Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

   Online First

Administered by

30 Most Downloaded Articles
Published in last 1 year| In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

Published in last 1 year
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Au/MXene based ultrafast all-optical switching
Yule Zhang, Feng Zhang, Bowen Du, Hualong Chen, S. Wageh, Omar A. Al-Hartomy, Abdullah G. Al-Sehemi, Bin Zhang, Han Zhang
Front. Phys.    2023, 18 (3): 33301-null.   https://doi.org/10.1007/s11467-022-1248-0
Abstract   HTML   PDF (4201KB)

All-optical switches have arisen great attention due to their ultrafast speed as compared with electric switches. However, the excellent optical properties and strong interaction of two-dimensional (2D) material MXene show great potentials in next-generation all-optical switching. As a solution, we propose all-optical switching used Au/MXene with switching full width at half maximum (FWHM) operating at 290 fs. Compared with pure MXene, the Au/MXene behaves outstanding performances due to local surface plasmon resonance (LSPR), including broadband differential transmission, strong near-infrared on/off ratio enhancement. Remarkably, this study enhances understanding of Au/MXene based ultrafast all-optical switching red-shifted about 34 nm in comparison to MXene, validating all optical properties of Au/MXene opening the way to the implementation of optical interconnection and optical switching.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(3)
STCF conceptual design report (Volume 1): Physics & detector
M. Achasov, X. C. Ai, L. P. An, R. Aliberti, Q. An, X. Z. Bai, Y. Bai, O. Bakina, A. Barnyakov, V. Blinov, V. Bobrovnikov, D. Bodrov, A. Bogomyagkov, A. Bondar, I. Boyko, Z. H. Bu, F. M. Cai, H. Cai, J. J. Cao, Q. H. Cao, X. Cao, Z. Cao, Q. Chang, K. T. Chao, D. Y. Chen, H. Chen, H. X. Chen, J. F. Chen, K. Chen, L. L. Chen, P. Chen, S. L. Chen, S. M. Chen, S. Chen, S. P. Chen, W. Chen, X. Chen, X. F. Chen, X. R. Chen, Y. Chen, Y. Q. Chen, H. Y. Cheng, J. Cheng, S. Cheng, T. G. Cheng, J. P. Dai, L. Y. Dai, X. C. Dai, D. Dedovich, A. Denig, I. Denisenko, J. M. Dias, D. Z. Ding, L. Y. Dong, W. H. Dong, V. Druzhinin, D. S. Du, Y. J. Du, Z. G. Du, L. M. Duan, D. Epifanov, Y. L. Fan, S. S. Fang, Z. J. Fang, G. Fedotovich, C. Q. Feng, X. Feng, Y. T. Feng, J. L. Fu, J. Gao, Y. N. Gao, P. S. Ge, C. Q. Geng, L. S. Geng, A. Gilman, L. Gong, T. Gong, B. Gou, W. Gradl, J. L. Gu, A. Guevara, L. C. Gui, A. Q. Guo, F. K. Guo, J. C. Guo, J. Guo, Y. P. Guo, Z. H. Guo, A. Guskov, K. L. Han, L. Han, M. Han, X. Q. Hao, J. B. He, S. Q. He, X. G. He, Y. L. He, Z. B. He, Z. X. Heng, B. L. Hou, T. J. Hou, Y. R. Hou, C. Y. Hu, H. M. Hu, K. Hu, R. J. Hu, W. H. Hu, X. H. Hu, Y. C. Hu, J. Hua, G. S. Huang, J. S. Huang, M. Huang, Q. Y. Huang, W. Q. Huang, X. T. Huang, X. J. Huang, Y. B. Huang, Y. S. Huang, N. Hüsken, V. Ivanov, Q. P. Ji, J. J. Jia, S. Jia, Z. K. Jia, H. B. Jiang, J. Jiang, S. Z. Jiang, J. B. Jiao, Z. Jiao, H. J. Jing, X. L. Kang, X. S. Kang, B. C. Ke, M. Kenzie, A. Khoukaz, I. Koop, E. Kravchenko, A. Kuzmin, Y. Lei, E. Levichev, C. H. Li, C. Li, D. Y. Li, F. Li, G. Li, G. Li, H. B. Li, H. Li, H. N. Li, H. J. Li, H. L. Li, J. M. Li, J. Li, L. Li, L. Li, L. Y. Li, N. Li, P. R. Li, R. H. Li, S. Li, T. Li, W. J. Li, X. Li, X. H. Li, X. Q. Li, X. H. Li, Y. Li, Y. Y. Li, Z. J. Li, H. Liang, J. H. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, Y. Liao, C. X. Lin, D. X. Lin, X. S. Lin, B. J. Liu, C. W. Liu, D. Liu, F. Liu, G. M. Liu, H. B. Liu, J. Liu, J. J. Liu, J. B. Liu, K. Liu, K. Y. Liu, K. Liu, L. Liu, Q. Liu, S. B. Liu, T. Liu, X. Liu, Y. W. Liu, Y. Liu, Y. L. Liu, Z. Q. Liu, Z. Y. Liu, Z. W. Liu, I. Logashenko, Y. Long, C. G. Lu, J. X. Lu, N. Lu, Q. F. Lü, Y. Lu, Y. Lu, Z. Lu, P. Lukin, F. J. Luo, T. Luo, X. F. Luo, Y. H. Luo, H. J. Lyu, X. R. Lyu, J. P. Ma, P. Ma, Y. Ma, Y. M. Ma, F. Maas, S. Malde, D. Matvienko, Z. X. Meng, R. Mitchell, A. Nefediev, Y. Nefedov, S. L. Olsen, Q. Ouyang, P. Pakhlov, G. Pakhlova, X. Pan, Y. Pan, E. Passemar, Y. P. Pei, H. P. Peng, L. Peng, X. Y. Peng, X. J. Peng, K. Peters, S. Pivovarov, E. Pyata, B. B. Qi, Y. Q. Qi, W. B. Qian, Y. Qian, C. F. Qiao, J. J. Qin, J. J. Qin, L. Q. Qin, X. S. Qin, T. L. Qiu, J. Rademacker, C. F. Redmer, H. Y. Sang, M. Saur, W. Shan, X. Y. Shan, L. L. Shang, M. Shao, L. Shekhtman, C. P. Shen, J. M. Shen, Z. T. Shen, H. C. Shi, X. D. Shi, B. Shwartz, A. Sokolov, J. J. Song, W. M. Song, Y. Song, Y. X. Song, A. Sukharev, J. F. Sun, L. Sun, X. M. Sun, Y. J. Sun, Z. P. Sun, J. Tang, S. S. Tang, Z. B. Tang, C. H. Tian, J. S. Tian, Y. Tian, Y. Tikhonov, K. Todyshev, T. Uglov, V. Vorobyev, B. D. Wan, B. L. Wang, B. Wang, D. Y. Wang, G. Y. Wang, G. L. Wang, H. L. Wang, J. Wang, J. H. Wang, J. C. Wang, M. L. Wang, R. Wang, R. Wang, S. B. Wang, W. Wang, W. P. Wang, X. C. Wang, X. D. Wang, X. L. Wang, X. L. Wang, X. P. Wang, X. F. Wang, Y. D. Wang, Y. P. Wang, Y. Q. Wang, Y. L. Wang, Y. G. Wang, Z. Y. Wang, Z. Y. Wang, Z. L. Wang, Z. G. Wang, D. H. Wei, X. L. Wei, X. M. Wei, Q. G. Wen, X. J. Wen, G. Wilkinson, B. Wu, J. J. Wu, L. Wu, P. Wu, T. W. Wu, Y. S. Wu, L. Xia, T. Xiang, C. W. Xiao, D. Xiao, M. Xiao, K. P. Xie, Y. H. Xie, Y. Xing, Z. Z. Xing, X. N. Xiong, F. R. Xu, J. Xu, L. L. Xu, Q. N. Xu, X. C. Xu, X. P. Xu, Y. C. Xu, Y. P. Xu, Y. Xu, Z. Z. Xu, D. W. Xuan, F. F. Xue, L. Yan, M. J. Yan, W. B. Yan, W. C. Yan, X. S. Yan, B. F. Yang, C. Yang, H. J. Yang, H. R. Yang, H. T. Yang, J. F. Yang, S. L. Yang, Y. D. Yang, Y. H. Yang, Y. S. Yang, Y. L. Yang, Z. W. Yang, Z. Y. Yang, D. L. Yao, H. Yin, X. H. Yin, N. Yokozaki, S. Y. You, Z. Y. You, C. X. Yu, F. S. Yu, G. L. Yu, H. L. Yu, J. S. Yu, J. Q. Yu, L. Yuan, X. B. Yuan, Z. Y. Yuan, Y. F. Yue, M. Zeng, S. Zeng, A. L. Zhang, B. W. Zhang, G. Y. Zhang, G. Q. Zhang, H. J. Zhang, H. B. Zhang, J. Y. Zhang, J. L. Zhang, J. Zhang, L. Zhang, L. M. Zhang, Q. A. Zhang, R. Zhang, S. L. Zhang, T. Zhang, X. Zhang, Y. Zhang, Y. J. Zhang, Y. X. Zhang, Y. T. Zhang, Y. F. Zhang, Y. C. Zhang, Y. Zhang, Y. Zhang, Y. M. Zhang, Y. L. Zhang, Z. H. Zhang, Z. Y. Zhang, Z. Y. Zhang, H. Y. Zhao, J. Zhao, L. Zhao, M. G. Zhao, Q. Zhao, R. G. Zhao, R. P. Zhao, Y. X. Zhao, Z. G. Zhao, Z. X. Zhao, A. Zhemchugov, B. Zheng, L. Zheng, Q. B. Zheng, R. Zheng, Y. H. Zheng, X. H. Zhong, H. J. Zhou, H. Q. Zhou, H. Zhou, S. H. Zhou, X. Zhou, X. K. Zhou, X. P. Zhou, X. R. Zhou, Y. L. Zhou, Y. Zhou, Y. X. Zhou, Z. Y. Zhou, J. Y. Zhu, K. Zhu, R. D. Zhu, R. L. Zhu, S. H. Zhu, Y. C. Zhu, Z. A. Zhu, V. Zhukova, V. Zhulanov, B. S. Zou, Y. B. Zuo
Front. Phys.    2024, 19 (1): 14701-.   https://doi.org/10.1007/s11467-023-1333-z
Abstract   HTML   PDF (18750KB)

The super τ-charm facility (STCF) is an electron−positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035 cm−2·s−1 or higher. The STCF will produce a data sample about a factor of 100 larger than that of the present τ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(8)
Recent developments in CVD growth and applications of 2D transition metal dichalcogenides
Hui Zeng, Yao Wen, Lei Yin, Ruiqing Cheng, Hao Wang, Chuansheng Liu, Jun He
Front. Phys.    2023, 18 (5): 53603-.   https://doi.org/10.1007/s11467-023-1286-2
Abstract   HTML   PDF (34183KB)

Two-dimensional (2D) transition metal dichalcogenides (TMDs) with fascinating electronic energy band structures, rich valley physical properties and strong spin–orbit coupling have attracted tremendous interest, and show great potential in electronic, optoelectronic, spintronic and valleytronic fields. Stacking 2D TMDs have provided unprecedented opportunities for constructing artificial functional structures. Due to the low cost, high yield and industrial compatibility, chemical vapor deposition (CVD) is regarded as one of the most promising growth strategies to obtain high-quality and large-area 2D TMDs and heterostructures. Here, state-of-the-art strategies for preparing TMDs details of growth control and related heterostructures construction via CVD method are reviewed and discussed, including wafer-scale synthesis, phase transition, doping, alloy and stacking engineering. Meanwhile, recent progress on the application of multi-functional devices is highlighted based on 2D TMDs. Finally, challenges and prospects are proposed for the practical device applications of 2D TMDs.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(12)
Transport in electron−photon systems
Jian-Sheng Wang, Jiebin Peng, Zu-Quan Zhang, Yong-Mei Zhang, Tao Zhu
Front. Phys.    2023, 18 (4): 43602-.   https://doi.org/10.1007/s11467-023-1260-z
Abstract   HTML   PDF (6659KB)

We review the description and modeling of transport phenomena among the electron systems coupled via scalar or vector photons. It consists of three parts. The first part is about scalar photons, i.e., Coulomb interactions. The second part is with transverse photons described by vector potentials. The third part is on ϕ = 0 or temporal gauge, which is a full theory of the electrodynamics. We use the nonequilibrium Green’s function (NEGF) formalism as a basic tool to study steady-state transport. Although with local equilibrium it is equivalent to the fluctuational electrodynamics (FE), the advantage of NEGF is that it can go beyond FE due to its generality. We have given a few examples in the review, such as transfer of heat between graphene sheets driven by potential bias, emission of light by a double quantum dot, and emission of energy, momentum, and angular momentum from a graphene nanoribbon. All of these calculations are based on a generalization of the Meir−Wingreen formula commonly used in electronic transport in mesoscopic systems, with materials properties represented by photon self-energy, coupled with the Keldysh equation and the solution to the Dyson equation.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(5)
When optical microscopy meets all-optical analog computing: A brief review
Yichang Shou, Jiawei Liu, Hailu Luo
Front. Phys.    2023, 18 (4): 42601-null.   https://doi.org/10.1007/s11467-023-1271-9
Abstract   HTML   PDF (7445KB)

As a revolutionary observation tool in life science, biomedical, and material science, optical microscopy allows imaging of samples with high spatial resolution and a wide field of view. However, conventional microscopy methods are limited to single imaging and cannot accomplish real-time image processing. The edge detection, image enhancement and phase visualization schemes have attracted great interest with the rapid development of optical analog computing. The two main physical mechanisms that enable optical analog computing originate from two geometric phases: the spin-redirection Rytov-Vlasimirskii-Berry (RVB) phase and the Pancharatnam-Berry (PB) phase. Here, we review the basic principles and recent research progress of the RVB phase and PB phase based optical differentiators. Then we focus on the innovative and emerging applications of optical analog computing in microscopic imaging. Optical analog computing is accelerating the transformation of information processing from classical imaging to quantum techniques. Its intersection with optical microscopy opens opportunities for the development of versatile and compact optical microscopy systems.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(6)
Topological non-Hermitian skin effect
Rijia Lin, Tommy Tai, Linhu Li, Ching Hua Lee
Front. Phys.    2023, 18 (5): 53605-.   https://doi.org/10.1007/s11467-023-1309-z
Abstract   HTML   PDF (12753KB)

This article reviews recent developments in the non-Hermitian skin effect (NHSE), particularly on its rich interplay with topology. The review starts off with a pedagogical introduction on the modified bulk-boundary correspondence, the synergy and hybridization of NHSE and band topology in higher dimensions, as well as, the associated topology on the complex energy plane such as spectral winding topology and spectral graph topology. Following which, emerging topics are introduced such as non-Hermitian criticality, dynamical NHSE phenomena, and the manifestation of NHSE beyond the traditional linear non-interacting crystal lattices, particularly its interplay with quantum many-body interactions. Finally, we survey the recent demonstrations and experimental proposals of NHSE.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(48)
Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing
Xiaobing Yan, Xu Han, Ziliang Fang, Zhen Zhao, Zixuan Zhang, Jiameng Sun, Yiduo Shao, Yinxing Zhang, Lulu Wang, Shiqing Sun, Zhenqiang Guo, Xiaotong Jia, Yupeng Zhang, Zhiyuan Guan, Tuo Shi
Front. Phys.    2023, 18 (6): 63301-null.   https://doi.org/10.1007/s11467-023-1308-0
Abstract   HTML   PDF (7257KB)

Neuromorphic computing aims to achieve artificial intelligence by mimicking the mechanisms of biological neurons and synapses that make up the human brain. However, the possibility of using one reconfigurable memristor as both artificial neuron and synapse still requires intensive research in detail. In this work, Ag/SrTiO3(STO)/Pt memristor with low operating voltage is manufactured and reconfigurable as both neuron and synapse for neuromorphic computing chip. By modulating the compliance current, two types of resistance switching, volatile and nonvolatile, can be obtained in amorphous STO thin film. This is attributed to the manipulation of the Ag conductive filament. Furthermore, through regulating electrical pulses and designing bionic circuits, the neuronal functions of leaky integrate and fire, as well as synaptic biomimicry with spike-timing-dependent plasticity and paired-pulse facilitation neural regulation, are successfully realized. This study shows that the reconfigurable devices based on STO thin film are promising for the application of neuromorphic computing systems.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(3)
Criticality-based quantum metrology in the presence of decoherence
Wan-Ting He, Cong-Wei Lu, Yi-Xuan Yao, Hai-Yuan Zhu, Qing Ai
Front. Phys.    2023, 18 (3): 31304-null.   https://doi.org/10.1007/s11467-023-1278-2
Abstract   HTML   PDF (4531KB)

Because quantum critical systems are very sensitive to the variation of parameters around the quantum phase transition (QPT), quantum criticality has been presented as an efficient resource for metrology. In this paper, we address the issue whether the divergent feature of the inverted variance is realizable in the presence of noise when approaching the QPT. Taking the quantum Rabi model (QRM) as an example, we obtain the analytical result for the inverted variance with single-photon relaxation. We show that the inverted variance may be convergent in time due to the noise. Since the precision of the metrology is very sensitive to the noise, as a remedy, we propose squeezing the initial state to improve the precision under decoherence. In addition, we also investigate the criticality-based metrology under the influence of the two-photon relaxation. Strikingly, although the maximum inverted variance still manifests a power-law dependence on the energy gap, the exponent is positive and depends on the dimensionless coupling strength. This observation implies that the criticality may not enhance but weaken the precision in the presence of two-photon relaxation, due to the non-linearity introduced by the two-photon relaxation.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(3)
Optical properties of two-dimensional perovskites
Junchao Hu, Xinglin Wen, Dehui Li
Front. Phys.    2023, 18 (3): 33602-null.   https://doi.org/10.1007/s11467-023-1256-8
Abstract   HTML   PDF (16390KB)

The optical properties of two-dimensional (2D) perovskites recently receive numerous research focus thanks to the strong quantum and dielectric confinement effects. In addition to the strong excitonic effect at room temperature, 2D perovskites also have appealing features that their optical properties can be flexibly tuned by alternating organic or inorganic layers. Particularly, 2D chiral perovskites and 2D perovskites based heterostructures are emerging as new platforms to extend their functionalities. To optimize performance of 2D perovskites-based optoelectronic devices, it is critical to understand the fundamentals and explore the strategies to engineer their optical properties. This review begins with an introduction to the excitons and self-trapped excitons of 2D perovskites. Subsequently, inorganic/organic layer effects on optical properties and 2D perovskites based heterostructures are discussed. We also discussed the nonlinear optical properties of 2D perovskite. We are looking forward to that this review can stimulate more efforts to understand and optimize the optical properties of 2D perovskites.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(3)
The rise of two-dimensional tellurium for next-generation electronics and optoelectronics
Tao Zhu, Yao Zhang, Xin Wei, Man Jiang, Hua Xu
Front. Phys.    2023, 18 (3): 33601-null.   https://doi.org/10.1007/s11467-022-1231-9
Abstract   HTML   PDF (7487KB)

Single-element two-dimensional (2D) tellurium (Te) which possesses an unusual quasi-one-dimensional atomic chain structure is a new member in 2D materials family. 2D Te possesses high carrier mobility, wide tunable bandgap, strong light-matter interaction, better environmental stability, and strong anisotropy, making Te exhibit tremendous application potential in next-generation electronic and optoelectronic devices. However, as an emerging 2D material, the research on fundamental property and device application of Te is still in its infancy. Hence, this review summarizes the most recent research progresses about the new star 2D Te and discusses its future development direction. Firstly, the structural features, basic physical properties, and various preparation methods of 2D Te are systemically introduced. Then, we emphatically summarize the booming development of 2D Te-based electronic and optoelectronic devices including field effect transistors, photodetectors and van der Waals heterostructure photodiodes. Finally, the future challenges, opportunities, and development directions of 2D Te-based electronic and optoelectronic devices are prospected.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(7)
Correlation-driven threefold topological phase transition in monolayer OsBr2
San-Dong Guo, Yu-Ling Tao, Wen-Qi Mu, Bang-Gui Liu
Front. Phys.    2023, 18 (3): 33304-null.   https://doi.org/10.1007/s11467-022-1243-5
Abstract   HTML   PDF (5506KB)

Spin−orbit coupling (SOC) combined with electronic correlation can induce topological phase transition, producing novel electronic states. Here, we investigate the impact of SOC combined with correlation effects on physical properties of monolayer OsBr2, based on first-principles calculations with generalized gradient approximation plus U (GGA+U) approach. With intrinsic out-of-plane magnetic anisotropy, OsBr2 undergoes threefold topological phase transition with increasing U, and valley-polarized quantum anomalous Hall insulator (VQAHI) to half-valley-metal (HVM) to ferrovalley insulator (FVI) to HVM to VQAHI to HVM to FVI transitions can be induced. These topological phase transitions are connected with sign-reversible Berry curvature and band inversion between \textcolor[RGB]12,108,100dxy/\textcolor[RGB]12,108,100dx2y2 and \textcolor[RGB]12,108,100dz2 orbitals. Due to \textcolor[RGB]12,108,1006¯m2 symmetry, piezoelectric polarization of OsBr2 is confined along the in-plane armchair direction, and only one d11 is independent. For a given material, the correlation strength should be fixed, and OsBr2 may be a piezoelectric VQAHI (PVQAHI), piezoelectric HVM (PHVM) or piezoelectric FVI (PFVI). The valley polarization can be flipped by reversing the magnetization of Os atoms, and the ferrovalley (FV) and nontrivial topological properties will be suppressed by manipulating out-of-plane magnetization to in-plane one. In considered reasonable U range, the estimated Curie temperatures all are higher than room temperature. Our findings provide a comprehensive understanding on possible electronic states of OsBr2, and confirm that strong SOC combined with electronic correlation can induce multiple quantum phase transition.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(16)
Spin waves and phase transition on a magnetically frustrated square lattice with long-range interactions
Yuting Tan, Dao-Xin Yao
Front. Phys.    2023, 18 (3): 33309-null.   https://doi.org/10.1007/s11467-022-1238-2
Abstract   HTML   PDF (5226KB)

We investigate the effects of long-range interactions on the spin wave spectra and the competition between magnetic phases on a frustrated square lattice with large spin S. Applying the spin wave theory and assisted with symmetry analysis, we obtain analytical expressions for spin wave spectra of competing Neel and (π, 0) stripe states of systems containing any-order long-range interactions. In the specific case of long-range interactions with power-law decay, we find surprisingly that the staggered long-range interaction suppresses quantum fluctuation and enlarges the ordered moment, especially in the Neel state, and thus extends its phase boundary to the stripe state. Our findings illustrate the rich possibilities of the roles of long-range interactions, and advocate future investigations in other magnetic systems with different structures of interactions.

Table and Figures | Reference | Related Articles | Metrics
Deterministic and replaceable transfer of silver flakes for microcavities
Tingting Wang, Zhihao Zang, Yuchen Gao, Kenji Watanabe, Takashi Taniguchi, Wei Bao, Yu Ye
Front. Phys.    2023, 18 (3): 33302-null.   https://doi.org/10.1007/s11467-022-1229-3
Abstract   HTML   PDF (2925KB)

How to fabricate high-quality microcavities simply and at low cost without causing damage to environmentally sensitive active layers such as perovskites are crucial for the studies of exciton−polaritons, however, it remains challenging in the field of microcavity fabrication. Usually, once the top mirror is deposited, the detuning of the microcavity is fixed and there is no easy way to tune it. Here, we have developed a method for deterministically transferring silver mirrors, which is relatively simple and guarantees the active layer from damaging of high temperature, particle bombardment, etc., during the deposition of the top mirror. Furthermore, with the help of a glass probe, we demonstrate a replaceable silver transfer method to tune the detuning of the microcavity, thereby changing the coupling of photons and excitons therein. The developed deterministic and replaceable silver mirror transfer methods will provide the capability to fabricate high-quality and tunable microcavities and play an active role in the development of the exciton−polariton field.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(1)
Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance
Qiugang Liao, Hao Liu, Ziqiang Chen, Yinggan Zhang, Rui Xiong, Zhou Cui, Cuilian Wen, Baisheng Sa
Front. Phys.    2023, 18 (3): 33300-null.   https://doi.org/10.1007/s11467-022-1234-6
Abstract   HTML   PDF (5495KB)

With the development of modern electronics, especially the next generation of wearable electromagnetic interference (EMI) shielding materials requires flexibility, ultrathin, lightweight and robustness to protect electronic devices from radiation pollution. In this work, the flexible and ultrathin dopamine modified MXene@cellulose nanofiber (DM@CNF) composite films with alternate multilayer structure have been developed by a facile vacuum filtration induced self-assembly approach. The multilayered DM@CNF composite films exhibit improved mechanical properties compared with the homogeneous DM/CNF film. By adjusting the layer number, the multilayered DM3@CNF2 composite film exhibits a tensile strength of 48.14 MPa and a toughness of 5.28 MJ·m−3 with a thickness about 19 μm. Interestingly that, the DM@CNF film with annealing treatment achieves significant improvement in conductivity (up to 17264 S·m−1) and EMI properties (SE of 41.90 dB and SSE/t of 10169 dB·cm2·g−1), which still maintains relatively high mechanical properties. It is highlighted that the ultrathin multilayered DM@CNF film exhibits superior EMI shielding performance compared with most of the metal-based, carbon-based and MXene-based shielding materials reported in the literature. These results will offer an appealing strategy to develop the ultrathin and flexible MXene-based materials with excellent EMI shielding performance for the next generation intelligent protection devices.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(6)
Photonic graphene with reconfigurable geometric structures in coherent atomic ensembles
Fuqiang Niu, Hengfei Zhang, Jinpeng Yuan, Liantuan Xiao, Suotang Jia, Lirong Wang
Front. Phys.    2023, 18 (5): 52304-null.   https://doi.org/10.1007/s11467-023-1294-2
Abstract   HTML   PDF (5768KB)

Photonic graphene, possesses a honeycomb-like geometric structure, provides a superior platform for simulating photonic bandgap, Dirac physics, and topological photonics. Here, the photonic graphene with reconfigurable geometric structures is demonstrated in a 5S1/2 − 5P3/2 − 5D5/2 cascade-type 85Rb atomic ensembles. A strong hexagonal-coupling field, formed by the interference of three identical coupling beams, is responsible for optically inducing photonic graphene in atomic vapor. The incident weak probe beam experiences discrete diffraction, and the observed pattern at the output plane of vapor cell exhibits a clear hexagonal intensity distribution. The complete photonic graphene geometries from transversely stretched to longitudinally stretched are conveniently constructed by varying the spatial arrangement of three coupling beams, and the corresponding diffraction patterns are implemented theoretically and experimentally to map these distorted geometric structures. Moreover, the distribution of lattice sites intensity in photonic graphene is further dynamically adjusted by two-photon detuning and the coupling beams power. This work paves the way for further investigation of light transport and graphene dynamics.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(1)
Anisotropic phonon thermal transport in two-dimensional layered materials
Yuxin Cai, Muhammad Faizan, Huimin Mu, Yilin Zhang, Hongshuai Zou, Hong Jian Zhao, Yuhao Fu, Lijun Zhang
Front. Phys.    2023, 18 (4): 43303-null.   https://doi.org/10.1007/s11467-023-1276-4
Abstract   HTML   PDF (4285KB)

Two-dimensional layered materials (2DLMs) have attracted growing attention in optoelectronic devices due to their intriguing anisotropic physical properties. Different members of 2DLMs exhibit unique anisotropic electrical, optical, and thermal properties, fundamentally related to their crystal structure. Among them, directional heat transfer plays a vital role in the thermal management of electronic devices. Here, we use density functional theory calculations to investigate the thermal transport properties of representative layered materials: β-InSe, γ-InSe, MoS2, and h-BN. We found that the lattice thermal conductivities of β-InSe, γ-InSe, MoS2, and h-BN display diverse anisotropic behaviors with anisotropy ratios of 10.4, 9.4, 64.9, and 107.7, respectively. The analysis of the phonon modes further indicates that the phonon group velocity is responsible for the anisotropy of thermal transport. Furthermore, the low lattice thermal conductivity of the layered InSe mainly comes from low phonon group velocity and atomic masses. Our findings provide a fundamental physical understanding of the anisotropic thermal transport in layered materials. We hope this study could inspire the advancement of 2DLMs thermal management applications in next-generation integrated electronic and optoelectronic devices.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(3)
Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves?
Vitaly L. Galinsky, Lawrence R. Frank
Front. Phys.    2023, 18 (4): 45301-null.   https://doi.org/10.1007/s11467-023-1273-7
Abstract   HTML   PDF (5338KB)

Analytical expressions for scaling of brain wave spectra derived from the general nonlinear wave Hamiltonian form show excellent agreement with experimental “neuronal avalanche” data. The theory of the weakly evanescent nonlinear brain wave dynamics [Phys. Rev. Research 2, 023061 (2020); J. Cognitive Neurosci. 32, 2178 (2020)] reveals the underlying collective processes hidden behind the phenomenological statistical description of the neuronal avalanches and connects together the whole range of brain activity states, from oscillatory wave-like modes, to neuronal avalanches, to incoherent spiking, showing that the neuronal avalanches are just the manifestation of the different nonlinear side of wave processes abundant in cortical tissue. In a more broad way these results show that a system of wave modes interacting through all possible combinations of the third order nonlinear terms described by a general wave Hamiltonian necessarily produces anharmonic wave modes with temporal and spatial scaling properties that follow scale free power laws. To the best of our knowledge this has never been reported in the physical literature and may be applicable to many physical systems that involve wave processes and not just to neuronal avalanches.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(2)
Eigenvector-based analysis of cluster synchronization in general complex networks of coupled chaotic oscillators
Huawei Fan, Ya Wang, Xingang Wang
Front. Phys.    2023, 18 (4): 45302-null.   https://doi.org/10.1007/s11467-023-1324-0
Abstract   HTML   PDF (7558KB)

Whereas topological symmetries have been recognized as crucially important to the exploration of synchronization patterns in complex networks of coupled dynamical oscillators, the identification of the symmetries in large-size complex networks remains as a challenge. Additionally, even though the topological symmetries of a complex network are known, it is still not clear how the system dynamics is transited among different synchronization patterns with respect to the coupling strength of the oscillators. We propose here the framework of eigenvector-based analysis to identify the synchronization patterns in the general complex networks and, incorporating the conventional method of eigenvalue-based analysis, investigate the emergence and transition of the cluster synchronization states. We are able to argue and demonstrate that, without a prior knowledge of the network symmetries, the method is able to predict not only all the cluster synchronization states observable in the network, but also the critical couplings where the states become stable and the sequence of these states in the process of synchronization transition. The efficacy and generality of the proposed method are verified by different network models of coupled chaotic oscillators, including artificial networks of perfect symmetries and empirical networks of non-perfect symmetries. The new framework paves a way to the investigation of synchronization patterns in large-size, general complex networks.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(1)
Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures
Yanyan Li, Mingjun Yang, Yanan Lu, Dan Cao, Xiaoshuang Chen, Haibo Shu
Front. Phys.    2023, 18 (3): 33307-null.   https://doi.org/10.1007/s11467-022-1244-4
Abstract   HTML   PDF (8013KB)

Van der Waals semiconductor heterostructures (VSHs) composed of two or more two-dimensional (2D) materials with different band gaps exhibit huge potential for exploiting high-performance multifunctional devices. The application of 2D VSHs in atomically thin devices highly depends on the control of their carrier type and density. Herein, on the basis of comprehensive first-principles calculations, we report a new strategy to manipulate the doping polarity and carrier density in a class of 2D VSHs consisting of atomically thin transition metal dichalcogenides (TMDs) and α-In2X3 (X = S, Se) ferroelectrics via switchable polarization field. Our calculated results indicate that the band bending of In2X3 layer driven by the FE polarization can be utilized for engineering the band alignment and doping polarity of TMD/In2X3 VSHs, which enables us to control their carrier density and type of the VSHs by the orientation and magnitude of local FE polarization field. Inspired by these findings, we demonstrate that doping-free p−n junctions achieved in MoTe2/In2Se3 VSHs exhibit high carrier density (1013−1014 cm−2), and the inversion of the VHSs from n−p junctions to p−i−n junctions has been realized by the polarization switching from upward to downward states. This work provides a nonvolatile and nondestructive doping strategy for obtaining programmable p−n van der Waals (vdW) junctions and opens the possibilities for self-powered and multifunctional device applications.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(4)
Excited state biexcitons in monolayer WSe2 driven by vertically grown graphene nanosheets with high-density electron trapping edges
Bo Wen, Da-Ning Luo, Ling-Long Zhang, Xiao-Lin Li, Xin Wang, Liang-Liang Huang, Xi Zhang, Dong-Feng Diao
Front. Phys.    2023, 18 (3): 33306-null.   https://doi.org/10.1007/s11467-022-1232-8
Abstract   HTML   PDF (6319KB)

Interface engineering in atomically thin transition metal dichalcogenides (TMDs) is becoming an important and powerful technique to alter their properties, enabling new optoelectronic applications and quantum devices. Interface engineering in a monolayer WSe2 sample via introduction of high-density edges of standing structured graphene nanosheets (GNs) is realized. A strong photoluminescence (PL) emission peak from intravalley and intervalley trions at about 750 nm is observed at the room temperature, which indicated the heavily p-type doping of the monolayer WSe2/thin graphene nanosheet-embedded carbon (TGNEC) film heterostructure. We also successfully triggered the emission of biexcitons (excited state biexciton) in a monolayer WSe2, via the electron trapping centers of edge quantum wells of a TGNEC film. The PL emission of a monolayer WSe2/GNEC film is quenched by capturing the photoexcited electrons to reduce the electron-hole recombination rate. This study can be an important benchmark for the extensive understanding of light–matter interaction in TMDs, and their dynamics.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(1)
Advances of machine learning in materials science: Ideas and techniques
Sue Sin Chong, Yi Sheng Ng, Hui-Qiong Wang, Jin-Cheng Zheng
Front. Phys.    2024, 19 (1): 13501-.   https://doi.org/10.1007/s11467-023-1325-z
Abstract   HTML   PDF (11699KB)

In this big data era, the use of large dataset in conjunction with machine learning (ML) has been increasingly popular in both industry and academia. In recent times, the field of materials science is also undergoing a big data revolution, with large database and repositories appearing everywhere. Traditionally, materials science is a trial-and-error field, in both the computational and experimental departments. With the advent of machine learning-based techniques, there has been a paradigm shift: materials can now be screened quickly using ML models and even generated based on materials with similar properties; ML has also quietly infiltrated many sub-disciplinary under materials science. However, ML remains relatively new to the field and is expanding its wing quickly. There are a plethora of readily-available big data architectures and abundance of ML models and software; The call to integrate all these elements in a comprehensive research procedure is becoming an important direction of material science research. In this review, we attempt to provide an introduction and reference of ML to materials scientists, covering as much as possible the commonly used methods and applications, and discussing the future possibilities.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(2)
Distributed exact Grover’s algorithm
Xu Zhou, Daowen Qiu, Le Luo
Front. Phys.    2023, 18 (5): 51305-null.   https://doi.org/10.1007/s11467-023-1327-x
Abstract   HTML   PDF (14522KB)

Distributed quantum computation has gained extensive attention. In this paper, we consider a search problem that includes only one target item in the unordered database. After that, we propose a distributed exact Grover’s algorithm (DEGA), which decomposes the original search problem into n/ 2 parts. Specifically, (i) our algorithm is as exact as the modified version of Grover’s algorithm by Long, which means the theoretical probability of finding the objective state is 100%; (ii) the actual depth of our circuit is 8(nmod 2)+ 9, which is less than the circuit depths of the original and modified Grover’s algorithms, 1+ 8 π4 2n and 9+ 8 π42n 12, respectively. It only depends on the parity of n, and it is not deepened as n increases; (iii) we provide particular situations of the DEGA on MindQuantum (a quantum software) to demonstrate the practicality and validity of our method. Since our circuit is shallower, it will be more resistant to the depolarization channel noise.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(3)
Proposal for valleytronic materials: Ferrovalley metal and valley gapless semiconductor
San-Dong Guo, Yu-Ling Tao, Guangzhao Wang, Shaobo Chen, Dong Huang, Yee Sin Ang
Front. Phys.    2024, 19 (2): 23302-null.   https://doi.org/10.1007/s11467-023-1334-y
Abstract   HTML   PDF (5277KB)

Valleytronic materials can provide new degrees of freedom to future electronic devices. In this work, the concepts of the ferrovalley metal (FVM) and valley gapless semiconductor (VGS) are proposed, which can be achieved in valleytronic bilayer systems by electric field engineering. In valleytronic bilayer systems, the interaction between out-of-plane ferroelectricity and A-type antiferromagnetism can induce layer-polarized anomalous valley Hall (LP-AVH) effect. The K and −K valleys of FVM are both metallic, and electron and hole carriers simultaneously exist. In the extreme case, the FVM can become VGS by analogizing spin gapless semiconductor (SGS). Moreover, it is proposed that the valley splitting enhancement and valley polarization reversal can be achieved by electric field engineering in valleytronic bilayer systems. Taking the bilayer RuB r2 as an example, our proposal is confirmed by the first-principle calculations. The FVM and VGS can be achieved in bilayer R uB r2 by applying electric field. With appropriate electric field range, increasing electric field can enhance valley splitting, and the valley polarization can be reversed by flipping electric field direction. To effectively tune valley properties by electric field in bilayer systems, the parent monolayer should possess out-of-plane magnetization, and have large valley splitting. Our results shed light on the possible role of electric field in tuning valleytronic bilayer systems, and provide a way to design the ferrovalley-related material by electric field.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(8)
Review of the role of ionic liquids in two-dimensional materials
Na Sa, Meng Wu, Hui-Qiong Wang
Front. Phys.    2023, 18 (4): 43601-null.   https://doi.org/10.1007/s11467-023-1258-6
Abstract   HTML   PDF (6347KB)

Ionic liquids (ILs) are expected to be used as readily available “designer” solvents, characterized by a number of tunable properties that can be obtained by modulating anion and cation combinations and ion chain lengths. Among them, its high ionicity is outstanding in the preparation and property modulation of two-dimensional (2D) materials. In this review, we mainly focus on the ILs-assisted exfoliation of 2D materials towards large-scale as well as functionalization. Meanwhile, electric-field controlled ILs-gating of 2D material systems have shown novel electronic, magnetic, optical and superconducting properties, attracting a broad range of scientific research activities. Moreover, ILs have also been extensively applied in various field practically. We summarize the recent developments of ILs modified 2D material systems from the electrochemical, solar cells and photocatalysis aspects, discuss their advantages and possibilities as “designer solvent”. It is believed that the design of ILs accompanying with diverse 2D materials will not only solve several scientific problems but also enrich materials design and engineer of 2D materials.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(1)
Taiji data challenge for exploring gravitational wave universe
Zhixiang Ren, Tianyu Zhao, Zhoujian Cao, Zong-Kuan Guo, Wen-Biao Han, Hong-Bo Jin, Yue-Liang Wu
Front. Phys.    2023, 18 (6): 64302-null.   https://doi.org/10.1007/s11467-023-1318-y
Abstract   HTML   PDF (8655KB)

The direct observation of gravitational waves (GWs) opens a new window for exploring new physics from quanta to cosmos and provides a new tool for probing the evolution of universe. GWs detection in space covers a broad spectrum ranging over more than four orders of magnitude and enables us to study rich physical and astronomical phenomena. Taiji is a proposed space-based gravitational wave (GW) detection mission that will be launched in the 2030s. Taiji will be exposed to numerous overlapping and persistent GW signals buried in the foreground and background, posing various data analysis challenges. In order to empower potential scientific discoveries, the Mock Laser Interferometer Space Antenna (LISA) data challenge and the LISA data challenge (LDC) were developed. While LDC provides a baseline framework, the first LDC needs to be updated with more realistic simulations and adjusted detector responses for Taiji’s constellation. In this paper, we review the scientific objectives and the roadmap for Taiji, as well as the technical difficulties in data analysis and the data generation strategy, and present the associated data challenges. In contrast to LDC, we utilize second-order Keplerian orbit and second-generation time delay interferometry techniques. Additionally, we employ a new model for the extreme-mass-ratio inspiral waveform and stochastic GW background spectrum, which enables us to test general relativity and measure the non-Gaussianity of curvature perturbations. Furthermore, we present a comprehensive showcase of parameter estimation using a toy dataset. This showcase not only demonstrates the scientific potential of the Taiji data challenge (TDC) but also serves to validate the effectiveness of the pipeline. As the first data challenge for Taiji, we aim to build an open ground for data analysis related to Taiji sources and sciences. More details can be found on the official website (taiji-tdc.ictp-ap.org).

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(4)
Strongly nonlinear topological phases of cascaded topoelectrical circuits
Jijie Tang, Fangyuan Ma, Feng Li, Honglian Guo, Di Zhou
Front. Phys.    2023, 18 (3): 33311-null.   https://doi.org/10.1007/s11467-023-1292-4
Abstract   HTML   PDF (5290KB)

Circuits provide ideal platforms of topological phases and matter, yet the study of topological circuits in the strongly nonlinear regime, has been lacking. We propose and experimentally demonstrate strongly nonlinear topological phases and transitions in one-dimensional electrical circuits composed of nonlinear capacitors. Nonlinear topological interface modes arise on domain walls of the circuit lattices, whose topological phases are controlled by the amplitudes of nonlinear voltage waves. Experimentally measured topological transition amplitudes are in good agreement with those derived from nonlinear topological band theory. Our prototype paves the way towards flexible metamaterials with amplitude-controlled rich topological phases and is readily extendable to two and three-dimensional systems that allow novel applications.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(1)
High-sensitive two-dimensional PbI2 photodetector with ultrashort channel
Kaiyue He, Jijie Zhu, Zishun Li, Zhe Chen, Hehe Zhang, Chao Liu, Xu Zhang, Shuo Wang, Peiyi Zhao, Yu Zhou, Shizheng Zhang, Yao Yin, Xiaorui Zheng, Wei Huang, Lin Wang
Front. Phys.    2023, 18 (6): 63305-null.   https://doi.org/10.1007/s11467-023-1323-1
Abstract   HTML   PDF (7140KB)

Photodetectors based on two-dimensional (2D) semiconductors have attracted many research interests owing to their excellent optoelectronic characteristics and application potential for highly integrated applications. However, the unique morphology of 2D materials also restricts the further improvement of the device performance, as the carrier transport is very susceptible to intrinsic and extrinsic environment of the materials. Here, we report the highest responsivity (172 A/W) achieved so far for a PbI2-based photodetector at room temperature, which is an order of magnitude higher than previously reported. Thermal scanning probe lithography (t-SPL) was used to pattern electrodes to realize the ultrashort channel (~60 nm) in the devices. The shortening of the channel length greatly reduces the probability of the photo-generated carriers being scattered during the transport process, which increases the photocurrent density and thus the responsivity. Our work shows that the combination of emerging processing technologies and 2D materials is an effective route to shrink device size and improve device performance.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(2)
Recent advances in memristors based on two-dimensional ferroelectric materials
Wenbiao Niu, Guanglong Ding, Ziqi Jia, Xin-Qi Ma, JiYu Zhao, Kui Zhou, Su-Ting Han, Chi-Ching Kuo, Ye Zhou
Front. Phys.    2024, 19 (1): 13402-null.   https://doi.org/10.1007/s11467-023-1329-8
Abstract   HTML   PDF (12769KB)

In this big data era, the explosive growth of information puts ultra-high demands on the data storage/computing, such as high computing power, low energy consumption, and excellent stability. However, facing this challenge, the traditional von Neumann architecture-based computing system is out of its depth owing to the separated memory and data processing unit architecture. One of the most effective ways to solve this challenge is building brain inspired computing system with in-memory computing and parallel processing ability based on neuromorphic devices. Therefore, there is a research trend toward the memristors, that can be applied to build neuromorphic computing systems due to their large switching ratio, high storage density, low power consumption, and high stability. Two-dimensional (2D) ferroelectric materials, as novel types of functional materials, show great potential in the preparations of memristors because of the atomic scale thickness, high carrier mobility, mechanical flexibility, and thermal stability. 2D ferroelectric materials can realize resistive switching (RS) because of the presence of natural dipoles whose direction can be flipped with the change of the applied electric field thus producing different polarizations, therefore, making them powerful candidates for future data storage and computing. In this review article, we introduce the physical mechanisms, characterizations, and synthetic methods of 2D ferroelectric materials, and then summarize the applications of 2D ferroelectric materials in memristors for memory and synaptic devices. At last, we deliberate the advantages and future challenges of 2D ferroelectric materials in the application of memristors devices.

Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(2)
Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material
Fahhad Alsubaie, Munirah Muraykhan, Lei Zhang, Dongchen Qi, Ting Liao, Liangzhi Kou, Aijun Du, Cheng Tang
Front. Phys.    2024, 19 (1): 13201-null.   https://doi.org/10.1007/s11467-023-1330-2
Abstract   HTML   PDF (4939KB)

Two-dimensional (2D) heterostructures have shown great potential in advanced photovoltaics due to their restrained carrier recombination, prolonged exciton lifetime and improved light absorption. Herein, a 2D polarized heterostructure is constructed between Janus MoSSe and MoTe2 monolayers and is systematically investigated via first-principles calculations. Electronically, the valence band and conduction band of the MoSSe−MoTe2 (MoSeS−MoTe2) are contributed by MoTe2 and MoSSe layers, respectively, and its bandgap is 0.71 (0.03) eV. A built-in electric field pointing from MoTe2 to MoSSe layers appears at the interface of heterostructures due to the interlayer carrier redistribution. Notably, the band alignment and built-in electric field make it a direct z-scheme heterostructure, benefiting the separation of photogenerated electron-hole pairs. Besides, the electronic structure and interlayer carrier reconstruction can be readily controlled by reversing the electric polarization of the MoSSe layer. Furthermore, the light absorption of the MoSSe/MoTe2 heterostructure is also improved in comparison with the separated monolayers. Consequently, in this work, a new z-scheme polarized heterostructure with polarization-controllable optoelectronic properties is designed for highly efficient optoelectronics.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(1)
Flat band localization due to self-localized orbital
Zhen Ma, Wei-Jin Chen, Yuntian Chen, Jin-Hua Gao, X. C. Xie
Front. Phys.    2023, 18 (6): 63302-null.   https://doi.org/10.1007/s11467-023-1306-2
Abstract   HTML   PDF (4496KB)

We discover a new wave localization mechanism in a periodic wave system, which can produce a novel type of flat band and is distinct from the known localization mechanisms, i.e., Anderson localization and flat band lattices. The first example we give is a designed electron waveguide (EWG) on 2DEG with special periodic confinement potential. Numerical calculations show that, with proper confinement geometry, electrons can be completely localized in an open waveguide. We interpret this flat band localization (FBL) phenomenon by introducing the concept of self-localized orbitals. Essentially, each unit cell of the waveguide is equivalent to an artificial atom, where the self-localized orbital is a special eigenstate with unique spatial distribution. These self-localized orbitals form the flat bands in the waveguide. Such self-localized orbital induced FBL is a general phenomenon of wave motion, which can arise in any wave systems with carefully engineered boundary conditions. We then design a metallic waveguide (MWG) array to illustrate that similar FBL can be readily realized and observed with electromagnetic waves.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(1)