Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

   优先出版

合作单位

摘要点击排行
一年内发表的文章 |  两年内 |  三年内 |  全部
Please wait a minute...
选择: 合并摘要 显示/隐藏图片
Electron-ion collider in China
Daniele P. Anderle, Valerio Bertone, Xu Cao, Lei Chang, Ningbo Chang, Gu Chen, Xurong Chen, Zhuojun Chen, Zhufang Cui, Lingyun Dai, Weitian Deng, Minghui Ding, Xu Feng, Chang Gong, Longcheng Gui, Feng-Kun Guo, Chengdong Han, Jun He, Tie-Jiun Hou, Hongxia Huang, Yin Huang, KrešImir KumeričKi, L. P. Kaptari, Demin Li, Hengne Li, Minxiang Li, Xueqian Li, Yutie Liang, Zuotang Liang, Chen Liu, Chuan Liu, Guoming Liu, Jie Liu, Liuming Liu, Xiang Liu, Tianbo Liu, Xiaofeng Luo, Zhun Lyu, Boqiang Ma, Fu Ma, Jianping Ma, Yugang Ma, Lijun Mao, Cédric Mezrag, Hervé Moutarde, Jialun Ping, Sixue Qin, Hang Ren, Craig D. Roberts, Juan Rojo, Guodong Shen, Chao Shi, Qintao Song, Hao Sun, Paweł Sznajder, Enke Wang, Fan Wang, Qian Wang, Rong Wang, Ruiru Wang, Taofeng Wang, Wei Wang, Xiaoyu Wang, Xiaoyun Wang, Jiajun Wu, Xinggang Wu, Lei Xia, Bowen Xiao, Guoqing Xiao, Ju-Jun Xie, Yaping Xie, Hongxi Xing, Hushan Xu, Nu Xu, Shusheng Xu, Mengshi Yan, Wenbiao Yan, Wencheng Yan, Xinhu Yan, Jiancheng Yang, Yi-Bo Yang, Zhi Yang, Deliang Yao, Zhihong Ye, Peilin Yin, C.-P. Yuan, Wenlong Zhan, Jianhui Zhang, Jinlong Zhang, Pengming Zhang, Yifei Zhang, Chao-Hsi Chang, Zhenyu Zhang, Hongwei Zhao, Kuang-Ta Chao, Qiang Zhao, Yuxiang Zhao, Zhengguo Zhao, Liang Zheng, Jian Zhou, Xiang Zhou, Xiaorong Zhou, Bingsong Zou, Liping Zou
Frontiers of Physics    2021, 16 (6): 64701-.   https://doi.org/10.1007/s11467-021-1062-0
摘要   PDF (11129KB)

Lepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High Intensity heavy-ion Accelerator Facility (HIAF) which is currently under construction, together with a new electron ring. The proposed collider will provide highly polarized electrons (with a po- larization of 80%) and protons (with a polarization of 70%) with variable center of mass energies from 15 to 20 GeV and the luminosity of (2–3)×1033 cm2•s1. Polarized deuterons and Helium-3, as well as unpolarized ion beams from Carbon to Uranium, will be also available at the EicC.

The main foci of the EicC will be precision measurements of the structure of the nucleon in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment; the exotic states, especially those with heavy flavor quark contents. In addition, issues fundamental to understanding the origin of mass could be addressed by measurements of heavy quarkonia near-threshold production at the EicC. In order to achieve the above-mentioned physics goals, a hermetical detector system will be constructed with cutting-edge technologies.

This document is the result of collective contributions and valuable inputs from experts across the globe. The EicC physics program complements the ongoing scientific programs at the Jefferson Laboratory and the future EIC project in the United States. The success of this project will also advance both nuclear and particle physics as well as accelerator and detector technology in China.

参考文献 | 相关文章 | 多维度评价
Negative thermal expansion: Mechanisms and materials
Erjun Liang, Qiang Sun, Huanli Yuan, Jiaqi Wang, Gaojie Zeng, Qilong Gao
Frontiers of Physics    2021, 16 (5): 53302-null.   https://doi.org/10.1007/s11467-021-1070-0
摘要   PDF (4435KB)

Negative thermal expansion (NTE) of materials is an intriguing phenomenon challenging the concept of traditional lattice dynamics and of importance for a variety of applications. Progresses in this field develop markedly and update continuously our knowledge on the NTE behavior of materials. In this article, we review the most recent understandings on the underlying mechanisms (anharmonic phonon vibration, magnetovolume effect, ferroelectrorestriction and charge transfer) of thermal shrinkage and the development of NTE materials under each mechanism from both the theoretical and experimental aspects. Besides the low frequency optical phonons which are usually accepted as the origins of NTE in framework structures, NTE driven by acoustic phonons and the interplay between anisotropic elasticity and phonons are stressed. Based on the data documented, some problems affecting applications of NTE materials are discussed and strategies for discovering and design novel framework structured NET materials are also presented.

参考文献 | 相关文章 | 多维度评价
Emerging of two-dimensional materials in novel memristor
Zhican Zhou, Fengyou Yang, Shu Wang, Lei Wang, Xiaofeng Wang, Cong Wang, Yong Xie, Qian Liu
Frontiers of Physics    2022, 17 (2): 23204-.   https://doi.org/10.1007/s11467-021-1114-5
摘要   PDF (2241KB)

The rapid development of big-data analytics (BDA), internet of things (IoT) and artificial intelligent Technology (AI) demand outstanding electronic devices and systems with faster processing speed, lower power consumption, and smarter computer architecture. Memristor, as a promising Non-Volatile Memory (NVM) device, can effectively mimic biological synapse, and has been widely studied in recent years. The appearance and development of two-dimensional materials (2D material) accelerate and boost the progress of memristor systems owing to a bunch of the particularity of 2D material compared to conventional transition metal oxides (TMOs), therefore, 2D material-based memristors are called as new-generation intelligent memristors. In this review, the memristive (resistive switching) phenomena and the development of new-generation memristors are demonstrated involving grapheme (GR), transition-metal dichalcogenides (TMDs) and hexagonal boron nitride (h-BN) based memristors. Moreover, the related progress of memristive mechanisms is remarked.

参考文献 | 相关文章 | 多维度评价
The origin of ultrasensitive SERS sensing beyond plasmonics
Leilei Lan, Yimeng Gao, Xingce Fan, Mingze Li, Qi Hao, Teng Qiu
Frontiers of Physics    2021, 16 (4): 43300-null.   https://doi.org/10.1007/s11467-021-1047-z
摘要   PDF (3532KB)

Plasmon-free surface-enhanced Raman scattering (SERS) substrates have attracted tremendous attention for their abundant sources, excellent chemical stability, superior biocompatibility, good signal uniformity, and unique selectivity to target molecules. Recently, researchers have made great progress in fabricating novel plasmon-free SERS substrates and exploring new enhancement strategies to improve their sensitivity. This review summarizes the recent developments of plasmon-free SERS substrates and specially focuses on the enhancement mechanisms and strategies. Furthermore, the promising applications of plasmon-free SERS substrates in biomedical diagnosis, metal ions and organic pollutants sensing, chemical and biochemical reactions monitoring, and photoelectric characterization are introduced. Finally, current challenges and future research opportunities in plasmon-free SERS substrates are briefly discussed.

参考文献 | 相关文章 | 多维度评价
Recent advances in laser self-injection locking to high-Q microresonators
Nikita M. Kondratiev, Valery E. Lobanov, Artem E. Shitikov, Ramzil R. Galiev, Dmitry A. Chermoshentsev, Nikita Yu. Dmitriev, Andrey N. Danilin, Evgeny A. Lonshakov, Kirill N. Min’kov, Daria M. Sokol, Steevy J. Cordette, Yi-Han Luo, Wei Liang, Junqiu Liu, Igor A. Bilenko
Frontiers of Physics    2023, 18 (2): 21305-.   https://doi.org/10.1007/s11467-022-1245-3
摘要   HTML   PDF (18696KB)

The stabilization and manipulation of laser frequency by means of an external cavity are nearly ubiquitously used in fundamental research and laser applications. While most of the laser light transmits through the cavity, in the presence of some back-scattered light from the cavity to the laser, the self-injection locking effect can take place, which locks the laser emission frequency to the cavity mode of similar frequency. The self-injection locking leads to dramatic reduction of laser linewidth and noise. Using this approach, a common semiconductor laser locked to an ultrahigh-Q microresonator can obtain sub-Hertz linewidth, on par with state-of-the-art fiber lasers. Therefore it paves the way to manufacture high-performance semiconductor lasers with reduced footprint and cost. Moreover, with high laser power, the optical nonlinearity of the microresonator drastically changes the laser dynamics, offering routes for simultaneous pulse and frequency comb generation in the same microresonator. Particularly, integrated photonics technology, enabling components fabricated via semiconductor CMOS process, has brought increasing and extending interest to laser manufacturing using this method. In this article, we present a comprehensive tutorial on analytical and numerical methods of laser self-injection locking, as well a review of most recent theoretical and experimental achievements.

图表 | 参考文献 | 相关文章 | 多维度评价
Machine learning approach for the prediction and optimization of thermal transport properties
Yulou Ouyang, Cuiqian Yu, Gang Yan, Jie Chen
Frontiers of Physics    2021, 16 (4): 43200-null.   https://doi.org/10.1007/s11467-020-1041-x
摘要   PDF (2563KB)

Traditional simulation methods have made prominent progress in aiding experiments for understanding thermal transport properties of materials, and in predicting thermal conductivity of novel materials. However, huge challenges are also encountered when exploring complex material systems, such as formidable computational costs. As a rising computational method, machine learning has a lot to offer in this regard, not only in speeding up the searching and optimization process, but also in providing novel perspectives. In this work, we review the state-of-the-art studies on material’s thermal properties based on machine learning technique. First, the basic principles of machine learning method are introduced. We then review applications of machine learning technique in the prediction and optimization of material’s thermal properties, including thermal conductivity and interfacial thermal resistance. Finally, an outlook is provided for the future studies.

参考文献 | 相关文章 | 多维度评价
A new form of liquid matter: Quantum droplets
Zhi-Huan Luo, Wei Pang, Bin Liu, Yong-Yao Li, Boris A. Malomed
Frontiers of Physics    2021, 16 (3): 32201-null.   https://doi.org/10.1007/s11467-020-1020-2
摘要   PDF (2207KB)

This brief review summarizes recent theoretical and experimental results which predict and establish the existence of quantum droplets (QDs), i.e., robust two- and three-dimensional (2D and 3D) selftrapped states in Bose–Einstein condensates (BECs), which are stabilized by effective self-repulsion induced by quantum fluctuations around the mean-field (MF) states [alias the Lee–Huang–Yang (LHY) effect]. The basic models are presented, taking special care of the dimension crossover, 2D→3D. Recently reported experimental results, which exhibit stable 3D and quasi-2D QDs in binary BECs, with the inter-component attraction slightly exceeding the MF self-repulsion in each component, and in single-component condensates of atoms carrying permanent magnetic moments, are presented in some detail. The summary of theoretical results is focused, chiefly, on 3D and quasi-2D QDs with embedded vorticity, as the possibility to stabilize such states is a remarkable prediction. Stable vortex states are presented both for QDs in free space, and for singular but physically relevant 2D modes pulled to the center by the inverse-square potential, with the quantum collapse suppressed by the LHY effect.

参考文献 | 相关文章 | 多维度评价
Thermal conductivity of micro/nano-porous polymers: Prediction models and applications
Haiyan Yu, Haochun Zhang, Jinchuan Zhao, Jing Liu, Xinlin Xia, Xiaohu Wu
Frontiers of Physics    2022, 17 (2): 23202-.   https://doi.org/10.1007/s11467-021-1107-4
摘要   PDF (9394KB)

Micro/nano-porous polymeric material is considered a unique industrial material due to its extremely low thermal conductivity, low density, and high surface area. Therefore, it is necessary to establish an accurate thermal conductivity prediction model suiting their applicable conditions and provide a theoretical basis for expanding their applications. In this work, the development of the calculation model of equivalent thermal conductivity of micro/nano-porous polymeric materials in recent years is summarized. Firstly, it reviews the process of establishing the overall equivalent thermal conductivity calculation model for micro/nanoporous polymers. Then, the predicted calculation models of thermal conductivity are introduced separately according to the conductive and radiative thermal conductivity models. In addition, the thermal conduction part is divided into the gaseous thermal conductivity model, solid thermal conductivity model and gas–solid coupling model. Finally, it is concluded that, compared with other porous materials, there are few studies on heat transfer of micro/ nanoporous polymers, especially on the particular heat transfer mechanisms such as scale effects at the micro/nanoscale. In particular, the following aspects of porous polymers still need to be further studied: micro scaled thermal radiation, heat transfer characteristics of particular morphologies at the nanoscales, heat transfer mechanism and impact factors of micro/nanoporous polymers. Such studies would provide a more accurate prediction of thermal conductivity and a broader application in energy conversion and storage systems.

参考文献 | 相关文章 | 多维度评价
Intrinsic magnetic topological materials
Yuan Wang, Fayuan Zhang, Meng Zeng, Hongyi Sun, Zhanyang Hao, Yongqing Cai, Hongtao Rong, Chengcheng Zhang, Cai Liu, Xiaoming Ma, Le Wang, Shu Guo, Junhao Lin, Qihang Liu, Chang Liu, Chaoyu Chen
Frontiers of Physics    2023, 18 (2): 21304-null.   https://doi.org/10.1007/s11467-022-1250-6
摘要   HTML   PDF (12634KB)

Topological states of matter possess bulk electronic structures categorized by topological invariants and edge/surface states due to the bulk-boundary correspondence. Topological materials hold great potential in the development of dissipationless spintronics, information storage and quantum computation, particularly if combined with magnetic order intrinsically or extrinsically. Here, we review the recent progress in the exploration of intrinsic magnetic topological materials, including but not limited to magnetic topological insulators, magnetic topological metals, and magnetic Weyl semimetals. We pay special attention to their characteristic band features such as the gap of topological surface state, gapped Dirac cone induced by magnetization (either bulk or surface), Weyl nodal point/line and Fermi arc, as well as the exotic transport responses resulting from such band features. We conclude with a brief envision for experimental explorations of new physics or effects by incorporating other orders in intrinsic magnetic topological materials.

图表 | 参考文献 | 相关文章 | 多维度评价
STCF conceptual design report (Volume 1): Physics & detector
M. Achasov, X. C. Ai, L. P. An, R. Aliberti, Q. An, X. Z. Bai, Y. Bai, O. Bakina, A. Barnyakov, V. Blinov, V. Bobrovnikov, D. Bodrov, A. Bogomyagkov, A. Bondar, I. Boyko, Z. H. Bu, F. M. Cai, H. Cai, J. J. Cao, Q. H. Cao, X. Cao, Z. Cao, Q. Chang, K. T. Chao, D. Y. Chen, H. Chen, H. X. Chen, J. F. Chen, K. Chen, L. L. Chen, P. Chen, S. L. Chen, S. M. Chen, S. Chen, S. P. Chen, W. Chen, X. Chen, X. F. Chen, X. R. Chen, Y. Chen, Y. Q. Chen, H. Y. Cheng, J. Cheng, S. Cheng, T. G. Cheng, J. P. Dai, L. Y. Dai, X. C. Dai, D. Dedovich, A. Denig, I. Denisenko, J. M. Dias, D. Z. Ding, L. Y. Dong, W. H. Dong, V. Druzhinin, D. S. Du, Y. J. Du, Z. G. Du, L. M. Duan, D. Epifanov, Y. L. Fan, S. S. Fang, Z. J. Fang, G. Fedotovich, C. Q. Feng, X. Feng, Y. T. Feng, J. L. Fu, J. Gao, Y. N. Gao, P. S. Ge, C. Q. Geng, L. S. Geng, A. Gilman, L. Gong, T. Gong, B. Gou, W. Gradl, J. L. Gu, A. Guevara, L. C. Gui, A. Q. Guo, F. K. Guo, J. C. Guo, J. Guo, Y. P. Guo, Z. H. Guo, A. Guskov, K. L. Han, L. Han, M. Han, X. Q. Hao, J. B. He, S. Q. He, X. G. He, Y. L. He, Z. B. He, Z. X. Heng, B. L. Hou, T. J. Hou, Y. R. Hou, C. Y. Hu, H. M. Hu, K. Hu, R. J. Hu, W. H. Hu, X. H. Hu, Y. C. Hu, J. Hua, G. S. Huang, J. S. Huang, M. Huang, Q. Y. Huang, W. Q. Huang, X. T. Huang, X. J. Huang, Y. B. Huang, Y. S. Huang, N. Hüsken, V. Ivanov, Q. P. Ji, J. J. Jia, S. Jia, Z. K. Jia, H. B. Jiang, J. Jiang, S. Z. Jiang, J. B. Jiao, Z. Jiao, H. J. Jing, X. L. Kang, X. S. Kang, B. C. Ke, M. Kenzie, A. Khoukaz, I. Koop, E. Kravchenko, A. Kuzmin, Y. Lei, E. Levichev, C. H. Li, C. Li, D. Y. Li, F. Li, G. Li, G. Li, H. B. Li, H. Li, H. N. Li, H. J. Li, H. L. Li, J. M. Li, J. Li, L. Li, L. Li, L. Y. Li, N. Li, P. R. Li, R. H. Li, S. Li, T. Li, W. J. Li, X. Li, X. H. Li, X. Q. Li, X. H. Li, Y. Li, Y. Y. Li, Z. J. Li, H. Liang, J. H. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, Y. Liao, C. X. Lin, D. X. Lin, X. S. Lin, B. J. Liu, C. W. Liu, D. Liu, F. Liu, G. M. Liu, H. B. Liu, J. Liu, J. J. Liu, J. B. Liu, K. Liu, K. Y. Liu, K. Liu, L. Liu, Q. Liu, S. B. Liu, T. Liu, X. Liu, Y. W. Liu, Y. Liu, Y. L. Liu, Z. Q. Liu, Z. Y. Liu, Z. W. Liu, I. Logashenko, Y. Long, C. G. Lu, J. X. Lu, N. Lu, Q. F. Lü, Y. Lu, Y. Lu, Z. Lu, P. Lukin, F. J. Luo, T. Luo, X. F. Luo, Y. H. Luo, H. J. Lyu, X. R. Lyu, J. P. Ma, P. Ma, Y. Ma, Y. M. Ma, F. Maas, S. Malde, D. Matvienko, Z. X. Meng, R. Mitchell, A. Nefediev, Y. Nefedov, S. L. Olsen, Q. Ouyang, P. Pakhlov, G. Pakhlova, X. Pan, Y. Pan, E. Passemar, Y. P. Pei, H. P. Peng, L. Peng, X. Y. Peng, X. J. Peng, K. Peters, S. Pivovarov, E. Pyata, B. B. Qi, Y. Q. Qi, W. B. Qian, Y. Qian, C. F. Qiao, J. J. Qin, J. J. Qin, L. Q. Qin, X. S. Qin, T. L. Qiu, J. Rademacker, C. F. Redmer, H. Y. Sang, M. Saur, W. Shan, X. Y. Shan, L. L. Shang, M. Shao, L. Shekhtman, C. P. Shen, J. M. Shen, Z. T. Shen, H. C. Shi, X. D. Shi, B. Shwartz, A. Sokolov, J. J. Song, W. M. Song, Y. Song, Y. X. Song, A. Sukharev, J. F. Sun, L. Sun, X. M. Sun, Y. J. Sun, Z. P. Sun, J. Tang, S. S. Tang, Z. B. Tang, C. H. Tian, J. S. Tian, Y. Tian, Y. Tikhonov, K. Todyshev, T. Uglov, V. Vorobyev, B. D. Wan, B. L. Wang, B. Wang, D. Y. Wang, G. Y. Wang, G. L. Wang, H. L. Wang, J. Wang, J. H. Wang, J. C. Wang, M. L. Wang, R. Wang, R. Wang, S. B. Wang, W. Wang, W. P. Wang, X. C. Wang, X. D. Wang, X. L. Wang, X. L. Wang, X. P. Wang, X. F. Wang, Y. D. Wang, Y. P. Wang, Y. Q. Wang, Y. L. Wang, Y. G. Wang, Z. Y. Wang, Z. Y. Wang, Z. L. Wang, Z. G. Wang, D. H. Wei, X. L. Wei, X. M. Wei, Q. G. Wen, X. J. Wen, G. Wilkinson, B. Wu, J. J. Wu, L. Wu, P. Wu, T. W. Wu, Y. S. Wu, L. Xia, T. Xiang, C. W. Xiao, D. Xiao, M. Xiao, K. P. Xie, Y. H. Xie, Y. Xing, Z. Z. Xing, X. N. Xiong, F. R. Xu, J. Xu, L. L. Xu, Q. N. Xu, X. C. Xu, X. P. Xu, Y. C. Xu, Y. P. Xu, Y. Xu, Z. Z. Xu, D. W. Xuan, F. F. Xue, L. Yan, M. J. Yan, W. B. Yan, W. C. Yan, X. S. Yan, B. F. Yang, C. Yang, H. J. Yang, H. R. Yang, H. T. Yang, J. F. Yang, S. L. Yang, Y. D. Yang, Y. H. Yang, Y. S. Yang, Y. L. Yang, Z. W. Yang, Z. Y. Yang, D. L. Yao, H. Yin, X. H. Yin, N. Yokozaki, S. Y. You, Z. Y. You, C. X. Yu, F. S. Yu, G. L. Yu, H. L. Yu, J. S. Yu, J. Q. Yu, L. Yuan, X. B. Yuan, Z. Y. Yuan, Y. F. Yue, M. Zeng, S. Zeng, A. L. Zhang, B. W. Zhang, G. Y. Zhang, G. Q. Zhang, H. J. Zhang, H. B. Zhang, J. Y. Zhang, J. L. Zhang, J. Zhang, L. Zhang, L. M. Zhang, Q. A. Zhang, R. Zhang, S. L. Zhang, T. Zhang, X. Zhang, Y. Zhang, Y. J. Zhang, Y. X. Zhang, Y. T. Zhang, Y. F. Zhang, Y. C. Zhang, Y. Zhang, Y. Zhang, Y. M. Zhang, Y. L. Zhang, Z. H. Zhang, Z. Y. Zhang, Z. Y. Zhang, H. Y. Zhao, J. Zhao, L. Zhao, M. G. Zhao, Q. Zhao, R. G. Zhao, R. P. Zhao, Y. X. Zhao, Z. G. Zhao, Z. X. Zhao, A. Zhemchugov, B. Zheng, L. Zheng, Q. B. Zheng, R. Zheng, Y. H. Zheng, X. H. Zhong, H. J. Zhou, H. Q. Zhou, H. Zhou, S. H. Zhou, X. Zhou, X. K. Zhou, X. P. Zhou, X. R. Zhou, Y. L. Zhou, Y. Zhou, Y. X. Zhou, Z. Y. Zhou, J. Y. Zhu, K. Zhu, R. D. Zhu, R. L. Zhu, S. H. Zhu, Y. C. Zhu, Z. A. Zhu, V. Zhukova, V. Zhulanov, B. S. Zou, Y. B. Zuo
Frontiers of Physics    2024, 19 (1): 14701-.   https://doi.org/10.1007/s11467-023-1333-z
摘要   HTML   PDF (18750KB)

The super τ-charm facility (STCF) is an electron−positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035 cm−2·s−1 or higher. The STCF will produce a data sample about a factor of 100 larger than that of the present τ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies.

图表 | 参考文献 | 相关文章 | 多维度评价
Kink-like breathers in Bose–Einstein condensates with helicoidal spin–orbit coupling
Yixin Yang, Peng Gao, Li-Chen Zhao, Zhan-Ying Yang
Frontiers of Physics    2022, 17 (3): 32503-.   https://doi.org/10.1007/s11467-021-1127-0
摘要   PDF (846KB)

We report a kind of kink-like breathers in one-dimensional Bose–Einstein condensates (BECs) with helicoidal spin–orbit coupling (SOC), on whose two sides the background densities manifest obvious difference (called kink amplitude). The kink amplitude and shape of breather can be adjusted by the strength and period of helicoidal SOC, and its atomic number in two components exchanges periodically with time. The SOC has similar influence on the kink amplitude and the exchanged atomic number, especially when the background wave number is fixed. It indicates that the oscillating intensity of breather can be controlled by adjusting initial kink amplitude. Our work showcases the great potential of realizing novel types of breathers through SOC, and deepens our understanding on the formation mechanisms of breathers in BECs.

参考文献 | 相关文章 | 多维度评价
Topological states in quasicrystals
Jiahao Fan, Huaqing Huang
Frontiers of Physics    2022, 17 (1): 13203-.   https://doi.org/10.1007/s11467-021-1100-y
摘要   PDF (5621KB)

With the rapid development of topological states in crystals, the study of topological states has been extended to quasicrystals in recent years. In this review, we summarize the recent progress of topological states in quasicrystals, particularly focusing on one-dimensional (1D) and 2D systems. We first give a brief introduction to quasicrystalline structures. Then, we discuss topological phases in 1D quasicrystals where the topological nature is attributed to the synthetic dimensions associated with the quasiperiodic order of quasicrystals. We further present the generalization of various types of crystalline topological states to 2D quasicrystals, where real-space expressions of corresponding topological invariants are introduced due to the lack of translational symmetry in quasicrystals. Finally, since quasicrystals possess forbidden symmetries in crystals such as five-fold and eight-fold rotation, we provide an overview of unique quasicrystalline symmetry-protected topological states without crystalline counterpart.

参考文献 | 相关文章 | 多维度评价
Rydberg quantum computation with nuclear spins in two-electron neutral atoms
Xiao-Feng Shi
Frontiers of Physics    2021, 16 (5): 52501-null.   https://doi.org/10.1007/s11467-021-1069-6
摘要   PDF (861KB)

Alkaline-earth-like (AEL) atoms with two valence electrons and a nonzero nuclear spin can be excited to Rydberg state for quantum computing. Typical AEL ground states possess no hyperfine splitting, but unfortunately a GHz-scale splitting seems necessary for Rydberg excitation. Though strong magnetic fields can induce a GHz-scale splitting, weak fields are desirable to avoid noise in experiments. Here, we provide two solutions to this outstanding challenge with realistic data of well-studied AEL isotopes. In the first theory, the two nuclear spin qubit states |0〉 and |1〉 are excited to Rydberg states |r〉 with detuning Δ and 0, respectively, where a MHz-scale detuning Δ arises from a weak magnetic field on the order of 1 G. With a proper ratio between Δ and Ω, the qubit state |1〉 can be fully excited to the Rydberg state while |0〉 remains there. In the second theory, we show that by choosing appropriate intermediate states a two-photon Rydberg excitation can proceed with only one nuclear spin qubit state. The second theory is applicable whatever the magnitude of the magnetic field is. These theories bring a versatile means for quantum computation by combining the broad applicability of Rydberg blockade and the incomparable advantages of nuclear-spin quantum memory in two-electron neutral atoms.

参考文献 | 相关文章 | 多维度评价
Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities
Na-Na Zhang (张娜娜), Ming-Jie Tao (陶明杰), Wan-Ting He (何宛亭), Xin-Yu Chen (陈鑫宇), Xiang-Yu Kong (孔祥宇), Fu-Guo Deng (邓富国), Neill Lambert, Qing Ai (艾清)
Frontiers of Physics    2021, 16 (5): 51501-null.   https://doi.org/10.1007/s11467-021-1064-y
摘要   PDF (3982KB)

Simulation of open quantum dynamics for various Hamiltonians and spectral densities are ubiquitous for studying various quantum systems. On a quantum computer, only log2N qubits are required for the simulation of an N-dimensional quantum system, hence simulation in a quantum computer can greatly reduce the computational complexity compared with classical methods. Recently, a quantum simulation approach was proposed for studying photosynthetic light harvesting [npj Quantum Inf. 4, 52 (2018)]. In this paper, we apply the approach to simulate the open quantum dynamics of various photosynthetic systems. We show that for Drude–Lorentz spectral density, the dimerized geometries with strong couplings within the donor and acceptor clusters respectively exhibit significantly improved efficiency. We also demonstrate that the overall energy transfer can be optimized when the energy gap between the donor and acceptor clusters matches the optimum of the spectral density. The effects of different types of baths, e.g., Ohmic, sub-Ohmic, and super-Ohmic spectral densities are also studied. The present investigations demonstrate that the proposed approach is universal for simulating the exact quantum dynamics of photosynthetic systems.

参考文献 | 相关文章 | 多维度评价
Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties
Rui Yang, Jianuo Fan, Mengtao Sun
Frontiers of Physics    2022, 17 (4): 43202-null.   https://doi.org/10.1007/s11467-022-1176-z
摘要   HTML   PDF (9457KB)

Transition metal dichalcogenides (TMDCs) have suitable and adjustable band gaps, high carrier mobility and yield. Layered TMDCs have attracted great attention due to the structure diversity, stable existence in normal temperature environment and the band gap corresponding to wavelength between infrared and visible region. The ultra-thin, flat, almost defect-free surface, excellent mechanical flexibility and chemical stability provide convenient conditions for the construction of different types of TMDCs heterojunctions. The optoelectric properties of heterojunctions based on TMDCs materials are summarized in this review. Special electronic band structures of TMDCs heterojunctions lead to excellent optoelectric properties. The emitter, p-n diodes, photodetectors and photosensitive devices based on TMDCs heterojunction materials show excellent performance. These devices provide a prototype for the design and development of future high-performance optoelectric devices.

图表 | 参考文献 | 相关文章 | 多维度评价
Complex energy plane and topological invariant in non-Hermitian systems
Annan Fan, Shi-Dong Liang
Frontiers of Physics    2022, 17 (3): 33501-.   https://doi.org/10.1007/s11467-021-1122-5
摘要   PDF (1310KB)

Non-Hermitian systems as theoretical models of open or dissipative systems exhibit rich novel physical properties and fundamental issues in condensed matter physics. We propose a generalized local–global correspondence between the pseudo-boundary states in the complex energy plane and topological invariants of quantum states. We find that the patterns of the pseudo-boundary states in the complex energy plane mapped to the Brillouin zone are topological invariants against the parameter deformation. We demonstrate this approach by the non-Hermitian Chern insulator model. We give the consistent topological phases obtained from the Chern number and vorticity. We also find some novel topological invariants embedded in the topological phases of the Chern insulator model, which enrich the phase diagram of the non-Hermitian Chern insulators model beyond that predicted by the Chern number and vorticity. We also propose a generalized vorticity and its flipping index to understand physics behind this novel local–global correspondence and discuss the relationships between the local–global correspondence and the Chern number as well as the transformation between the Brillouin zone and the complex energy plane. These novel approaches provide insights to how topological invariants may be obtained from local information as well as the global property of quantum states, which is expected to be applicable in more generic non-Hermitian systems.

参考文献 | 相关文章 | 多维度评价
Influence of the tangential velocity on the compressible Kelvin−Helmholtz instability with nonequilibrium effects
Yaofeng Li, Huilin Lai, Chuandong Lin, Demei Li
Frontiers of Physics    2022, 17 (6): 63500-null.   https://doi.org/10.1007/s11467-022-1200-3
摘要   HTML   PDF (33784KB)

Kelvin−Helmholtz (KH) instability is a fundamental fluid instability that widely exists in nature and engineering. To better understand the dynamic process of the KH instability, the influence of the tangential velocity on the compressible KH instability is investigated by using the discrete Boltzmann method based on the nonequilibrium statistical physics. Both hydrodynamic and thermodynamic nonequilibrium (TNE) effects are probed and analyzed. It is found that, on the whole, the global density gradients, the TNE strength and area firstly increase and decrease afterwards. Both the global density gradient and heat flux intensity in the vertical direction are almost constant in the initial stage before a vortex forms. Moreover, with the increase of the tangential velocity, the KH instability evolves faster, hence the global density gradients, the TNE strength and area increase in the initial stage and achieve their peak earlier, and their maxima are higher for a larger tangential velocity. Physically, there are several competitive mechanisms in the evolution of the KH instability. (i) The physical gradients increase and the TNE effects are strengthened as the interface is elongated. The local physical gradients decrease and the local TNE intensity is weakened on account of the dissipation and/or diffusion. (ii) The global heat flux intensity is promoted when the physical gradients increase. As the contact area expands, the heat exchange is enhanced and the global heat flux intensity increases. (iii) The global TNE intensity reduces with the decreasing of physical gradients and increase with the increasing of TNE area. (iv) The nonequilibrium area increases as the fluid interface is elongated and is widened because of the dissipation and/or diffusion.

图表 | 参考文献 | 相关文章 | 多维度评价
Novel intelligent devices: Two-dimensional materials based memristors
Lena Du, Zhongchang Wang, Guozhong Zhao
Frontiers of Physics    2022, 17 (2): 23602-.   https://doi.org/10.1007/s11467-022-1152-7
摘要   PDF (281KB)

Two-dimensional (2D) materials with atomic thickness, non-volatile resistive switching feature and compatibility with the semiconducting technology are naturally a good media of memristors. 2D materials-based memristors with excellent performance, low-power consumption and high integration density can be integrated with other circuit components to implement the complicate logic computing, which will become a key driving force for the development of artificial intelligence.

参考文献 | 相关文章 | 多维度评价
Recent progress in all-inorganic metal halide nanostructured perovskites: Materials design, optical properties, and application
Lianzhen Cao, Xia Liu, Yingde Li, Xiusheng Li, Lena Du, Shengyao Chen, Shenlong Zhao, Cong Wang
Frontiers of Physics    2021, 16 (3): 33201-null.   https://doi.org/10.1007/s11467-020-1026-9
摘要   PDF (1383KB)

Low-dimensional all-inorganic metal halide perovskite (AIMHP) materials, as a new class of nanomaterials, hold great promise for various optoelectronic devices. In the past few years, tremendous progress has been achieved in the development of efficient and stable AIMHP nanomaterials for optical property studies and related applications. Here, we offer a critical overview on the unique merits and the state-of-the-art design of AIMHP using different composition strategies. Then, the effects of material compositions, dimensionality, morphologies and structures on optical properties are summarized. We also comprehensively present recent advances in the development AIMHP nanomaterials for practical applications including solar cells, light-emitting diodes, lasers and photodetectors. Lastly, the critical challenges and future opportunities in this emerging field are highlighted.

参考文献 | 相关文章 | 多维度评价
Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity
Sai Li, Pu Shen, Tao Chen, Zheng-Yuan Xue
Frontiers of Physics    2021, 16 (5): 51502-.   https://doi.org/10.1007/s11467-021-1087-4
摘要   PDF (1303KB)

High-fidelity quantum gates are essential for large-scale quantum computation. However, any quantum manipulation will inevitably affected by noises, systematic errors and decoherence effects, which lead to infidelity of a target quantum task. Therefore, implementing high-fidelity, robust and fast quantum gates is highly desired. Here, we propose a fast and robust scheme to construct high-fidelity holonomic quantum gates for universal quantum computation based on resonant interaction of three-level quantum systems via shortcuts to adiabaticity. In our proposal, the target Hamiltonian to induce noncyclic non-Abelian geometric phases can be inversely engineered with less evolution time and demanding experimentally, leading to high-fidelity quantum gates in a simple setup. Besides, our scheme is readily realizable in physical system currently pursued for implementation of quantum computation. Therefore, our proposal represents a promising way towards fault-tolerant geometric quantum computation.

参考文献 | 相关文章 | 多维度评价
The geometric phase in nonlinear frequency conversion
Aviv Karnieli, Yongyao Li, Ady Arie
Frontiers of Physics    2022, 17 (1): 12301-.   https://doi.org/10.1007/s11467-021-1102-9
摘要   PDF (9844KB)

The geometric phase of light has been demonstrated in various platforms of the linear optical regime, raising interest both for fundamental science as well as applications, such as flat optical elements. Recently, the concept of geometric phases has been extended to nonlinear optics, following advances in engineering both bulk nonlinear photonic crystals and nonlinear metasurfaces. These new technologies offer a great promise of applications for nonlinear manipulation of light. In this review, we cover the recent theoretical and experimental advances in the field of geometric phases accompanying nonlinear frequency conversion. We first consider the case of bulk nonlinear photonic crystals, in which the interaction between propagating waves is quasi-phase-matched, with an engineerable geometric phase accumulated by the light. Nonlinear photonic crystals can offer efficient and robust frequency conversion in both the linearized and fully-nonlinear regimes of interaction, and allow for several applications including adiabatic mode conversion, electromagnetic nonreciprocity and novel topological effects for light. We then cover the rapidly-growing field of nonlinear Pancharatnam-Berry metasurfaces, which allow the simultaneous nonlinear generation and shaping of light by using ultrathin optical elements with subwavelength phase and amplitude resolution. We discuss the macroscopic selection rules that depend on the rotational symmetry of the constituent meta-atoms, the order of the harmonic generations, and the change in circular polarization. Continuous geometric phase gradients allow the steering of light beams and shaping of their spatial modes. More complex designs perform nonlinear imaging and multiplex nonlinear holograms, where the functionality is varied according to the generated harmonic order and polarization. Recent advancements in the fabrication of three dimensional nonlinear photonic crystals, as well as the pursuit of quantum light sources based on nonlinear metasurfaces, offer exciting new possibilities for novel nonlinear optical applications based on geometric phases.

参考文献 | 相关文章 | 多维度评价
Molecular collisions: From near-cold to ultra-cold
Yang Liu, Le Luo
Frontiers of Physics    2021, 16 (4): 42300-null.   https://doi.org/10.1007/s11467-020-1037-6
摘要   PDF (3413KB)

In the past two decades, the revolutionary technologies of creating cold and ultracold molecules have provided cutting-edge experiments for studying the fundamental phenomena of collision physics. To a large degree, the recent explosion of interest in the molecular collisions has been sparked by dramatic progress of experimental capabilities and theoretical methods, which permit molecular collisions to be explored deep in the quantum mechanical limit. Tremendous experimental advances in the field have already been achieved, and the authors, from an experimental perspective, provide a review of these studies for exploring the nature of molecular collisions occurring at temperatures ranging from the Kelvin to the nanoKelvin regime, as well as for applications of producing ultracold molecules.

参考文献 | 相关文章 | 多维度评价
Transport in electron−photon systems
Jian-Sheng Wang, Jiebin Peng, Zu-Quan Zhang, Yong-Mei Zhang, Tao Zhu
Frontiers of Physics    2023, 18 (4): 43602-.   https://doi.org/10.1007/s11467-023-1260-z
摘要   HTML   PDF (6659KB)

We review the description and modeling of transport phenomena among the electron systems coupled via scalar or vector photons. It consists of three parts. The first part is about scalar photons, i.e., Coulomb interactions. The second part is with transverse photons described by vector potentials. The third part is on ϕ = 0 or temporal gauge, which is a full theory of the electrodynamics. We use the nonequilibrium Green’s function (NEGF) formalism as a basic tool to study steady-state transport. Although with local equilibrium it is equivalent to the fluctuational electrodynamics (FE), the advantage of NEGF is that it can go beyond FE due to its generality. We have given a few examples in the review, such as transfer of heat between graphene sheets driven by potential bias, emission of light by a double quantum dot, and emission of energy, momentum, and angular momentum from a graphene nanoribbon. All of these calculations are based on a generalization of the Meir−Wingreen formula commonly used in electronic transport in mesoscopic systems, with materials properties represented by photon self-energy, coupled with the Keldysh equation and the solution to the Dyson equation.

图表 | 参考文献 | 相关文章 | 多维度评价
Muon spinning its way to new physics
Kim Siang Khaw, Liang Li, Jing Shu
Frontiers of Physics    2021, 16 (6): 64602-null.   https://doi.org/10.1007/s11467-021-1089-2
摘要   PDF (382KB)

The first results from the Fermilab Muon g–2 Experiment shed lights on the mystery surrounding the magnetic anomaly of the muon. This could become a window into a new era of particle physics.

参考文献 | 相关文章 | 多维度评价
Pseudo-copper Ni–Zn alloy catalysts for carbon dioxide reduction to C2 products
Xiao-Dong Zhang, Kang Liu, Jun-Wei Fu, Hong-Mei Li, Hao Pan, Jun-Hua Hu, Min Liu
Frontiers of Physics    2021, 16 (6): 63500-.   https://doi.org/10.1007/s11467-021-1079-4
摘要   PDF (1891KB)

Electrocatalytic CO2 reduction reaction (CO2RR) to obtain C2 products has drawn widespread attentions. Copper-based materials are the most reported catalysts for CO2 reduction to C2 products. Design of high-efficiency pseudo-copper catalysts according to the key characteristics of copper (Cu) is an important strategy to understand the reaction mechanism of C2 products. In this work, density function theory (DFT) calculations are used to predict nickel–zinc (NiZn) alloy catalysts with the criteria similar structure and intermediate adsorption property to Cu catalyst. The calculated tops of 3d states of NiZn3(001) catalysts are the same as Cu(100), which is the key parameter affecting the adsorption of intermediate products. As a result, NiZn3(001) exhibits similar adsorption properties with Cu(100) on the crucial intermediates *CO2, *CO and *H. Moreover, we further studied CO formation, CO hydrogenation and C–C coupling process on Ni–Zn alloys. The free energy profile of C2 products formation shows that the energy barrier of C2 products formation on NiZn3(001) is even lower than Cu(100). These results indicate that NiZn3 alloy as pseudo-copper catalyst can exhibit a higher catalytic activity and selectivity of C2 products during CO2RR. This work proposes a feasible pseudo-copper catalyst and provides guidance to design high-efficiency catalysts for CO2RR to C2 or multi-carbon products.

参考文献 | 补充材料 | 相关文章 | 多维度评价
Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing
Shanwu Ke, Li Jiang, Yifan Zhao, Yongyue Xiao, Bei Jiang, Gong Cheng, Facai Wu, Guangsen Cao, Zehui Peng, Min Zhu, Cong Ye
Frontiers of Physics    2022, 17 (5): 53508-.   https://doi.org/10.1007/s11467-022-1173-2
摘要   HTML   PDF (3651KB)

Artificial synapse is one of the potential electronics for constructing neural network hardware. In this work, Pt/LiSiOx/TiN analog artificial synapse memristor is designed and investigated. With the increase of compliance current (C. C.) under 0.6 mA, 1 mA, and 3 mA, the current in the high resistance state (HRS) presents an increasing variation, which indicates lithium ions participates in the operation process for Pt/LiSiOx/TiN memristor. Moreover, depending on the movement of lithium ions in the functional layer, the memristor illustrates excellent conduction modulation property, so the long-term potentiation (LTP) or depression (LTD) and paired-pulse facilitation (PPF) synaptic functions are successfully achieved. The neural network simulation for pattern recognition is proposed with the recognition accuracy of 91.4%. These findings suggest the potential application of the LiSiOx memristor in the neuromorphic computing.

图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure
Lei Qiao, Ning-hua Wu, Tianhao Li, Siqi Wu, Zhuyi Zhang, Miaocong Li, Jiang Ma, Baijiang Lv, Yupeng Li, Chenchao Xu, Qian Tao, Chao Cao, Guang-Han Cao, Zhu-An Xu
Frontiers of Physics    2021, 16 (6): 63501-.   https://doi.org/10.1007/s11467-021-1076-7
摘要   PDF (2328KB)

We investigated the coexistence of superconductivity and antiferromagnetic order in the compound Er2O2Bi with anti-ThCr2Si2-type structure through resistivity, magnetization, specific heat measurements and first-principle calculations. The superconducting transition temperature Tc of 1.23 K and antiferromagnetic transition temperature TN of 3 K are observed in the sample with the best nominal composition. The superconducting upper critical field Hc2(0) and electron-phonon coupling constant λeph in Er2O2Bi are similar to those in the previously reported non-magnetic superconductor Y2O2Bi with the same structure, indicating that the superconductivity in Er2O2Bi may have the same origin as in Y2O2Bi. The first-principle calculations of Er2O2Bi show that the Fermi surface is mainly composed of the Bi 6p orbitals both in the paramagnetic and antiferromagnetic state, implying minor effect of the 4f electrons on the Fermi surface. Besides, upon increasing the oxygen incorporation in Er2OxBi, Tc increases from 1 to 1.23 K and TN decreases slightly from 3 K to 2.96 K, revealing that superconductivity and antiferromagnetic order may compete with each other. The Hall effect measurements indicate that hole-type carrier density indeed increases with increasing oxygen content, which may account for the variations of Tc and TN with different oxygen content.

参考文献 | 相关文章 | 多维度评价
A new state of matter of quantum droplets
Mingyang Guo, Tilman Pfau
Frontiers of Physics    2021, 16 (3): 32202-null.   https://doi.org/10.1007/s11467-020-1035-8
摘要   PDF (612KB)
参考文献 | 相关文章 | 多维度评价
Electromagnetically induced moiré optical lattices in a coherent atomic gas
Zhiming Chen, Xiuye Liu, Jianhua Zeng
Frontiers of Physics    2022, 17 (4): 42508-.   https://doi.org/10.1007/s11467-022-1153-6
摘要   PDF (587KB)

Electromagnetically induced optical (or photonic) lattices via atomic coherence in atomic ensembles have recently received great theoretical and experimental interest. We here conceive a way to generate electromagnetically induced moiré optical lattices — a twisted periodic pattern when two identical periodic patterns (lattices) are overlapped in a twisted angle (θ) — in a three-level coherent atomic gas working under electromagnetically induced transparency. We show that, changing the twisted angle and relative strength between the two constitutive sublattices, the moiré Bloch bands that are extremely flattened can always appear, resembling the typical flat-band and moiré physics found in other contexts. Dynamics of light propagation in the induced periodic structures demonstrating the unique linear localization and delocalization properties are also revealed. Our scheme can be implemented in a Rubidium atomic medium, where the predicted moiré optical lattices and flattened bands are naturally observable.

参考文献 | 相关文章 | 多维度评价
Optimal gamma-ray selections for monochromatic line searches with DAMPE
Zun-Lei Xu, Kai-Kai Duan, Wei Jiang, Shi-Jun Lei, Xiang Li, Zhao-Qiang Shen, Tao Ma, Meng Su, Qiang Yuan, Chuan Yue, Yi-Zhong Fan, Jin Chang
Frontiers of Physics    2022, 17 (3): 34501-.   https://doi.org/10.1007/s11467-021-1121-6
摘要   PDF (1063KB)

The DArk Matter Particle Explorer (DAMPE) is a space high-energy cosmic-ray detector covering a wide energy band with a high energy resolution. One of the key scientific goals of DAMPE is to carry out indirect detection of dark matter by searching for high-energy gamma-ray line structure. To promote the sensitivity of gamma-ray line search with DAMPE, it is crucial to improve the acceptance and energy resolution of gamma-ray photons. In this paper, we quantitatively proved that the photon sample with the largest ratio of acceptance to energy resolution is optimal for line search. We therefore developed a line-search sample specifically optimized for the line-search. Meanwhile, in order to increase the statistics, we also selected the so-called BGO-only photons that convert into e+e- pairs only in the BGO calorimeter. The standard, the line-search, and the BGO-only photon samples are then tested for line-search individually and collectively. The results show that a significantly improved limit could be obtained from an appropriate combination of the date sets, and the increase is about 20% for the highest case compared with using the standard sample only.

参考文献 | 相关文章 | 多维度评价