Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

   Online First

Administered by

30 Most Downloaded Articles
Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month| Most Downloaded in Recent Year|

Most Downloaded in Recent Month
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Universal numerical calculation method for the Berry curvature and Chern numbers of typical topological photonic crystals
Chenyang WANG, Hongyu ZHANG, Hongyi YUAN, Jinrui ZHONG, Cuicui LU
Front. Optoelectron.    2020, 13 (1): 73-88.   https://doi.org/10.1007/s12200-019-0963-9
Abstract   HTML   PDF (4609KB)

Chern number is one of the most important criteria by which the existence of a topological photonic state among various photonic crystals can be judged; however, few reports have presented a universal numerical calculation method to directly calculate the Chern numbers of different topological photonic crystals and have denoted the influence of different structural parameters. Herein, we demonstrate a direct and universal method based on the finite element method to calculate the Chern number of the typical topological photonic crystals by dividing the Brillouin zone into small zones, establishing new properties to obtain the discrete Chern number, and simultaneously drawing the Berry curvature of the first Brillouin zone. We also explore the manner in which the topological properties are influenced by the different structure types, air duty ratios, and rotating operations of the unit cells; meanwhile, we obtain large Chern numbers from −2 to 4. Furthermore, we can tune the topological phase change via different rotation operations of triangular dielectric pillars. This study provides a highly efficient and simple method for calculating the Chern numbers and plays a major role in the prediction of novel topological photonic states.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(39)
Metalenses: from design principles to functional applications
Xiao FU, Haowen LIANG, Juntao Li
Front. Optoelectron.    2021, 14 (2): 170-186.   https://doi.org/10.1007/s12200-021-1201-9
Abstract   HTML   PDF (6678KB)

Lens is a basic optical element that is widely used in daily life, such as in cameras, glasses, and microscopes. Conventional lenses are designed based on the classical refractive optics, which results in inevitable imaging aberrations, such as chromatic aberration, spherical aberration and coma. To solve these problems, conventional imaging systems impose multiple curved lenses with different thicknesses and materials to eliminate these aberrations. As a unique photonic technology, metasurfaces can accurately manipulate the wavefront of light to produce fascinating and peculiar optical phenomena, which has stimulated researchers’ extensive interests in the field of planar optics. Starting from the introduction of phase modulation methods, this review summarizes the design principles and characteristics of metalenses. Although the imaging quality of existing metalenses is not necessarily better than that of conventional lenses, the multi-dimensional and multi-degree-of-freedom control of metasurfaces provides metalenses with novel functions that are extremely challenging or impossible to achieve with conventional lenses.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(17)
Intense terahertz generation from photoconductive antennas
Elchin ISGANDAROV, Xavier ROPAGNOL, Mangaljit SINGH, Tsuneyuki OZAKI
Front. Optoelectron.    2021, 14 (1): 64-93.   https://doi.org/10.1007/s12200-020-1081-4
Abstract   HTML   PDF (6524KB)

In this paper, we review the past and recent works on generating intense terahertz (THz) pulses from photoconductive antennas (PCAs). We will focus on two types of large-aperture photoconductive antenna (LAPCA) that can generate high-intensity THz pulses (a) those with large-aperture dipoles and (b) those with interdigitated electrodes. We will first describe the principles of THz generation from PCAs. The critical parameters for improving the peak intensity of THz radiation from LAPCAs are summarized. We will then describe the saturation and limitation process of LAPCAs along with the advantages and disadvantages of working with wide-bandgap semiconductor substrates. Then, we will explain the evolution of LAPCA with interdigitated electrodes, which allows one to reduce the photoconductive gap size, and thus obtain higher bias fields while applying lower voltages. We will also describe recent achievements in intense THz pulses generated by interdigitated LAPCAs based on wide-bandgap semiconductors driven by amplified lasers. Finally, we will discuss the future perspectives of THz pulse generation using LAPCAs.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(25)
Review of fiber Bragg grating sensor technology
Jinjie CHEN, Bo LIU, Hao ZHANG
Front Optoelec Chin    2011, 4 (2): 204-212.   https://doi.org/10.1007/s12200-011-0130-4
Abstract   HTML   PDF (455KB)

The current status of the fiber Bragg grating (FBG) sensor technology was reviewed. Owing to their salient advantages, including immunity to electromagnetic interference, lightweight, compact size, high sensitivity, large operation bandwidth, and ideal multiplexing capability, FBG sensors have attracted considerable interest in the past three decades. Among these sensing physical quantities, temperature and strain are the most widely investigated ones. In this paper, the sensing principle of FBG sensors was briefly introduced first. Then, we reviewed the status of research and applications of FBG sensors. As very important for industrial applications, multiplexing and networking of FBG sensors had been introduced briefly. Moreover, as a key technology, the wavelength interrogation methods were also reviewed carefully. Finally, we analyzed the problems encountered in engineering applications and gave a general review on the development of interrogation methods of FBG sensor.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(136)
A review of multiple optical vortices generation: methods and applications
Long ZHU, Jian WANG
Front. Optoelectron.    2019, 12 (1): 52-68.   https://doi.org/10.1007/s12200-019-0910-9
Abstract   HTML   PDF (6799KB)

Optical vortices carrying orbital angular momentum (OAM) have attracted increasing interest in recent years. Optical vortices have seen a variety of emerging applications in optical manipulation, optical trapping, optical tweezers, optical vortex knots, imaging, microscopy, sensing, metrology, quantum information processing, and optical communications. In various optical vortices enabled applications, the generation of multiple optical vortices is of great importance. In this review article, we focus on the methods of multiple optical vortices generation and its applications. We review the methods for generating multiple optical vortices in three cases, i.e., 1-to-N collinear OAM modes, 1-to-N OAM mode array and N-to-N collinear OAM modes. Diverse applications of multiple OAM modes in optical communications and non-communication areas are presented. Future trends, perspectives and opportunities are also discussed.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(59)
Time-domain terahertz spectroscopy in high magnetic fields
Andrey BAYDIN, Takuma MAKIHARA, Nicolas Marquez PERACA, Junichiro KONO
Front. Optoelectron.    2021, 14 (1): 110-129.   https://doi.org/10.1007/s12200-020-1101-4
Abstract   HTML   PDF (2571KB)

There are a variety of elementary and collective terahertz-frequency excitations in condensed matter whose magnetic field dependence contains significant insight into the states and dynamics of the electrons involved. Often, determining the frequency, temperature, and magnetic field dependence of the optical conductivity tensor, especially in high magnetic fields, can clarify the microscopic physics behind complex many-body behaviors of solids. While there are advanced terahertz spectroscopy techniques as well as high magnetic field generation techniques available, a combination of the two has only been realized relatively recently. Here, we review the current state of terahertz time-domain spectroscopy (THz-TDS) experiments in high magnetic fields. We start with an overview of time-domain terahertz detection schemes with a special focus on how they have been incorporated into optically accessible high-field magnets. Advantages and disadvantages of different types of magnets in performing THz-TDS experiments are also discussed. Finally, we highlight some of the new fascinating physical phenomena that have been revealed by THz-TDS in high magnetic fields.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(16)
Relationship between circadian rhythm and brain cognitive functions
Shiyang XU, Miriam AKIOMA, Zhen YUAN
Front. Optoelectron.    2021, 14 (3): 278-287.   https://doi.org/10.1007/s12200-021-1090-y
Abstract   HTML   PDF (458KB)

Circadian rhythms are considered a masterstroke of natural selection, which gradually increase the adaptability of species to the Earth’s rotation. Importantly, the nervous system plays a key role in allowing organisms to maintain circadian rhythmicity. Circadian rhythms affect multiple aspects of cognitive functions (mainly via arousal), particularly those needed for effort-intensive cognitive tasks, which require considerable top-down executive control. These include inhibitory control, working memory, task switching, and psychomotor vigilance. This mini review highlights the recent advances in cognitive functioning in the optical and multimodal neuroimaging fields; it discusses the processing of brain cognitive functions during the circadian rhythm phase and the effects of the circadian rhythm on the cognitive component of the brain and the brain circuit supporting cognition.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(18)
Fundamentals and applications of spin-decoupled Pancharatnam–Berry metasurfaces
Yingcheng QIU, Shiwei TANG, Tong CAI, Hexiu XU, Fei DING
Front. Optoelectron.    2021, 14 (2): 134-147.   https://doi.org/10.1007/s12200-021-1220-6
Abstract   HTML   PDF (4210KB)

Manipulating circularly polarized (CP) electromagnetic (EM) waves at will is significantly important for a wide range of applications ranging from chiral-molecule manipulations to optical communication. However, conventional EM devices based on natural materials suffer from limited functionalities, bulky configurations, and low efficiencies. Recently, Pancharatnam–Berry (PB) phase metasurfaces have shown excellent capabilities in controlling CP waves in different frequency domains, thereby allowing for multi-functional PB meta-devices that integrate distinct functionalities into single and flat devices. Nevertheless, the PB phase has intrinsically opposite signs for two spins, resulting in locked and mirrored functionalities for right CP and left CP beams. Here we review the fundamentals and applications of spin-decoupled metasurfaces that release the spin-locked limitation of PB metasurfaces by combining the orientation-dependent PB phase and the dimension-dependent propagation phase. This provides a general and practical guideline toward realizing spin-decoupled functionalities with a single metasurface for orthogonal circular polarizations. Finally, we conclude this review with a short conclusion and personal outlook on the future directions of this rapidly growing research area, hoping to stimulate new research outputs that can be useful in future applications.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(25)
Topological photonic crystals: a review
Hongfei WANG, Samit Kumar GUPTA, Biye XIE, Minghui LU
Front. Optoelectron.    2020, 13 (1): 50-72.   https://doi.org/10.1007/s12200-019-0949-7
Abstract   HTML   PDF (5403KB)

The field of topological photonic crystals has attracted growing interest since the inception of optical analog of quantum Hall effect proposed in 2008. Photonic band structures embraced topological phases of matter, have spawned a novel platform for studying topological phase transitions and designing topological optical devices. Here, we present a brief review of topological photonic crystals based on different material platforms, including all-dielectric systems, metallic materials, optical resonators, coupled waveguide systems, and other platforms. Furthermore, this review summarizes recent progress on topological photonic crystals, such as higher-order topological photonic crystals, non-Hermitian photonic crystals, and nonlinear photonic crystals. These studies indicate that topological photonic crystals as versatile platforms have enormous potential applications in maneuvering the flow of light.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(61)
Self-trapped exciton emission in inorganic copper(I) metal halides
Boyu ZHANG, Xian WU, Shuxing ZHOU, Guijie LIANG, Qingsong HU
Front. Optoelectron.    2021, 14 (4): 459-472.   https://doi.org/10.1007/s12200-021-1133-4
Abstract   HTML   PDF (6943KB)

The broad emission and high photoluminescence quantum yield of self-trapped exciton (STE) radiative recombination emitters make them an ideal solution for single-substrate, white, solid-state lighting sources. Unlike impurities and defects in semiconductors, the formation of STEs requires a lattice distortion, along with strong electron–phonon coupling, in low electron-dimensional materials. The photoluminescence of inorganic copper(I) metal halides with low electron-dimensionality has been found to be the result of STEs. These materials were of significant interest because of their lead-free, all-inorganic structures, and high luminous efficiencies. In this paper, we summarize the luminescence characteristics of zero- and one-dimensional inorganic copper(I) metal halides with STEs to provide an overview of future research opportunities.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(18)
Nanoimprint lithography for high-throughput fabrication of metasurfaces
Dong Kyo OH, Taejun LEE, Byoungsu KO, Trevon BADLOE, Jong G. OK, Junsuk RHO
Front. Optoelectron.    2021, 14 (2): 229-251.   https://doi.org/10.1007/s12200-021-1121-8
Abstract   HTML   PDF (7452KB)

Metasurfaces are composed of periodic subwavelength nanostructures and exhibit optical properties that are not found in nature. They have been widely investigated for optical applications such as holograms, wavefront shaping, and structural color printing, however, electron-beam lithography is not suitable to produce large-area metasurfaces because of the high fabrication cost and low productivity. Although alternative optical technologies, such as holographic lithography and plasmonic lithography, can overcome these drawbacks, such methods are still constrained by the optical diffraction limit. To break through this fundamental problem, mechanical nanopatterning processes have been actively studied in many fields, with nanoimprint lithography (NIL) coming to the forefront. Since NIL replicates the nanopattern of the mold regardless of the diffraction limit, NIL can achieve sufficiently high productivity and patterning resolution, giving rise to an explosive development in the fabrication of metasurfaces. In this review, we focus on various NIL technologies for the manufacturing of metasurfaces. First, we briefly describe conventional NIL and then present various NIL methods for the scalable fabrication of metasurfaces. We also discuss recent applications of NIL in the realization of metasurfaces. Finally, we conclude with an outlook on each method and suggest perspectives for future research on the high-throughput fabrication of active metasurfaces.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(71)
Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review
Shengping Liu, Junbo Feng, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo
Front. Optoelectron.    2022, 15 (1): 9-.   https://doi.org/10.1007/s12200-022-00012-9
Abstract   PDF (3575KB)

Silicon photonic platforms offer relevance to large markets in many applications, such as optical phased arrays, photonic neural networks, programmable photonic integrated circuits, and quantum computation devices. As one of the basic tuning devices, the thermo-optic phase shifter (TOPS) plays an important role in all these applications. A TOPS with the merits of easy fabrication, low power consumption, small thermal time constant, low insertion loss, small footprint, and low crosstalk, is needed to improve the performance and lower the cost of the above applications. To meet these demands, various TOPS have been proposed and experimentally demonstrated on different foundry platforms In this paper, we review the state-of-the-art of TOPS, including metal heater, doped silicon, silicide, with silicon substrate undercut for heat insulation, folded waveguide structure, and multi-pass waveguide structure. We further compare these TOPSs and propose the directions of the future developments on TOPS.

Reference | Related Articles | Metrics
Cited: Crossref(43)
Pump quantum efficiency optimization of 3.5 µm Er-doped ZBLAN fiber laser for high-power operation
Lu Zhang, Shijie Fu, Quan Sheng, Xuewen Luo, Junxiang Zhang, Wei Shi, Jianquan Yao
Front. Optoelectron.    2023, 16 (4): 33-null.   https://doi.org/10.1007/s12200-023-00089-w
Abstract   PDF (1512KB)

976 nm + 1976 nm dual-wavelength pumped Er-doped ZBLAN fiber lasers are generally accepted as the preferred solution for achieving 3.5 µm lasing. However, the 2 µm band excited state absorption from the upper lasing level (4F9/24F7/2) depletes the Er ions population inversion, reducing the pump quantum efficiency and limiting the power scaling. In this work, we demonstrate that the pump quantum efficiency can be effectively improved by using a long-wavelength pump with lower excited state absorption rate. A 3.5 µm Er-doped ZBLAN fiber laser was built and its performances at different pump wavelengths were experimentally investigated in detail. A maximum output power at 3.46 µm of ∼ 7.2 W with slope efficiency (with respect to absorbed 1990 nm pump power) of 41.2% was obtained with an optimized pump wavelength of 1990 nm, and the pump quantum efficiency was increased to 0.957 compared with the 0.819 for the conventional 1976 nm pumping scheme. Further power scaling was only limited by the available 1990 nm pump power. A numerical simulation was implemented to evaluate the cross section of excited state absorption via a theoretical fitting of experimental results. The potential of further power scaling was also discussed, based on the developed model.

Reference | Related Articles | Metrics
Cited: Crossref(1)
Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide
Yuanhao LOU, Xiongjie NING, Bei WU, Yuanjie PANG
Front. Optoelectron.    2021, 14 (4): 399-406.   https://doi.org/10.1007/s12200-021-1134-3
Abstract   HTML   PDF (978KB)

Optical traps have emerged as powerful tools for immobilizing and manipulating small particles in three dimensions. Fiber-based optical traps (FOTs) significantly simplify optical setup by creating trapping centers with single or multiple pieces of optical fibers. In addition, they inherit the flexibility and robustness of fiber-optic systems. However, trapping 10-nm-diameter nanoparticles (NPs) using FOTs remains challenging. In this study, we model a coaxial waveguide that works in the optical regime and supports a transverse electromagnetic (TEM)-like mode for NP trapping. Single NPs at waveguide front-end break the symmetry of TEM-like guided mode and lead to high transmission efficiency at far-field, thereby strongly altering light momentum and inducing a large-scale back-action on the particle. We demonstrate, via finite-difference time-domain (FDTD) simulations, that this FOT allows for trapping single 10-nm-diameter NPs at low power.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(3)
Self-trapped excitons in two-dimensional perovskites
Junze LI, Haizhen WANG, Dehui LI
Front. Optoelectron.    2020, 13 (3): 225-234.   https://doi.org/10.1007/s12200-020-1051-x
Abstract   HTML   PDF (2027KB)

With strong electron–phonon coupling, the self-trapped excitons are usually formed in materials, which leads to the local lattice distortion and localized excitons. The self-trapping strongly depends on the dimensionality of the materials. In the three-dimensional case, there is a potential barrier for self-trapping, whereas no such barrier is present for quasi-one-dimensional systems. Two-dimensional (2D) systems are marginal cases with a much lower potential barrier or nonexistent potential barrier for the self-trapping, leading to the easier formation of self-trapped states. Self-trapped excitons emission exhibits a broadband emission with a large Stokes shift below the bandgap. 2D perovskites are a class of layered structure material with unique optical properties and would find potential promising optoelectronic. In particular, self-trapped excitons are present in 2D perovskites and can significantly influence the optical and electrical properties of 2D perovskites due to the soft characteristic and strong electron–phonon interaction. Here, we summarized the luminescence characteristics, origins, and characterizations of self-trapped excitons in 2D perovskites and finally gave an introduction to their applications in optoelectronics.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(79)
Review of fabrication methods of large-area transparent graphene electrodes for industry
Petri MUSTONEN, David M. A. MACKENZIE, Harri LIPSANEN
Front. Optoelectron.    2020, 13 (2): 91-113.   https://doi.org/10.1007/s12200-020-1011-5
Abstract   HTML   PDF (837KB)

Graphene is a two-dimensional material showing excellent properties for utilization in transparent electrodes; it has low sheet resistance, high optical transmission and is flexible. Whereas the most common transparent electrode material, tin-doped indium-oxide (ITO) is brittle, less transparent and expensive, which limit its compatibility in flexible electronics as well as in low-cost devices. Here we review two large-area fabrication methods for graphene based transparent electrodes for industry: liquid exfoliation and low-pressure chemical vapor deposition (CVD). We discuss the basic methodologies behind the technologies with an emphasis on optical and electrical properties of recent results. State-of-the-art methods for liquid exfoliation have as a figure of merit an electrical and optical conductivity ratio of 43.5, slightly over the minimum required for industry of 35, while CVD reaches as high as 419.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(31)
A review of dielectric optical metasurfaces for spatial differentiation and edge detection
Lei WAN, Danping PAN, Tianhua FENG, Weiping LIU, Alexander A. POTAPOV
Front. Optoelectron.    2021, 14 (2): 187-200.   https://doi.org/10.1007/s12200-021-1124-5
Abstract   HTML   PDF (5403KB)

Dielectric metasurfaces-based planar optical spatial differentiator and edge detection have recently been proposed to play an important role in the parallel and fast image processing technology. With the development of dielectric metasurfaces of different geometries and resonance mechanisms, diverse on-chip spatial differentiators have been proposed by tailoring the dispersion characteristics of subwavelength structures. This review focuses on the basic principles and characteristic parameters of dielectric metasurfaces as first- and second-order spatial differentiators realized via the Green’s function approach. The spatial bandwidth and polarization dependence are emphasized as key properties by comparing the optical transfer functions of metasurfaces for different incident wavevectors and polarizations. To present the operational capabilities of a two-dimensional spatial differentiator in image information acquisition, edge detection is described to illustrate the practicability of the device. As an application example, experimental demonstrations of edge detection for different biological cells and a flower mold are discussed, in which a spatial differentiator and objective lens or camera are integrated in three optical pathway configurations. The realization of spatial differentiators and edge detection with dielectric metasurfaces provides new opportunities for ultrafast information identification in biological imaging and machine vision.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(21)
Antimony doped Cs2SnCl6 with bright and stable emission
Jinghui LI, Zhifang TAN, Manchen HU, Chao CHEN, Jiajun LUO, Shunran LI, Liang GAO, Zewen XIAO, Guangda NIU, Jiang TANG
Front. Optoelectron.    2019, 12 (4): 352-364.   https://doi.org/10.1007/s12200-019-0907-4
Abstract   HTML   PDF (3339KB)

Lead halide perovskites, with high photoluminescence efficiency and narrow-band emission, are promising materials for display and lighting. However, the lead toxicity and environmental sensitivity hinder their potential applications. Herein, a new antimony-doped lead-free inorganic perovskites variant Cs2SnCl6:xSb is designed and synthesized. The perovskite variant Cs2SnCl6:xSb exhibits a broadband orange-red emission, with a photoluminescence quantum yield (PLQY) of 37%. The photoluminescence of Cs2SnCl6:xSb is caused by the ionoluminescence of Sb3+ within Cs2SnCl6 matrix, which is verified by temperature dependent photoluminescence (PL) and PL decay measurements. In addition, the all inorganic structure renders Cs2SnCl6:xSb with excellent thermal and water stability. Finally, a white light-emitting diode (white-LED) is fabricated by assembling Cs2SnCl6:0.59%Sb, Cs2SnCl6:2.75%Bi and Ba2Sr2SiO4:Eu2+ onto the commercial UV LED chips, and the color rendering index (CRI) reaches 81.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(108)
Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects
Anjin LIU,Dieter BIMBERG
Front. Optoelectron.    2016, 9 (2): 249-258.   https://doi.org/10.1007/s12200-016-0611-6
Abstract   HTML   PDF (1732KB)

Optical interconnects (OIs) are the only solution to fulfil both the requirements on large bandwidth and minimum power consumption of data centers and high-performance computers (HPCs). Vertical-cavity surface-emitting lasers (VCSELs) are the ideal light sources for OIs and have been widely deployed. This paper will summarize the progress made on modulation speed, energy efficiency, and temperature stability of VCSELs. Especially VCSELs with surface nanostructures will be reviewed in depth. Such lasers will provide new opportunities to further boost the performance of VCSELs and open a new door for energy-efficient OIs.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(8)
Dimensionality engineering of metal halide perovskites
Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT
Front. Optoelectron.    2020, 13 (3): 196-224.   https://doi.org/10.1007/s12200-020-1039-6
Abstract   HTML   PDF (4176KB)

Metal halide perovskites are a class of materials that are ideal for photodetectors and solar cells due to their excellent optoelectronic properties. Their low-cost and low temperature synthesis have made them attractive for extensive research aimed at revolutionizing the semiconductor industry. The rich chemistry of metal halide perovskites allows compositional engineering resulting in facile tuning of the desired optoelectronic properties. Moreover, using different experimental synthesis and deposition techniques such as solution processing, chemical vapor deposition and hot-injection methods, the dimensionality of the perovskites can be altered from 3D to 0D, each structure opening a new realm of applications due to their unique properties. Dimensionality engineering includes both morphological engineering–reducing the thickness of 3D perovskite into atomically thin films–and molecular engineering–incorporating long-chain organic cations into the perovskite mixture and changing the composition at the molecular level. The optoelectronic properties of the perovskite structure including its band gap, binding energy and carrier mobility depend on both its composition and dimensionality. The plethora of different photodetectors and solar cells that have been made with different compositions and dimensions of perovskite will be reviewed here. We will conclude our review by discussing the kinetics and dynamics of different dimensionalities, their inherent stability and toxicity issues, and how reaching similar performance to 3D in lower dimensionalities and their large-scale deployment can be achieved.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(26)
High power tunable Raman fiber laser at 1.2 µm waveband
Yang Zhang, Jiangming Xu, Junrui Liang, Jun Ye, Sicheng Li, Xiaoya Ma, Zhiyong Pan, Jinyong Leng, Pu Zhou
Front. Optoelectron.    2024, 17 (1): 1-null.   https://doi.org/10.1007/s12200-024-00105-7
Abstract   PDF (2429KB)

Development of a high power fiber laser at special waveband, which is difficult to achieve by conventional rare-earth-doped fibers, is a significant challenge. One of the most common methods for achieving lasing at special wavelength is Raman conversion. Phosphorus-doped fiber (PDF), due to the phosphorus-related large frequency shift Raman peak at 40 THz, is a great choice for large frequency shift Raman conversion. Here, by adopting 150 m large mode area triple-clad PDF as Raman gain medium, and a novel wavelength-selective feedback mechanism to suppress the silica-related Raman emission, we build a high power cladding-pumped Raman fiber laser at 1.2 µm waveband. A Raman signal with power up to 735.8 W at 1252.7 nm is obtained. To the best of our knowledge, this is the highest output power ever reported for fiber lasers at 1.2 µm waveband. Moreover, by tuning the wavelength of the pump source, a tunable Raman output of more than 450 W over a wavelength range of 1240.6–1252.7 nm is demonstrated. This work proves PDF’s advantage in high power large frequency shift Raman conversion with a cladding pump scheme, thus providing a good solution for a high power laser source at special waveband.

Reference | Supplementary Material | Related Articles | Metrics
Intense terahertz radiation: generation and application
Yan ZHANG, Kaixuan LI, Huan ZHAO
Front. Optoelectron.    2021, 14 (1): 4-36.   https://doi.org/10.1007/s12200-020-1052-9
Abstract   HTML   PDF (8048KB)

Strong terahertz (THz) radiation provides a powerful tool to manipulate and control complex condensed matter systems. This review provides an overview of progress in the generation, detection, and applications of intense THz radiation. The tabletop intense THz sources based on Ti:sapphire laser are reviewed, including photoconductive antennas (PCAs), optical rectification sources, plasma-based THz sources, and some novel techniques for THz generations, such as topological insulators, spintronic materials, and metasurfaces. The coherent THz detection methods are summarized, and their limitations for intense THz detection are analyzed. Applications of intense THz radiation are introduced, including applications in spectroscopy detection, nonlinear effects, and switching of coherent magnons. The review is concluded with a short perspective on the generation and applications of intense THz radiation.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(32)
3D printing of glass by additive manufacturing techniques: a review
Dao ZHANG, Xiaofeng LIU, Jianrong QIU
Front. Optoelectron.    2021, 14 (3): 263-277.   https://doi.org/10.1007/s12200-020-1009-z
Abstract   HTML   PDF (7192KB)

Additive manufacturing (AM), which is also known as three-dimensional (3D) printing, uses computer-aided design to build objects layer by layer. Here, we focus on the recent progress in the development of techniques for 3D printing of glass, an important optoelectronic material, including fused deposition modeling, selective laser sintering/melting, stereolithography (SLA) and direct ink writing. We compare these 3D printing methods and analyze their benefits and problems for the manufacturing of functional glass objects. In addition, we discuss the technological principles of 3D glass printing and applications of 3D printed glass objects. This review is finalized by a summary of the current achievements and perspectives for the future development of the 3D glass printing technique.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(50)
Distributed feedback organic lasing in photonic crystals
Yulan FU, Tianrui ZHAI
Front. Optoelectron.    2020, 13 (1): 18-34.   https://doi.org/10.1007/s12200-019-0942-1
Abstract   HTML   PDF (3014KB)

Considerable research efforts have been devoted to the investigation of distributed feedback (DFB) organic lasing in photonic crystals in recent decades. It is still a big challenge to realize DFB lasing in complex photonic crystals. This review discusses the recent progress on the DFB organic laser based on one-, two-, and three-dimensional photonic crystals. The photophysics of gain materials and the fabrication of laser cavities are also introduced. At last, future development trends of the lasers are prospected.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(34)
Optical signal processing based on silicon photonics waveguide Bragg gratings: review
Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña
Front. Optoelectron.    2018, 11 (2): 163-188.   https://doi.org/10.1007/s12200-018-0813-1
Abstract   HTML   PDF (1547KB)

This paper reviews the work done by researchers at INRS and UBC in the field of integrated microwave photonics (IMWPs) using silicon based waveguide Bragg gratings (WBGs). The grating design methodology is discussed in detail, including practical device fabrication considerations. On-chip implementations of various fundamental photonic signal processing units, including Fourier transformers, Hilbert transformers, ultrafast pulse shapers etc., are reviewed. Recent progress on WBGs-based IMWP subsystems, such as true time delay elements, phase shifters, real time frequency identification systems, is also discussed.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(44)
Silicon hybrid nanoplasmonics for ultra-dense photonic integration
Xiaowei GUAN,Hao WU,Daoxin DAI
Front. Optoelectron.    2014, 7 (3): 300-319.   https://doi.org/10.1007/s12200-014-0435-1
Abstract   HTML   PDF (3322KB)

Recently hybrid plasmonic waveguides have been becoming very attractive as a promising candidate to realize next-generation ultra-dense photonic integrated circuits because of the ability to achieve nano-scale confinement of light and relatively long propagation distance. Furthermore, hybrid plasmonic waveguides also offer a platform to merge photonics and electronics so that one can realize ultra-small optoelectronic integrated circuits (OEICs) for high-speed signal generation, processing as well as detection. In this paper, we gave a review for the progresses on various hybrid plasmonic waveguides as well as ultrasmall functionality devices developed recently.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(12)
Fiber-based optical trapping and manipulation
Hongbao XIN, Baojun LI
Front. Optoelectron.    2019, 12 (1): 97-110.   https://doi.org/10.1007/s12200-017-0755-z
Abstract   HTML   PDF (5400KB)

An optical fiber serves as a versatile tool for optical trapping and manipulation owing to its many advantages over conventional optical tweezers, including ease of fabrication, compact configurations, flexible manipulation capabilities, ease of integration, and wide applicability. Here, we review recent progress in fiber-based optical trapping and manipulation, which includes mainly photothermal-based and optical-force-based trapping and manipulation. We focus on five topics in our review of progress in this area: massive photothermal trapping and manipulation, evanescent-field-based trapping and manipulation, dual-fiber tweezers for single-nanoparticle trapping and manipulation, single-fiber tweezers for single-particle trapping and manipulation, and single-fiber tweezers for multiple-particle/cell trapping and assembly.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(27)
PTX-symmetric metasurfaces for sensing applications
Zhilu YE, Minye YANG, Liang ZHU, Pai-Yen CHEN
Front. Optoelectron.    2021, 14 (2): 211-220.   https://doi.org/10.1007/s12200-021-1204-6
Abstract   HTML   PDF (2167KB)

In this paper, we introduce an ultra-sensitive optical sensing platform based on the parity-time-reciprocal scaling (PTX)-symmetric non-Hermitian metasurfaces, which leverage exotic singularities, such as the exceptional point (EP) and the coherent perfect absorber-laser (CPAL) point, to significantly enhance the sensitivity and detectability of photonic sensors. We theoretically studied scattering properties and physical limitations of the PTX-symmetric metasurface sensing systems with an asymmetric, unbalanced gain-loss profile. The PTX-symmetric metasurfaces can exhibit similar scattering properties as their PT-symmetric counterparts at singular points, while achieving a higher sensitivity and a larger modulation depth, possible with the reciprocal-scaling factor (i.e., X transformation). Specifically, with the optimal reciprocal-scaling factor or near-zero phase offset, the proposed PTX-symmetric metasurface sensors operating around the EP or CPAL point may achieve an over 100 dB modulation depth, thus paving a promising route toward the detection of small-scale perturbations caused by, for example, molecular, gaseous, and biochemical surface adsorbates.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(19)
Drilling high aspect ratio holes by femtosecond laser filament with aberrations
Manshi WANG, Zhiqiang YU, Nan ZHANG, Weiwei LIU
Front. Optoelectron.    2021, 14 (4): 522-528.   https://doi.org/10.1007/s12200-021-1214-4
Abstract   HTML   PDF (4037KB)

A near-infrared femtosecond laser is focused by a 100 mm-focal-length plano-convex lens to form a laser filament, which is employed to drill holes on copper targets. By shifting or rotating the focusing lens, additional aberration is imposed on the focused laser beam, and significant influence is produced on the aspect ratio and cross-sectional shape of the micro-holes. Experimental results show that when proper aberration is introduced, the copper plate with a thickness of 3 mm can be drilled through with an aspect ratio of 30, while no through-holes can be drilled on 3-mm-thickness copper plates by femtosecond laser with minimized aberration. In addition, when femtosecond laser filament with large astigmatism is used, micro-holes that had a length to width ratio up to 3.3 on the cross-section are obtained. Therefore, the method proposed here can be used to fabricate long oval holes with high aspect ratios.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(2)
Organic fluorescent probes for live-cell super-resolution imaging
Xinxin Duan, Meng Zhang, Yu-Hui Zhang
Front. Optoelectron.    2023, 16 (4): 34-null.   https://doi.org/10.1007/s12200-023-00090-3
Abstract   PDF (3288KB)

The development of super-resolution technology has made it possible to investigate the ultrastructure of intracellular organelles by fluorescence microscopy, which has greatly facilitated the development of life sciences and biomedicine. To realize super-resolution imaging of living cells, both advanced imaging systems and excellent fluorescent probes are required. Traditional fluorescent probes have good availability, but that is not the case for probes for live-cell super-resolution imaging. In this review, we first introduce the principles of various super-resolution technologies and their probe requirements, then summarize the existing designs and delivery strategies of super-resolution probes for live-cell imaging, and finally provide a brief conclusion and overview of the future.

Reference | Related Articles | Metrics
Cited: Crossref(1)