Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

2018 Impact Factor: 2.483

Cover Story   2019, Volume 14 Issue 3
Borophene, the lightest two-dimensional material, shows highly anisotropic atomic structures, electronic properties, thermal conductivity, optical, and surface ion transport properties. Both the free-standing and metal substrate supported borophenes have high structural diversity. Furthermore, the distinction between borophene crystal and boron vac [Detail] ...
   Online First

Administered by

, Volume 14 Issue 3

For Selected: View Abstracts Toggle Thumbnails
RESEARCH ARTICLE
Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions
Ying-Yue Yang, Wen-Yang Sun, Wei-Nan Shi, Fei Ming, Dong Wang, Liu Ye
Front. Phys. . 2019, 14 (3): 31601-.  
https://doi.org/10.1007/s11467-018-0880-1

Abstract   PDF (2112KB)

The dynamics of measurement’s uncertainty via entropy for a one-dimensional Heisenberg XY Z mode is examined in the presence of an inhomogeneous magnetic field and Dzyaloshinskii–Moriya (DM) interaction. It shows that the uncertainty of interest is intensively in connection with the filed’s temperature, the direction-oriented coupling strengths and the magnetic field. It turns out that the stronger coupling strengths and the smaller magnetic field would induce the smaller measurement’s uncertainty of interest within the current spin model. Interestingly, we reveal that the evolution of the uncertainty exhibits quite different dynamical behaviors in antiferromagnetic (Ji>0) and ferromagnetic (Ji<0) frames. Besides, an analytical solution related to the systematic entanglement (i.e., concurrence) is also derived in such a scenario. Furthermore, it is found that the DM-interaction is desirably working to diminish the magnitude of the measurement’s uncertainty in the region of high-temperature. Finally, we remarkably offer a resultful strategy to govern the entropy-based uncertainty through utilizing quantum weak measurements, being of fundamentally importance to quantum measurement estimation in the context of solid-state-based quantum information processing and computation.

References | Related Articles | Metrics
Research article
Single-step multipartite entangled states generation from coupled circuit cavities
Xiao-Tao Mo, Zheng-Yuan Xue
Front. Phys. . 2019, 14 (3): 31602-.  
https://doi.org/10.1007/s11467-019-0888-1

Abstract   PDF (939KB)

Green–Horne–Zeilinger states are a typical type of multipartite entangled states, which plays a central role in quantum information processing. For the generation of multipartite entangled states, the singlestep method is more preferable as the needed time will not increase with the increasing of the qubit number. However, this scenario has a strict requirement that all two-qubit interaction strengths should be the same, or the generated state will be of low quality. Here, we propose a scheme for generating multipartite entangled states of superconducting qubits, from a coupled circuit cavities scenario, where we rigorously achieve the requirement via adding an extra z-direction ac classical field for each qubit, leading the individual qubit-cavity coupling strength to be tunable in a wide range, and thus can be tuned to the same value. Meanwhile, in order to obtain our wanted multi-qubits interaction, xdirection ac classical field for each qubit is also introduced. By selecting the appropriate parameters, we numerically shown that high-fidelity multi-qubit GHZ states can be generated. In addition, we also show that the coupled cavities scenario is better than a single cavity case. Therefore, our proposal represents a promising alternative for multipartite entangled states generation.

References | Related Articles | Metrics
REVIEW ARTICLE
Local electrical characterization of two-dimensional materials with functional atomic force microscopy
Sabir Hussain, Kunqi Xu, Shili Ye, Le Lei, Xinmeng Liu, Rui Xu, Liming Xie, Zhihai Cheng
Front. Phys. . 2019, 14 (3): 33401-.  
https://doi.org/10.1007/s11467-018-0879-7

Abstract   PDF (15049KB)

Research about two-dimensional (2D) materials is growing exponentially across various scientific and engineering disciplines due to the wealth of unusual physical phenomena that occur when charge transport is confined to a plane. The applications of 2D materials are highly affected by the electrical properties of these materials, including current distribution, surface potential, dielectric response, conductivity, permittivity, and piezoelectric response. Hence, it is very crucial to characterize these properties at the nanoscale. The Atomic Force Microscopy (AFM)-based techniques are powerful tools that can simultaneously characterize morphology and electrical properties of 2D materials with high spatial resolution, thus being more and more extensively used in this research field. Here, the principles of these A