension to be carried out easily, the applied chemical or physical approaches are as facile as possible. After two decades of effort, a variety of polymers with versatile properties such as improved mechanical strength, good adsorption or loading capacity and various intelligent behaviors have been tailor-made. These polymers are designed systematically instead of obtaining at random. Herein, our ideas and the strategies for developing the polysaccharide-based renewable polymers are elucidated. It is expected that what presented in this article could stimulate more ideas to develop renewable polymers and bring brighter prospect of the polysaccharide-family.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(1) WebOfScience(1)
A diluent protective organic additive electrolyte of hydrophilic hyperbranched polyester for long-life reversible aqueous zinc manganese oxide batteries
Hengxin Xu, Song Yang, Yufeng Chen, Junle Xiong, Shengtao Zhang, Fang Gao, Zhengyong Huang, Hongru Li
Front. Mater. Sci.    2023, 17 (2): 230639-null.   https://doi.org/10.1007/s11706-023-0639-7
Abstract   HTML   PDF (5961KB)

A hydrophilic hyperbranched polyester (poly (tetramethylol acetylenediurea (TA)-CO-succinyl chloride) (PTS)) was proposed to be used as an organic additive in aqueous ZnSO4 electrolyte to achieve a highly reversible zinc/manganese oxide battery. It is found that the zinc symmetric battery based on the 2.0 wt.% PTS/ZnSO4 electrolyte showed a long cycle stability of more than 2400 h at 1.0 mA·cm−2, which is much longer than that including the blank ZnSO4 electrolyte (140 h). Furthermore, the capacity retention of the Zn||MnO2 full cells employing the 2.0 wt.% PTS/ZnSO4 electrolyte remained 85% after 100 cycles at 0.2 A·g−1, which is much higher than 20% capacity retention of the cell containing the blank ZnSO4 electrolyte, and also greater than 59.6% capacity retention of the cell including the 10.0 wt.% TA/ZnSO4 electrolyte. By using 2.0 wt.% PTS/ZnSO4 electrolytes, the capacity retention of the Zn||MnO2 full cells even reached 65% after 2000 cycles at a higher current density of 1.0 A·g−1. It is further demonstrated that the PTS was firmly adsorbed on the zinc anode surface to form a protective layer.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Mechanochromism of polyurethane based on folding–unfolding of cyano-substituted oligo(p-phenylene) vinylene dimer
Na Zhang, Xiang-Yu Ma, Shun Li, Yu-Xin Zhang, Chen Lv, Zheng-Peng Mao, Zi-Yi Dou, Tai-Sheng Wang
Front. Mater. Sci.    2023, 17 (2): 230640-null.   https://doi.org/10.1007/s11706-023-0640-1
Abstract   HTML   PDF (4535KB)

The incorporation of mechanophores, motifs that transform mechanical stimulus into chemical reaction or optical variation, allows creating materials with stress-responsive properties. The most widely used mechanophore generally features a weak bond, but its cleavage is typical an irreversible process. Here, we showed that this problem can be solved by folding–unfolding of a molecular tweezer. We systematically studied the mechanochromic properties of polyurethanes with cyano-substituted oligo(p-phenylene) vinylene (COP) tweezer (DPU). As a control experiment, a class of polyurethanes containing only a single COP moiety (MPU) was also prepared. The DPU showed prominent mechanochromic properties, due to the intramolecular folding–unfolding of COP tweezer under mechanical stimulus. The process was efficient, reversible and optical detectable. However, due to the disability to form either intramolecular folding or intermolecular aggregation, the MPU sample was mechanical inert.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(1) WebOfScience(1)
Tribochemistry of alcohols and their tribological properties: a review
Liping Xiong, Xiaoya Sun, Qi Chen, Mengyue Zhu, Zhongyi He, Lili Li
Front. Mater. Sci.    2023, 17 (1): 230633-null.   https://doi.org/10.1007/s11706-023-0633-0
Abstract   HTML   PDF (6912KB)

Recently, alcohols have attracted more attention due to their excellent tribological performance, especially superlubricity under low loads. Alcohol solution, as a liquid lubricant, can easily reach the superlubricity state under low loads because of the formed low shear hydroxylation interfaces induced by the tribochemical reactions. A general picture and its influencing factors have been elucidated, not only at the macroscopic scale but also at the nanoscale, which is sufficient to provide effective guidance for lubrication design and tribology research in engineering. Herein, we provide a review on the recent applications of alcohols in lubrication. In addition, the material transformation caused by alcohols in friction is a key factor affecting the tribological properties. As an important two-dimensional material, the growth mechanisms of graphene are variable, and the most famous is the formation of carbon radicals under the action of metal catalysts. Thus, based on the formation mechanism of carbon friction film (such as amorphous carbon and graphene), the main content of this review also includes the transformation of graphene in alcohol solution friction process.

Table and Figures | Reference | Related Articles | Metrics
Multifunction ZnO/carbon hybrid nanofiber mats for organic dyes treatment via photocatalysis with enhanced solar-driven evaporation
Wenxin WANG, Yang CHEN, Ning WANG, Zhiqiang DU, Martin JENSEN, Zihan AN, Xianfeng LI
Front. Mater. Sci.    2022, 16 (4): 220623-null.   https://doi.org/10.1007/s11706-022-0623-7
Abstract   HTML   PDF (6286KB)

ZnO-based photocatalytic materials have received widespread attention due to their usefulness than other photocatalytic materials in organic dye wastewater treatment. However, its photocatalytic efficiency and surface stability limit further applicability. This paper uses a one-step carbonization method to prepare multifunctional ZnO/carbon hybrid nanofiber mats. The carbonization creates a π-conjugated carbonaceous structure of the mats, which prolongs the electron recovery time of ZnO nanoparticles to yield improved photocatalytic efficiency. Further, the carbonization reduces the fiber diameter of the carbon hybrid nanofiber mats, which quadruples the specific surface area to yield enhanced adsorption and photocatalytic performance. At the same time, the prepared nanofiber mats can increase the evaporation rate of water under solar irradiation to a level of 1.46 kg·m−2·h−1 with an efficiency of 91.9%. Thus, the nanofiber mats allow the facile incorporation of photocatalysts to clean contaminated water through adsorption, photodegradation, and interfacial heat-assisted distillation mechanisms.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(1) WebOfScience(1)
Dopamine-mimetic-coated polyamidoamine-functionalized Fe3O4 nanoparticles for safe and efficient gene delivery
Liang Liu, Chaobing Liu, Zhaojun Yang, Yiran Chen, Xin Chen, Jintao Guan
Front. Mater. Sci.    2023, 17 (1): 230637-null.   https://doi.org/10.1007/s11706-023-0637-9
Abstract   HTML   PDF (7136KB)

Fe3O4 nanoparticles (NPs) are widely used in the construction of drug and gene delivery vectors because of their particular physicochemical properties. Surface modification can not only reduce the cytotoxicity of Fe3O4, but also further improve the biocompatibility and delivery efficiency. In this work, firstly, polydopamine (PDA)-coated Fe3O4 NPs (named Fe3O4@PDA) were prepared by using the self-polymerization characteristics of dopamine in alkaline environment. Then, polyamidoamine (PAMAM) was modified by the Michael addition reaction to prepare water-soluble core‒shell magnetic NPs of Fe3O4@PDA@PAMAM, and its potential as gene vector was further evaluated. The results revealed that Fe3O4@PDA@PAMAM had the ability to condense and protect DNA, and showed lower cytotoxicity, higher cell uptake and transfection efficiency than those of PAMAM. It has the potential to become a magnetic targeted gene vector for further study.

Table and Figures | Reference | Related Articles | Metrics
Enhanced superelasticity of CuAlNi shape memory alloys with strong orientation prepared by horizontal continuous casting
Mengwei WU, Yu XIAO, Zhuofan HU, Ruiping LIU, Chunmei MA
Front. Mater. Sci.    2022, 16 (4): 220616-null.   https://doi.org/10.1007/s11706-022-0616-6
Abstract   HTML   PDF (16014KB)

The preparation of large-scale CuAlNi shape memory alloys with excellent microstructure and texture is a significant challenge in this field. In this study, large-scale CuAlNi shape memory alloy (SMA) slabs with good surface quality and strong orientation were prepared by the horizontal continuous casting (HCC). The microstructure and mechanical properties were compared with the ordinary casting (OC) CuAlNi alloy. The results showed that the microstructure of OC CuAlNi alloy was equiaxed grains with randomly orientation, which had no obvious superelasticity. The alloys produced by HCC had herringbone grains with strong orientation near1 0 0and the cumulative tensile superelasticity of 4.58%. The superelasticity of the alloy produced by HCC has been improved by 45 times. This work has preliminarily realized the production of large-scale CuAlNi SMA slab with good superelasticity, which lays a foundation for expanding the industrial production and application of Cu-based SMAs.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(2) WebOfScience(2)
Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries
Chong Xu, Guang Ma, Wang Yang, Sai Che, Neng Chen, Ni Wu, Bo Jiang, Ye Wang, Yankun Sun, Sijia Liao, Jiahao Yang, Xiang Li, Guoyong Huang, Yongfeng Li
Front. Mater. Sci.    2023, 17 (3): 230651-null.   https://doi.org/10.1007/s11706-023-0651-y
Abstract   HTML   PDF (7842KB)

Sn-based materials are considered as a kind of potential anode materials for lithium-ion batteries (LIBs) owing to their high theoretical capacity. However, their use is limited by large volume expansion deriving from the lithiation/delithiation process. In this work, amorphous Sn modified nitrogen-doped porous carbon nanosheets (ASn-NPCNs) are obtained. The synergistic effect of amorphous Sn and high edge-nitrogen-doped level porous carbon nanosheets provides ASn-NPCNs with multiple advantages containing abundant defect sites, high specific surface area (214.9 m2·g−1), and rich hierarchical pores, which can promote the lithium-ion storage. Serving as the LIB anode, the as-prepared ASn-NPCNs-750 electrode exhibits an ultrahigh capacity of 1643 mAh·g−1 at 0.1 A·g−1, ultrafast rate performance of 490 mAh·g−1 at 10 A·g−1, and superior long-term cycling performance of 988 mAh·g−1 at 1 A·g−1 after 2000 cycles with a capacity retention of 98.9%. Furthermore, the in-depth electrochemical kinetic test confirms that the ultrahigh-capacity and fast-charging performance of the ASn-NPCNs-750 electrode is ascribed to the rapid capacitive mechanism. These impressive results indicate that ASn-NPCNs-750 can be a potential anode material for high-capacity and fast-charging LIBs.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Regulation of cell morphology and viability using anodic aluminum oxide with custom-tailored structural parameters
Zhiying ZHANG, Ting LIU, Juan LI, Yiyan GUO, Ruiqing LIANG, Jiangbo LU, Runguang SUN, Jun DONG
Front. Mater. Sci.    2022, 16 (4): 220622-null.   https://doi.org/10.1007/s11706-022-0622-8
Abstract   HTML   PDF (7873KB)

Anodic aluminum oxide (AAO) with independently controlled period, porosity, and height is used as the model surface to study the single structural parameter effect on breast cancer cell behaviors, including cell polarity and cell viability. It is found that the quantity of multipolar cells and cell viability increases as the nanodent period increases from 100 to 300 nm, while the number of bipolar cells has almost no change until there is a dramatic decrease as the period increases to 300 nm. After anodizing nanodents into nanopores, the numbers of both bipolar cells and the cell viability increase significantly with the porosity increase. However, as the porosity further increases and the nanopore changes into a nanocone pillar, most of the cells become nonpolar spheres and the cell viability decreases. Increasing the height of the nanocone pillar has little effect on the cell polarity; the cell viability increases slightly with the increase of the nanocone pillar height. These results reveal the influence of individual nanostructure parameters on the cell behavior, especially the cell polarity and the cell viability, which can help to design the surface to make the cell grow as desired.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(1)
Millisecond-timescale electrodeposition of platinum atom-doped molybdenum oxide as an efficient electrocatalyst for hydrogen evolution reaction
Yi XIAO, Wenxue SHANG, Jiyuan FENG, Airu YU, Lu CHEN, Liqiu ZHANG, Hongxia SHEN, Qiong CHENG, Lichun LIU, Song BAI
Front. Mater. Sci.    2022, 16 (3): 220606-null.   https://doi.org/10.1007/s11706-022-0606-8
Abstract   HTML   PDF (2075KB)

We present a straightforward method for one-pot electrodeposition of platinum atoms-doped molybdenum oxide (Pt·MoO3−x) films and show their superior electrocatalytic activity in the hydrogen evolution reaction (HER). A ~15-nm-thick Pt·MoO3−x film was prepared by one-pot electrodeposition at −0.8 V for 1 ms. Due to considerably different solute concentrations, the content of Pt atoms in the electrodeposited composite electrocatalyst is low. No Pt crystals or islands were observed on the flat Pt·MoO3−x films, indicating that Pt atoms were homogeneously dispersed within the MoO3−x thin film. The catalytic performance and physicochemical features of Pt·MoO3−x as a HER electrocatalyst were characterized. The results showed that our Pt·MoO3−x film exhibits 23- and 11-times higher current density than Pt and MoO3−x electrodeposited individually under the same conditions, respectively. It was found that the dramatic enhancement in the HER performance was principally due to the abundant oxygen defects. The use of the developed one-pot electrodeposition and doping method can potentially be extended to various catalytically active metal oxides or hydroxides for enhanced performance in various energy storage and conversion applications.

Table and Figures | Reference | Related Articles | Metrics
Charge storage coating based triboelectric nanogenerator and its applications in self-powered anticorrosion and antifouling
Zhitao Zhang, Yupeng Liu, Min Feng, Nannan Wang, Changhe Du, Shu Peng, Yufei Guo, Yongjian Liu, Ying Liu, Daoai Wang
Front. Mater. Sci.    2023, 17 (1): 230635-null.   https://doi.org/10.1007/s11706-023-0635-y
Abstract   HTML   PDF (4588KB)

As a novel energy-harvesting device, a triboelectric nanogenerator (TENG) can harvest almost all mechanical energy and transform it into electrical energy, but its output is low. Although the micro-nano structures of triboelectrode surfaces can improve their output efficiency, they lead to high costs and are not suitable for large-scale applications. To address this problem, we developed a novel TENG coating with charge-storage properties. In this study, we modified an acrylic resin, a friction material, with nano-BaTiO3 particles and gas phase fluorination. The charge-trapping ability of nanoparticles was used to improve the output of TENG. The short-circuit current and the output voltage of coating-based TENGs featuring charge storage and electrification reached 15 μA and 800 V, respectively, without decay for longtime working. On this basis, self-powered anticorrosion and antifouling systems are designed to reduce the open circuit potential of A3 steel by 510 mV and reduce the adhesion rate of algae on the surface of metal materials. This study presents a high-output, stable, coating-based TENG with potential in practical applications for anticorrosion and antifouling.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Carbon dots based on targeting unit inheritance strategy for Golgi apparatus-targeting imaging
Yingying Wei, Yuduan Gao, Lin Chen, Qiang Li, Jinglei Du, Dongming Wang, Fanggang Ren, Xuguang Liu, Yongzhen Yang
Front. Mater. Sci.    2023, 17 (1): 230627-null.   https://doi.org/10.1007/s11706-023-0627-y
Abstract   HTML   PDF (8289KB)

The Golgi apparatus is one of the important organelles, where the final processing and packaging of cellular secretions (such as proteins) are completed. The disorder of Golgi apparatus structure and function will induce many diseases. Therefore, monitoring the morphological structure of Golgi apparatus is crucial for the diagnosis and treatment of relevant diseases. In order to achieve Golgi apparatus-targeting imaging, the strategy of targeting unit inheritance was adopted and carbon dots (CDs) with Golgi apparatus-targeting ability were synthesized by one-step hydrothermal method with L-ascorbic acid with high reactivity and reducibility as the carbon source and L-cysteine as the targeting unit. CDs have a certain amount of cysteine residues on their surface, and have excitation dependence, satisfactory fluorescence and cysteine residues stability and low toxicity. As an imaging agent, CDs can be used for targeting imaging of Golgi apparatus.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(2) WebOfScience(2)
Z-scheme mechanism for methylene blue degradation over Fe2O3/g-C3N4 nanocomposite prepared via one-pot exfoliation and magnetization of g-C3N4
Shemeena MULLAKKATTUTHODI, Vijayasree HARIDAS, Sankaran SUGUNAN, Binitha N. NARAYANAN
Front. Mater. Sci.    2022, 16 (3): 220612-null.   https://doi.org/10.1007/s11706-022-0612-x
Abstract   HTML   PDF (2957KB)

The low surface area, high recombination rate of photogenerated charge carriers, narrow visible range activity, and difficulty in the separation from cleaned solutions limit the wide application of g-C3N4 as a photocatalyst. Herein, we have succeeded in developing a one-pot strategy to overcome the above-mentioned difficulties of g-C3N4. The broadening of the visible-light response range and inducing magnetic nature to g-C3N4 was succeeded by preparing a nanocomposite with Fe2O3 via a facile solvothermal method. The preparation method additionally imparted layer exfoliation of g-C3N4 as evident from the XRD patterns and TEM images. The strong interaction between the components is revealed from the XPS analysis. The broadened visible-light absorbance of Fe2O3/g-C3N4 with a Z-scheme photocatalytic degradation mechanism is well evident from the UVVis DRS analysis and PL measurement of the composite with terephthalic acid. The active species of photocatalysis were further investigated using scavenging studies in methylene blue degradation that revealed hydroxyl radicals and holes as the major contributors to the activity of Fe2O3/g-C3N4.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(5) WebOfScience(3)
Preparation of green cellulose diacetate-based antibacterial wound dressings for wound healing
Chuang XIAO, Ge ZHANG, Wencheng LIANG, Zhaochuang WANG, Qiaohui LU, Weibin SHI, Yan ZHOU, Yong GUAN, Meidong LANG
Front. Mater. Sci.    2022, 16 (2): 220599-null.   https://doi.org/10.1007/s11706-022-0599-3
Abstract   HTML   PDF (38854KB)

Managing wounds is a growing universal problem and developing effective wound dressings to staunch bleeding and protect wounds from bacterial infections is an increasingly serious challenge. In this work, a remolding electrospinning nanofiber three-dimensional structure wound dressing (CCP) was prepared with superhydrophilicity, high water absorption and absorbing capacity, excellent hemostatic capacity and antibacterial ability, and biocompatibility to promote wound healing. Polyhexamethylene guanidine hydrochloride (PHMG) was grafted to cellulose diacetate (CDA) wound dressing surface through an amide reaction. A water contact angle analysis demonstrated that CCP wound dressing could be beneficial to promote wound exudate management effectively with rapid absorption of water within 0.2 s. In vitro hemo- and cytocompatibility assay showed that a CCP wound dressing had no significant hemotoxicity or cytoxicity. Specifically, CCP wound dressings could be beneficial to accelerate wound hemostasis and further reduce mortality caused by uncontrolled bleeding. Furthermore, CCP wound dressings have an excellent antibacterial ability, which could be beneficial to inhibit wound inflammatory over-reaction and promote normal wound healing. Combined together, the prepared wound dressing in this research effort is expected to have high-potential in clinical applications.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(1) WebOfScience(1)
Antibacterial hydroxyapatite coatings on titanium dental implants
Ziming Liao, Jingxuan Li, Yimeng Su, Fenyan Miao, Xiumei Zhang, Yu Gu, Jingjing Du, Ruiqiang Hang, Yan Wei, Weiyi Chen, Di Huang
Front. Mater. Sci.    2023, 17 (1): 230628-null.   https://doi.org/10.1007/s11706-023-0628-x
Abstract   HTML   PDF (8681KB)

Titanium and its alloys are often used as substrates for dental implants due to their excellent mechanical properties and good biocompatibility. However, their ability to bind to neighboring bone is limited due to the lack of biological activity. At the same time, they show poor antibacterial ability which can easily cause bacterial infection and chronic inflammation, eventually resulting in implant failure. The preparation of composite hydroxyapatite coatings with antibacterial ability can effectively figure out these concerns. In this review, the research status and development trends of antibacterial hydroxyapatite coatings constructed on titanium and its alloys are analyzed and reviewed. This review may provide valuable reference for the preparation and application of high-performance and multi-functional dental implant coatings in the future.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(6) WebOfScience(6)
High drug loading polymer micelle@ZIF-8 hybrid core–shell nanoparticles through donor–receptor coordination interaction for pH/H2O2-responsive drug release
Yikun JIANG, Zhentao LEI, Zaizai TONG
Front. Mater. Sci.    2022, 16 (2): 220600-null.   https://doi.org/10.1007/s11706-022-0600-1
Abstract   HTML   PDF (19571KB)

Smart drug delivery nanocarriers with high drug loading capacity are of great importance in the treatment of diseases, and can improve therapeutic effectiveness as well as alleviate side effects in patients. In this work, a pH and H2O2-responsive drug delivery platform with high doxorubicin (DOX) loading capacity has been established through coordination interaction between DOX and phenylboronic acid containing block polymer. A composited drug nanocarrier is further fabricated by growing a zeolitic imidazolate framework 8 (ZIF-8) on the surface of drug-loaded polymer micelles. The study verifies that ZIF-8 shell can act as intelligent “switch” to prevent DOX leaking from core–shell nanoparticles upon H2O2 stimulus. However, a burst drug release is detected upon pH and H2O2 stimuli due to the further disassociation of ZIF-8 in acid solution. Moreover, the in vitro anti-cancer experiments demonstrate that the DOX-loaded core–shell nanoparticles provide effective treatment towards cancer cells but have negligible effect on normal cells, which results from the high concentration of H2O2 and low pH in the microenvironment of tumor cells.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(4) WebOfScience(4)
In-situ sugar-templated porous elastomer sensor with high sensitivity for wearables
Meng REN, Ying FANG, Yufan ZHANG, Heli DENG, Desuo ZHANG, Hong LIN, Yuyue CHEN, Jiaqing XIONG
Front. Mater. Sci.    2022, 16 (2): 220597-.   https://doi.org/10.1007/s11706-022-0597-5
Abstract   HTML   PDF (4929KB)

Fabrication of elastic pressure sensors with low cost, high sensitivity, and mechanical durability is important for wearables, electronic skins and soft robotics. Here, we develop high-sensitivity porous elastomeric sensors for piezoresistive and capacitive pressure detection. Specifically, a porous polydimethylsiloxane (PDMS) sponge embedded with conductive fillers of carbon nanotubes (CNTs) or reduced graphene oxide (rGO) was fabricated by an in-situ sugar template strategy. The sensor demonstrates sensitive deformation to applied pressure, exhibiting large and fast response in resistance or capacitance for detection of a wide range of pressure (0‒5 kPa). PDMS, as a high-elasticity framework, enables creation of sensors with high sensitivity, excellent stability, and durability for long-term usage. The highest sensitivities of 22.1 and 68.3 kPa−1 can be attained by devices with 5% CNTs and 4% rGO, respectively. The geometrics of the sponge sensor is tailorable using tableting technology for different applications. The sensors demonstrate finger motion detection and heart-rate monitoring in real-time, as well as a capacitive sensor array for identification of pressure and shape of placed objects, exhibiting good potential for wearables and human-machine interactions.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(2) WebOfScience(2)
Three-dimensional printing of biomaterials for bone tissue engineering: a review
Ahmed El-Fiqi
Front. Mater. Sci.    2023, 17 (2): 230644-null.   https://doi.org/10.1007/s11706-023-0644-x
Abstract   HTML   PDF (32223KB)

Processing biomaterials into porous scaffolds for bone tissue engineering is a critical and a key step in defining and controlling their physicochemical, mechanical, and biological properties. Biomaterials such as polymers are commonly processed into porous scaffolds using conventional processing techniques, e.g., salt leaching. However, these traditional techniques have shown unavoidable limitations and several shortcomings. For instance, tissue-engineered porous scaffolds with a complex three-dimensional (3D) geometric architecture mimicking the complexity of the extracellular matrix of native tissues and with the ability to fit into irregular tissue defects cannot be produced using the conventional processing techniques. 3D printing has recently emerged as an advanced processing technology that enables the processing of biomaterials into 3D porous scaffolds with highly complex architectures and tunable shapes to precisely fit into irregular and complex tissue defects. 3D printing provides computer-based layer-by-layer additive manufacturing processes of highly precise and complex 3D structures with well-defined porosity and controlled mechanical properties in a highly reproducible manner. Furthermore, 3D printing technology provides an accurate patient-specific tissue defect model and enables the fabrication of a patient-specific tissue-engineered porous scaffold with pre-customized properties.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(3) WebOfScience(3)
Ultrasensitive methyl salicylate gas sensing determined by Pd-doped SnO2
Chaoqi ZHU, Xiang LI, Xiaoxia WANG, Huiyu SU, Chaofan MA, Xiang GUO, Changsheng XIE, Dawen ZENG
Front. Mater. Sci.    2022, 16 (4): 220625-null.   https://doi.org/10.1007/s11706-022-0625-5
Abstract   HTML   PDF (5092KB)

Efficient chemical warfare agents (CWAs) detection is required to protect people from the CWAs in war and terrorism. In this work, a Pd-doped SnO2 nanoparticles-based gas sensor was developed to detect a nerve agent simulant named methyl salicylate. The sensing measurements of methyl salicylate under different Pd doping amounts found that the 0.5 at.% Pd-doped SnO2 exhibited a significant improvement in the detection of methyl salicylate at the ppb (1 ppb = 10−9) level, and the response value to 160 ppb methyl salicylate is 0.72 at 250 °C. Compared with the pure SnO2, the response value is increased by 4.5 times, which could be attributed to the influence of the noble metal Pd on the oxygen state and its catalytic effect. In addition, the 0.5 at.% Pd-doped SnO2 sensor still has an obvious response to 16 ppb methyl salicylate with a response value of 0.13, indicating the lower detection limit of the sensor.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(2)
Bi/3DPG composite structure optimization realizes high specific capacity and rapid sodium-ion storage
Senrong QIAO, Huijun LI, Xiaoqin CHENG, Dongyu BIAN, Xiaomin WANG
Front. Mater. Sci.    2022, 16 (2): 220605-null.   https://doi.org/10.1007/s11706-022-0605-9
Abstract   HTML   PDF (15578KB)

As an anode material for sodium-ion batteries (SIBs), bismuth (Bi) has attracted widespread attention due to its suitable voltage platform and high volumetric energy density. However, the severe volume expansion of Bi during charging and discharging leads to a rapid decline in battery capacity. Loading Bi on the graphene can relieve volume expansion and improve electrochemical performance. However, excessive loading of Bi on graphene will cause the porosity of the composite material to decrease, which leads to a decrease of the Na+ transmission rate. Herein, the Bi/three-dimensional porous graphene (Bi/3DPG) composite material was prepared and the pore structure was optimized to obtain the medium-load Bi/3DPG (Bi/3DPG-M) with better electrochemical performance. Bi/3DPG-M exhibited a fast kinetic process while maintaining a high specific capacity. The specific capacity still remained at 270 mA·h·g−1 (93.3%) after 500 cycles at a current density of 0.1 A·g−1. Even at 5 A·g−1, the specific capacity of Bi/3DPG-M could still reach 266.1 mA·h·g−1. This work can provide a reference for research on the use of alloy–graphene composite in the anode of SIBs.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(1) WebOfScience(1)